
Foundations of Data-Aware Process Analysis:
A Database Theory Perspective

Diego Calvanese, Marco Montali
Free University of Bozen/Bolzano

lastname@inf.unibz.it

Giuseppe De Giacomo
Sapienza Università di Roma

degiacomo@dis.uniroma1.it

ABSTRACT
In this work we survey the research on foundations of data-aware
(business) processes that has been carried out in the database the-
ory community. We show that this community has indeed devel-
oped over the years a multi-faceted culture of merging data and
processes. We argue that it is this community that should lay the
foundations to solve, at least from the point of view of formal anal-
ysis, the dichotomy between data and processes still persisting in
business process management.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

General Terms
Verification

Keywords
Business artifacts, data-centric processes, first-order temporal log-
ics.

1. INTRODUCTION
When it comes to manage the assets of an organization, data and

processes should be considered as two sides of the same coin [105].
A 2009 survey by Forrester1 [90], whose outcome is also reported
in [108], has addressed the important question of which of the two
aspects should be given priority from the point of view of IT man-
agement. Unsurprisingly, the role played by an individual within
IT strongly affects the perception of the relative importance of pro-
cesses and data within an organization: Professionals concerned
with the management of business processes downplay the impor-
tance of data, and view it as subsidiary to the processes that manage
them; as a consequence, they do not pay attention to the quality of
data and on how the business processes can ensure that data assets
can be maintained clean. On the contrary, data management experts

1http://www.forrester.com/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2066-5/13/06 ...$15.00.

consider data as the driver of the processes in an organization, and
assume that guaranteeing data quality is sufficient to ensure proper
consideration of business relevant data so as to impact process im-
provement efforts.

An immediate consequence of this dichotomy, is that there is
very limited collaboration and cost sharing between the teams on
the one hand running the (master) data management (MDM) initia-
tives and on the other hand managing the business process. This
is also confirmed by Forrester’s survey, where for 83% of the re-
spondents there was no interaction, and only in 8% of the cases
the master data management and business process modeling efforts
were fully coordinated. A further consequence is that there is little
attention also on the side of tool vendors to address in their prod-
ucts the requirements coming from a combined treatment of pro-
cesses and data. On the one hand, data management tool vendors
consider processes only insofar as they affect the direct manage-
ment of the data within the tools, but they do not pay attention to
the processes that actually make use of the data. On the other hand,
business process modeling suites do not allow for the connection of
data to the processes. Service oriented architectures (SOA), which
make it possible to divide the functionality of large systems into
component services, are advocated as a solution to the data-process
dichotomy. However, while favoring component reuse, they do not
address the need of connecting the data to the organizational pro-
cesses so as to facilitate their improvement, and in fact data con-
tinues to be “hidden” inside systems [100]. In addition to SOA,
[100] identifies two key areas in which an explicit representation of
data in process models is crucial. The first is the modeling of the
core assets of an organization, due to the fact that the data stored
in different IT systems is crucial for the execution of the business
processes that create the value of the organization itself. Hence,
the business processes depend on such data, and in order to keep
the organization operational, the former need access to the latter.
This dependency should be accounted for explicitly. The second is
business process controlling, due to the fact that both the key per-
formance indicators, and the business goals of the organization on
which they depend, are defined in terms of data. To evaluate and
control these indicators, the activities contributing to the goals need
to be identified, and this is done by considering the appropriate data
objects on which these activities operate. In order to support this
task, process models need to shift the emphasis from control flow
to the data [120, 85].

It follows that there is a strong need to incorporate data model-
ing features in (business) process modeling languages, and to en-
rich business process analysis tools to deal with data [100]. This
demands for suitable modeling languages, methodologies and sys-
tems supporting the integrated management of processes and data,
and, possibly above all, it calls for a more foundational approach,

http://www.forrester.com/

to provide a clear semantics for (data-aware) process models, and
to consequently enable their analysis.

Analysis is attracting a lot of interest based on the momentum
that verification of software and hardware systems has had in the
last 15 years, also recognized by the 2007 A.M. Turing Award,
given to Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis,
for their role in developing Model-Checking into a highly effective
verification technology that is widely adopted in the hardware and
software industries. Model checking, see [122] for an introduction
oriented to database theoreticians, is based on the idea of formulat-
ing dynamic properties of interest in some temporal logic like LTL,
CTL, µ-calculus [79, 117] (whose temporal component is intrinsi-
cally non-first order, since based implicitly or explicitly on forms of
fixpoints) and check such formulas over the transition system (ex-
plicitly or implicitly represented) mathematically capturing the dy-
namics of the system of interest. A key element for current model
checking techniques is that states can be modelled propositionally,
giving rise to a finite-state transition system.

When data are relevant, states need to be model relationally
rather than propositionally [122]. That is, we associate to the state
of the process the state of the data, possibly seen as a relational
database. These transition systems are typically infinite-state since
there is no bound on the number of tuples that can be added to
database relations as the computation goes on. The presence of data
also calls for query languages for process analysis that combine two
dimensions: a temporal dimension to query the process execution
flow, and a first-order dimension to query the data present in the
relational structures maintained by the states of the system, and
to relate objects across different states. In other words, first-order
variants of temporal logics are required [122, 126, 69].

The resulting verification problem is much harder than in the
pure finite-state control-flow setting, and deeply challenges the pos-
sibility of employing off-the-shelf, conventional finite-state model
checkers. In particular, a data-aware process that combines a fi-
nite control-flow with the manipulation of a full-fledged database,
can easily encode the behavior of a Turing machine, causing the
model checking problem to become immediately undecidable even
for simple propositional CTL/LTL properties.

The fundamental question is then: how can we mediate between
the expressiveness of the temporal property language, and the iden-
tification of classes of data-aware processes, for which analysis
becomes decidable, but at the same time still applicable to no-
table, real-world data-aware processes? Research in verification
has tacked verification of infinite-state systems (e.g., see [50] for a
survey). However, in much of this work the emphasis is on studying
recursive control rather than data, which is either ignored or propo-
sitionally abstracted. If data are included they are of a very spe-
cific form, like recursive procedures with integer parameters [48],
rewriting systems with data [47], or Petri nets with data associated
to tokens [95].

Processes and data has been a continuously present stream of
research in database theory. Over the years, a lot of work has
been done on database evolution and transaction (see Section 3.1),
on temporal query languages and data management (see Sec-
tion 3.2), on active databases (see Section 3.3), on workflow sys-
tems (see Section 3.4), and on temporal integrity constraints (see
Section 3.5). Most of this work looks at dynamics of a database
system, however starting from the work on relational transducers
(see Section 4.1), business processes, i.e., processes at a higher
level of abstraction, have started attracting attention. Then a first
call-to-arms was issued in early 2000 by Rick Hull in [86] con-
cerning the need of modeling and analyzing business processes in
the context of e- or web-services. The interest in web-services gave

rise to a beautiful stream of work on verifying database-centric dy-
namic services (see Section 4.2). A second call-to-arms was issued
again by Rick Hull in the late 2000, about the modeling and the
formal analysis of “artifact-centric business processes” [85]. It is
this call that has generated the latest work on data-aware process
analysis that has been flourishing in the last years (see Sections 4.3
and 4.4).

In this work we present an overview of the research on founda-
tions of data-aware (business) processes that has been carried out in
the database theory community in the last three decades. We show
that this community has indeed developed over the years a multi-
faceted culture of combining static and dynamic aspects of data
management, which has recently culminated in a series of signifi-
cant lines of research addressing the foundations of data-aware pro-
cess analysis. We argue that it is this community that should pursue
further the investigation of the fundamental issues underlying the
dichotomy between data and processes, which still persists in busi-
ness process management and calls for a unifying, well-founded
framework.

This survey complements four key companion surveys in the
area: the ones by Rick Hull [86, 85], which single out problems
and challenges on data-aware service oriented and artifact-centric
computing; the one by Moshe Vardi [122], which presents the body
of work on model checking, including challenges arising due to the
presence of data; the one by Victor Vianu [126], which surveys
the line of work developed starting from mid 2000 on verification
of data-centric dynamic services; and the one by Tova Milo [69],
which surveys how fundamental data management techniques can
be applied to the challenging problem of managing control flows
characterizing business processes.

2. THE BPM PERSPECTIVE
Process analysis is a central research theme in business process

management (BPM). In a recent survey [118], Wil van der Aalst
pointed out that process model analysis has been the second most
influential topic in a decade of BPM conferences (following pro-
cess modeling languages). However, in BPM process analysis has
been mainly tackled, so far, by following a divide et impera ap-
proach. This has led to the development of sophisticated, effective
techniques dealing with the process, control-flow dimension but ab-
stracting away from the data. In particular, a plethora of verification
techniques has been developed to verify whether the control-flow
of a process meets specific, pre-defined properties (such as absence
of deadlocks, boundedness, and soundness), or domain-dependent
properties. Virtually all these techniques rely on the fact that the dy-
namics induced by a process control-flow can be captured by means
of a (possibly infinite-state) propositional labeled transition system,
whose labels represent the process tasks/activities, and where con-
currency is represented by interleaving, as typically done in formal
verification [27]. Usually, such a transition system is not explic-
itly represented, but it is instead implicitly “folded” into a Petri net,
which provides a compact representation of the process control-
flow thanks to its native capability of accommodating concurrency.

Beside verification of pre-defined properties, also the verifica-
tion of arbitrary, domain-dependent properties has been tackled in
BPM, relying on standard temporal logics such as CTL and LTL. In
particular, such temporal logics are exploited to specify properties
about the dynamics of the (Petri net representing the) system by
either focusing on place configurations (i.e., the amount of tokens
present in a given place), or on task execution [77]. In spite of the
undecidability results for verification of general Petri nets [76, 77],
decidability holds for safe/bounded nets, whose reachability graph
consists of a finite-state labeled transition system. This, in turn,

makes it possible to rely on conventional finite-state model check-
ing techniques, lifting the focus from decidability to complexity
issues [127, 109, 110, 23].

When it comes to formal specification and analysis of data-aware
processes, no satisfactory solution has been provided so far within
BPM. The main approach that captures data-aware extensions of
Petri nets is the one of colored Petri nets. However, in the instan-
tiation used in BPM [119] they are not suited to represent a full-
fledged database. They introduce data as variables associated to
tokens, and manipulate them by means of a sort of procedural at-
tachment, i.e., by attaching procedures/functions to the transitions
of the net. These procedures/functions can be implemented as an
arbitrary program (typically written in a functional language), and
hence are completely unconstrained. This lifts the system towards
executability2, but sacrifices its analyzability and verifiability.

High-level, business process modeling languages such as the
OMG standard BPMN3, and the OASIS standard BPEL4 service or-
chestration language suffer from similar limitations when the data
dimension is taken into account. All these languages largely leave
the connection between the process dimension and the data dimen-
sion underspecified. For example, they do not conceptually cap-
ture the behavior of atomic tasks, consequently abstracting away
from how they progress data. To obtain a fully-specified model,
one therefore needs again to attach an arbitrary program to every
BPMN atomic task or service invoked by the BPEL process [102].

3. DYNAMICS IN DATABASE THEORY
We overview here how the database theory community has been

contributing to the analysis of data-aware processes. We do so by
first looking at some key lines of research that have considered the
interaction of both static and dynamic aspects of data management.
Specifically, we consider below the following lines of research:

1. database evolution and transactions;
2. temporal data management;
3. active databases;
4. workflow formalisms and systems;
5. temporal integrity constraints.

For each of these areas we overview the main research objectives
and achievements. Our aim here is not to be comprehensive, but
rather to highlight the mainstream directions relevant to the topic
of this paper that have characterized the research in databases.

3.1 Database Evolution and Transactions
The problem of evolution of data in a database by means of

atomic operations and their combination inside transactions has
been considered from early on as a key issue to investigate in
databases. Apart from the fundamental problems of concurrency
control and serializability (see, e.g., [93, 112, 98, 82] for early re-
sults), updates and transactions have been considered also in view
of their interaction with (static) database constraints. Equivalence
and optimization of relational transactions, consisting of linear se-
quences of insertions, deletions, and updates, using simple selec-
tion conditions based on individual attribute values for each tuple,
is investigated in [13, 17]. A formal model (called dynamic re-
lational model) for evolution over time of a database, seen as a
sequence of instances is presented in [123, 124]. The effects on
evolution of dynamic constraints (specifically, dynamic functional
dependencies), which relate one database instance to the next in

2http://cpntools.org/
3http://www.bpmn.org/
4https://www.oasis-open.org/committees/
wsbpel

the sequence are studied. Specifically, the problem of inferring
static constraints from knowledge about the evolution history of the
database, as expressed by the dynamic constraints, is investigated.
The impact of dynamic constraints on the update of a specific form
of views, in which each tuple represents an object with its proper-
ties, is considered in [125].

The connection between transactions and static constraints is
further investigated in [14], which presents a model where valid
database states are described using a set of admissible (parameter-
ized) transactions, as opposed to constraints. Such transactional
database schemas are in general incomparable with schemas de-
scribed via constraints, though they are able to simulate natural
types of constraints, such as those generated by the early semantic
database models (ER [53], IFO [7]). Equivalence of transactional
schemas is shown to be undecidable in general, but decidable cases
are singled out. The work studies also preservation of constraints
by transactions, showing decidability, e.g., for inclusion dependen-
cies, but undecidability for arbitrary FOL constraints. Further de-
cidable restrictions, investigated in [15], are obtained by limiting
on the one hand the kind of allowed operations to insertions and
deletions (but no updates), and on the other hand the properties to
be checked to specific ones (in line with what typically done in
software verification). Interestingly, when the maximum length of
a transaction is bound to a fixed value, decidability can be shown
for stronger properties.

In the transaction language TL introduced in [16], which fea-
tures inserts, deletes, and a (non-deterministic) “while” construct,
transactions may use a fixed number of temporary relations, and
may be “unsafe”, i.e., introduce new values, not in the original
database. Safety is also relaxed to “weak safety”, where new values
are allowed only in temporary relations. Further, a notion of “up-
date completeness”, which is more natural than query completeness
[52], is proposed, and it is shown that TL is update complete. [18]
builds on this work, by defining a variant of TL in which “while”
has a deterministic semantics, and new values may not appear in
the result, but only in intermediate relations. It is shown that such
language is complete for deterministic updates. The variant where
new values are disallowed alltogether, is shown complete for fix-
point queries, hence strictly less expressive that PSPACE updates.
Instead, on an ordered domains, one obtains exactly PSPACE. The
work presents also declarative update languages, which are exten-
sions of Datalog with negation in the body, disjunction in the head,
and unsafe head variables. Derivation of a fact corresponds to in-
sertion, whereas deletions are not foreseen. Such language is equiv-
alent to TL without deletion, and is complete for non-deterministic
updates where input and output relations are disjoint.

3.2 Temporal Data Management
A temporal database provides mechanisms to store data as it

evolves, and to query its historical states using suitable exten-
sions of standard query languages like SQL. Research on temporal
database originates from the observation that temporal data man-
agement can be very difficult if one uses conventional database sys-
tems [88]. The work on temporal databases and query languages
goes back to [111], which provides a Description of syntax and
semantics of temporal extension of Quel (a calculus-based query
language for the Ingres system) that makes use of Allen’s interval
relations [22].

A temporal database model, in which each tuple is timestamped
with a union of time intervals, is defined [80]. The notion of “weak
relation” as the equivalence class of all timestamped relations for
which the snapshots at each timepoint are equal, is introduced, and
an algebra over such weak relations is defined and studied. Datalog

http://cpntools.org/
http://www.bpmn.org/
https://www.oasis-open.org/committees/wsbpel
https://www.oasis-open.org/committees/wsbpel

extended with unary function symbols (i.e., successor), is studied
in [57], and a mechanism is proposed to finitely represent infinite
query answers via rules that may be returned together with explicit
tuples. A framework for reasoning about infinite temporal informa-
tion, based on generalized tuples with additional temporal attributes
and constraints, is presented in [89]. Temporal attributes are de-
fined by infinitely repeating points (of the form z(n) = c + kn)
and constraints are conjunctions of linear equalities and inequalities
on temporal attributes. Contrast this to constraint databases, where
constraints are used to describe multiple databases, as opposed to
a single database with infinite temporal information. The paper re-
lates predicates definable by generalized relations with those defin-
able in Presburger arithmetic. It studies the complexity of relational
algebra on generalized relations, which return finite representations
of possibly infinite answers. Whereas positive existential queries
are in PTIME (in data complexity), arbitrary queries (with nega-
tion) are NP-hard and in 2EXPTIME.

The semantics and expressive power of Templog [1], which ex-
tends horn logic programs with temporal operators (next, always,
eventually) is studied in [32, 33], showing that the declarative se-
mantics and the operational semantics, based on a suitably defined
temporal extension of SLD-resolution, coincide. The resolution-
based calculus is shown to be sound and complete, but restrictions
that would ensure decidability of satisfiability of Templog specifi-
cations are not considered. For the propositional variant of Tem-
plog expressiveness is investigated, and shown to be equivalent to
that of fixpoint linear time logic (i.e., Büchi automata on infinite
strings) [121] restricted so as to allow only least fixpoints applied
to positive formulas, which in turn corresponds to finite-word regu-
lar languages. The temporal database formalisms proposed in [57,
32, 89] are compared in [34] with respect to their power in ex-
pressing queries (query expressiveness) and constraints on the data
(data expressiveness). Also a query language, operating on tempo-
ral databases [89], with the ability to express predicates over multi-
ple temporal attributes it defined, and sufficient conditions for finite
evaluation of queries, even over infinite periodic data, are given.

Several works survey the area of temporal databases and query
languages. In particular, [55] surveys temporal query languages,
distinguishing between abstract and concrete languages and study-
ing formal semantics, expressiveness, and query processing. In
[88], instead, the problem of temporal data management is ad-
dressed more in general, also considering design and implemen-
tation aspects for temporal database systems.

We conclude by observing that the work on temporal query lan-
guages includes also work on logics that are first-order variants
of propositional temporal logics used in verification, such as first-
order LTL [54] and others that we will consider later. The formulas
in such logics are monadic in the temporal component, in the sense
that they can be seen as a combination through temporal opera-
tors of open formulas that contain only one free temporal variable.
However, temporal query languages go beyond these logics, allow-
ing also for combining formulas that are not monadic in the tem-
poral component, so as to express sophisticated relationship among
data and associated timestamps [6].

3.3 Active Databases
At the end of the 80’s there was a great interest in active

databases. These are processes described in terms of sets of event-
condition-action rules operating on a database: such rules are trig-
gered (under the control of a condition) by an initial external event,
and successively by the internal update events caused by the execu-
tion of the rule actions. Much of the research in this area has been
devoted to study the execution of such languages, by defining and

implementing interpreters for them [91]. A general formal frame-
work for active databases is introduced in [103, 104], and is used
as the basis for comparing several active database prototypes with
respect to their expressive power and complexity.

Substantial work has also been devoted to the analysis, especially
termination and confluence of rule based trigger systems [21]. The
termination problem can be formulated as follows: given a set of
rules, check whether, for every initial database (and every possible
triggering event), every sequence of rule activations (which are in
general non-deterministic) eventually terminates. Notice that, al-
though rules are in general assumed to not bring in new data into
the system (but just to manipulate the objects present in the initial
database), the difficulty of the problem lies in the fact that termina-
tion has to be determined for every possible initial database.

The undecidability of termination in general was immediately
observed. However, special cases and restrictions that guarantee
decidability have been singled out. For example, [29] shows decid-
ability of termination of propositional trigger systems in which the
triggered rules are managed via a stack or a set. Such decidability
results turn out, however, to be rather fragile; e.g., the system stud-
ied in [29] becomes undecidable when a stack replaces the queue
in the management of the triggered rules. When going beyond the
propositional case and considering relations updated by the rule
actions, one approach, followed by [28], is to perform the analysis
by an (unfaithful, i.e., sound) abstraction of data, so as to guaran-
tee soundness (but not necessarily completeness) of the termination
check. Instead, [30] aims at sound and complete techniques, and in-
vestigates the borders of decidability for the termination problem.
It is shown that in the following two cases, which impose rather
severe conditions on the specification of the systems, decidability
holds: (i) updates are restricted to have a single atom in rule bodies
and to be safe (i.e., all head variables appear in the body); (ii) up-
dates may be arbitrary, but only unary relations may be non-empty
in the initial database. In both cases, even apparently minor relax-
ations of these restrictions lead to undecidability.

3.4 Workflow Formalisms and Systems
A further topic integrating static and dynamic aspects of data that

has been addressed by the database community is that of systems to
manage workflows. A workflow can be considered as a collection
of activities designed in such a way that a group of (human or arti-
ficial) agents can carry out in a coordinated way a specific complex
process. Workflow management systems provide a framework for
capturing the interaction among the activities in a workflow [116].

Research in databases has contributed to this area by studying
formalisms and systems that would support transactional aspects
of workflows [49, 46]. Specifically, [49] considers a setting that
deals both with task dependencies in a workflow, and dependencies
between operations on the data by multiple interacting transactions.
However, it does not consider the actual data and the changes per-
formed on it, but only the order in which operations are executed.

Another interesting perspective on workflows is the use of typ-
ical database functionalities (persistence, transactions, complex
querying, provenance, etc.) to support the activities related to man-
aging workflows and their execution [107, 35, 36, 31, 64]. The
recent survey [69] contains an in-depth treatment of this aspect.

The importance of data not only in the context of a single
workflow, but to drive the integration between multiple, inter-
organizational workflows, has been considered since the late
nineties in the Vortex workflow management system [87]. In
Vortex, data implicitly introduce additional dynamic (data-flow)
constraints among activities belonging to the different interacting
workflows. Verification of Vortex workflows has been studied by

considering the control-flow component, but by considering the
contribution of the data component only in terms of the induced
data-flow constraints, without explicitly capturing the complex in-
terplay between the two components [78].

The dichotomy between an expressive workflow modeling lan-
guage able to account for data, and the language used for ver-
ification, which abstracts away data, is present also in other ap-
proaches. For example, [65] adopts transaction logic with task pre-
/post-conditions to model full-fledged workflows operating over re-
lational databases, but forbids the presence of such conditions when
it comes to reasoning and verification, thus effectively loosing the
link between the workflow behavior and the database.

3.5 Temporal Integrity Constraints
Temporal integrity constraints are integrity constraints that col-

lectively constrain multiples states of a database over time. Even
though they are not meant to explicitly represent a business pro-
cess, they nevertheless declaratively specify which evolutions of
the system and of the corresponding data are considered legal.

Early on, temporal constraints were recognized important for
transactions. [96] relates dynamic integrity constraints expressed
in temporal logic to transaction specifications defined by FOL pre
and postconditions. The aim is to monitor the integrity constraints
through transactions, and it is shown how to align the transaction
specification so that it generates only state sequences that satisfy
the dynamic constraints. Later, [39] investigates the properties of
weakest preconditions for various transaction and specification lan-
guages, concentrating on specification languages that are relevant
to integrity constraints, such as FOL.

Most of the work on checking temporal constraints in temporal
databases focused on first-order variants of LTL [54], which is in
general highly undecidable [83]. However, a decidability condi-
tion that was singled out early on concerns safety formulas with no
quantification except for implicit universal quantification allowed
outside temporal operators [58, 59]. First-order LTL that uses only
temporal connectives referring to the past has been proposed as a
convenient language to express integrity constraints, since such for-
mulas can be efficiently checked, by accumulating the historical
information that is necessary for the check in auxiliary relations of
the current state [56].

4. BUSINESS PROCESS ANALYSIS IN
DATABASE THEORY

We next turn to research that directly tackle data-aware process
analysis, focusing on higher level processes than transactions, such
as business processes. We recall that the presence of data on the
one hand makes the system dynamics infinite-state in general and,
on the other hand, requires to go beyond propositional temporal
logics. Indeed, in order to properly query the state of the system
by extracting data, one needs first-order quantification within and
across the states of the system.

Various approaches have been proposed, that differ in:
• The structure of the process component, as well as its inter-

action with the data component, and with the external envi-
ronment.

• The kind of analysis problem that is considered; most works
focus on verification of arbitrary temporal properties ex-
pressed in the adopted formalism; other approaches fix a set
of specific problems they aim to solve.

• The considered temporal formalism, and consequently the
kind of properties that can be expressed; such properties are
typically formulated in a variant of first-order temporal logic.

• The form of quantification that is allowed in the first-order
temporal formalism, where the cases that have been consid-
ered are quantification over the initial state only, and quan-
tification across states. The latter case takes into account also
those objects that have been introduced during the evolution
of the system, and in general requires suitable restrictions on
the scope of the quantification so as to guarantee decidability.

4.1 Relational Transducers
One of the most significant approaches proposed by the database

community to model high-level (business) processes is that of re-
lational transducers, originally proposed to support forms of e-
commerce [19, 20]. Relational transducers explicitly account for
a dynamic component, reminiscent of active databases and transac-
tional workflows, on top of full-fledged databases.

More specifically, a relational transducer is a tuple (S, σ, ω),
where: (i) S is the relational transducer schema, constituted by
pairwise disjoint relational schemas for input, state, output, and
fixed (external) database, and where the log is a further relational
schema used to maintain the semantically meaningful portion of an
input-output exchange; (ii) σ is a state-update transition function
mapping instances of input, state and fixed database to instances of
the next state; (iii) ω is an output-update transition function map-
ping instances of input, state and fixed database to instances of the
next output. The semantics of a relational transducer is based on
linear time. In particular, it captures the evolution of state and out-
put sequences, in response to a sequence of inputs representing the
interaction with the external world, as stored in the log.

The problems subject to analysis range from log validity (i.e.,
checking whether a log sequence can be generated with some in-
put sequence), goal reachability, containment (i.e., testing whether
every valid log of one transducer is also valid for another) and com-
patibility (i.e., checking whether two transducers have a common
log) to the verification of specific first-order temporal properties
with a past-time operator. These problems are in general unde-
cidable. However, decidability and, in particular, a NEXPTIME
upper bound for the verification problem, have been obtained in
[19, 20] by requiring transducers to be semi-positive cumulative
state (Spocus). In a Spocus transducer, the state accumulates all in-
puts received, and the outputs are defined by a non-recursive, semi-
positive set of datalog rules.

In [113, 114], a generalization of Spocus transducers, called
ASM transducers, has been studied. ASM transducers do not nec-
essarily accumulate input, and their rule application is in general
guarded by arbitrary first-order formulas. In this setting, the afore-
mentioned problems are reconsidered, and verification is addressed
for a variant of first-order LTL in which temporal operators cannot
appear in the scope of first-order quantifiers, except for outermost
universal quantifiers. Even though verification is undecidable for
general ASM transducers, two main restrictions that guarantee de-
cidability are identified: (i) ASM transducers for which the fixed
(external) database is explicitly known, and the set of values al-
lowed in the input is restricted to those appearing in that database;
(ii) ASM transducers which bound a-priori the maximum amount
of input that can be received in one computation step. Complexity
of verification for such restricted versions range between PSPACE-
complete to EXPSPACE-complete, depending on whether the max-
imum arity of the employed relations is bounded a-priori or not.

4.2 Data-Driven Web Systems
Web systems provide distributed access to information stored on

the web, typically powered by databases and manipulated by com-
plex web applications/services that interact with third-party ser-

vices and external users. In [72], the case of a single web ser-
vice that interacts with an external user is considered, studying the
trade-off between the expressiveness of the web service specifica-
tion language and the feasibility of verification. Verification is tack-
led by relying on a formalization of such kind of system in terms
of a model that extends ASM transducers. In fact, a web service
is modeled by means of (i) a database that remains fixed during
the execution, (ii) a set of state relations that evolve in response to
user inputs, (iii) a set of web page schemas that query the current
database and state to generate user input choice, and (iv) state tran-
sitions that are triggered by the input chosen by the user. The firing
of a transition triggers actions to be taken for progressing the state,
then leading the interaction to the next web page.

To achieve decidability of verification, [72] imposes restrictions
over the web service similar to [113, 114], limiting the use of quan-
tification in state, action, and target rule formulas to input-bounded
quantification, and limiting formulas of input rules to be existen-
tial. The expressive power of ASM transducers is extended with
the possibility of referring to the input at the previous step in the
run. Verification is then tackled for the input-bounded version of
the linear-time logic considered in [113, 114], extended with the
possibility of referring to the previous input. In particular, decid-
ability of verification for this logic over an input-bounded web ser-
vice is decidable in EXPSPACE (in fact, PSPACE-complete when
the arity of the service schema is bounded a-priori). This result
is obtained by a reduction to finite satisfiability of existential first-
order logic augmented with a transitive closure operator. Further-
more, it is shown that even small relaxations of the imposed re-
strictions lead to undecidability. Beside linear-time properties, also
verification of branching-time properties is tackled, by considering
variants of the logics CTL and CTL∗, where first-order quantifi-
cation obeys to the same restrictions as in the LTL case. In par-
ticular, it is shown that for these logics it is necessary to further
restrict the web service model to guarantee decidability. Two main
restrictions are studied: (i) propositional, input bounded web ser-
vices, which forbid the use of previous input relations and pose the
strong assumption that all states and actions are propositional (but
inputs are still parametrized in the specification); and (ii) input-
driven search web services, which restrict the usage of previous
input relations but are still able to capture common applications
involving a user-driven search. In the case of propositional web
services, verification for the CTL and CTL∗ variants is proved to
be respectively in coNEXPTIME and EXPSPACE (PSPACE by fix-
ing the database schema). Complexity of verification respectively
becomes in EXPTIME and 2EXPTIME in the case of input-driven
search web services.

Notably, even though the established complexity upper bounds
provide no indication about the practical feasibility of verification,
an effective implementation has been carried out in the WAVE sys-
tem [71], focusing on the linear-time case. In particular, the exper-
imentation carried out in [71] has demonstrated that, by leveraging
on a fruitful coupling of novel verification and database optimiza-
tion techniques, complete verification is practically feasible for a
reasonably broad class of applications. A system building on WAVE
and dealing with aspects ranging from specification of Web appli-
cations to explanation of verification results is presented in [74].

In [75, 73], the single-service setting tackled in [72, 71] has
been extended to the case of composition of web-services (also
called peers), which interact by asynchronous message exchange.
A service reacts to incoming messages and user input by updating
its internal state through a function of the current contents of the
database, state, user input, and received messages, possibly reply-
ing with outgoing messages. Decidability of verification is studied

for two property specification formalisms: the variant of first-order
LTL studied in prior work, and conversation protocols (that lever-
age on an industrial standard). In particular, various semantics for
message-based communication are exploited (singleton versus set
messages, lossy versus perfect communication channels, bounded
versus unbounded received message queues), which provide vari-
ous extensions to the notion of input-boundedness in the case of
multiple interacting services. Under appropriate communication
semantics, decidability of verification is established in PSPACE,
showing at the same time that even slight relaxations of the im-
posed restrictions immediately lead to undecidability.

Related to this research line is also the work on the Colombo
framework for service composition [40]. There automated compo-
sition synthesis is studied in presence of data. In particular, de-
cidability under certain conditions that ensure reduction of rela-
tional states to propositional states is established. The restriction
that along a run only finitely many new object are introduced is
crucial for the technique proposed therein. Notice that this input-
bounded condition guarantees that service runs are “bounded”, in
the sense discussed in Section 4.4.

4.3 Artifact-Centric Systems
The artifact-centric approach to business process modeling,

which began at IBM Research in the late 1990’s and was first pre-
sented in [101], proposes business artifacts (or simply artifacts) to
model key business-relevant entities. Artifacts are equipped with
an information model, representing the data maintained by the ar-
tifact, and they evolve over time following a so-called lifecycle.
Processes organize atomic tasks or available services that are of
interest into a possibly complex workflow.

The artifact-centric approach provides a simple and robust struc-
ture for business process development, which has been advocated
as superior to the traditional activity-centric approach, especially
when dealing with complex and large process models. While the
traditional workflow approach does not lend itself to componenti-
zation in a natural way [94], the artifact-centric approach is claimed
to enhance efficiency, especially when dealing with business pro-
cess transformations to expand and/or streamline the process [43,
41, 97]. Fundamental notions from the artifact-centric approach
have also been deployed in commercial products underlying IBM’s
commercial service offerings [115].

The surveys [85, 60] overviewed the research results on the
artifact-centric approach to business process specification, manage-
ment, deployment and analysis, tracing the roadmap of research di-
rections and challenges. As far as verification is concerned, this
triggered several lines of research aiming at decidable techniques
for verification over processes and data, to be reassessed and ex-
tended towards the artifact-centric setting.

Seminal works on the analysis of artifact-centric systems is pre-
sented in [81, 42]. In [81], systems constituted by multiple in-
terconnected artifacts are studied. The artifact information model
contains the current state, and a tuple of attributes. Each attribute,
in turn, may refer either to a primitive value or to some other ar-
tifact instance. Artifact lifecycles have a procedural flavor, based
on finite state machines whose transitions either create a new arti-
fact, or modify/eliminate an existing one. In this setting, first-order
CTL with quantification across states is considered, showing de-
cidability of verification for such formulas in the case of bounded
domains, and in the case of unbounded domains, under the assump-
tion that quantification only ranges over artifacts (and not values),
and the number of artifacts is bounded. [42] tackles artifact systems
that are similar, in spirit, to the ones of [81], but where lifecycles
follow a more declarative style, based on business rules that activate

services. Services are in turn described in terms of preconditions
and non-deterministic effects related to the creation, manipulation
and elimination of artifacts. Manipulation of attributes focuses only
on whether these attributes are defined or undefined (so that values
are abstracted away). A set of pre-defined reasoning tasks (success-
ful path completion, existence of dead-end paths, attribute redun-
dancy) is tackled, showing that all are undecidable in the general
case, but become decidable if no new artifacts can be created, or
by imposing various restrictions, such as monotonicity of services
(i.e., each attribute is written at most once).

In [70], the artifact model proposed in [42] is extended so as
to include a static read-only database, and to handle a relational
state in addition to attributes, whose values are not abstracted away
and can be compared by service and property specifications accord-
ing to a dense linear order. Runs can receive unbounded external
input from the infinite domain of values. As verification formal-
ism, a variant of first-order LTL is considered, where statements
about individual artifact instances in the run may share variables
that are outermost universally quantified. Decidability of verifica-
tion is obtained by restricting such logic and the system specifica-
tion to be guarded. The guarded restriction introduces a form of
bounded quantification in the properties and formulas driving the
system’s evolution, which resembles input-boundedness [113, 114,
72]. In particular, read-only and read-write database relations are
accessed differently, querying the latter only by checking whether
they contain a given tuple of constants. It is shown that this restric-
tion is tight, and that integrity constraints cannot be added to the
framework, since even a single functional dependency leads to un-
decidability of verification. Decidability comes with a PSPACE up-
per bound for fixed-arity schemas, and EXPSPACE otherwise. [61,
62, 63] extend this approach by forbidding read-write relations,
but this allows the extension of the decidability result to integrity
constraints expressed as embedded dependencies with terminating
chase, and to any decidable arithmetic.

Another line of research building on the artifact-centric paradigm
is [9, 3, 10, 11], which study the specification and verification of
artifact-centric systems that rely on an active XML-based informa-
tion model. Active XML [2] (AXML for short) extends XML by
allowing parts of the document to be specified in an intensional
way, by means of embedded calls to internal functions or external
services. In the artifact-centric setting, AXML documents support
the design of complex workflows, providing at the same time a de-
scription of the underlying data and of the sub-tasks (formally, in-
ternal functions) to be orchestrated by the workflow. In particular,
the boundaries of decidability for the verification of systems based
on multiple, interacting AXML documents are delineated. Tempo-
ral properties of runs are specified in a tree pattern-based temporal
logic, called Tree-LTL, which exploits tree-like patterns to query
the states of the system, and combines them through linear-time
temporal operators to predicate about the evolution of a system run.
Similarly to the logics considered in Section 4.2, in Tree-LTL vari-
ables are existentially quantified within a state, or universally quan-
tified by means of an outermost quantifier. The systems consid-
ered for verification rely on guarded AXML (GAXML) documents,
which control the initiation and completion of sub-tasks by means
of boolean combinations of tree-patterns. Decidability of verifi-
cation is achieved by disallowing recursion in GAXML systems,
which leads to bound the total number of sub-tasks invoked along
a run. In this setting, the complexity of verification is shown to be
co2-EXPTIME-complete.

In [4, 5], the problem of comparing different data-aware work-
flow specification frameworks based on AXML is tackled. It is
argued that comparing workflow specification formalisms is intrin-

sically difficult because of the diversity of data models and control-
flow mechanisms, and the lack of a standard yardstick for expres-
siveness. For example, AXML workflows could employ automata,
pre-and-post conditions, or declarative temporal logic formulas to
express the dynamics of the system. A unifying approach based
on views is then proposed, where views are exploited to isolate the
relevant aspects to be taken into account when comparing different
specification frameworks. Notably, the approach is used to show
that the different control mechanisms for Active XML workflows
are largely equivalent, an indication of the robustness of the model.

4.4 Data-Centric Dynamic Systems
A recent line of research has been aiming at developing a frame-

work for the combination of data and processes that is expressive
and robust with respect to the system model, general in the verifi-
cation formalism, and at the same time guarantees decidability of
verification:

• Expressiveness guarantees the ability to capture a wide range
of concrete systems (such as web applications and artifact-
centric systems, which call for full create-read-update-delete,
CRUD, operations over the database), and favours the adop-
tion of the framework in real-world scenarios.

• Robustness makes the framework apt to adjustments (e.g.,
allowing for inclusion of different kinds of integrity con-
straints), which improves usability in the modeling phase.

• Generality of the verification formalism provides the abil-
ity to capture both linear-time and branching-time properties,
at the same time supporting first-order quantification across
states.

These apparently incompatible requirements can be accomplished
together by imposing (automatically checkable) structural condi-
tions on the process dynamics and on how they accounts for the
evolution of the data over time. We refer to this kind of framework
as Data-Centric Dynamic Systems (DCDS).

From a technical point of view, research on DCDSs has drawn
inspiration from the works dealing with termination of rule-based
systems, and in particular from acyclicity conditions in data ex-
change [92]. The key idea connecting data exchange with DCDSs
is that the semantics of tasks progressing the data can be related to
the firing of a (set of) tuple-generating dependencies (TGDs). Also,
notice that all the works discussed below assume that verification
is done with respect to a system with a given initial database.

The first works literally exploiting the connection between tasks
and TGSs were [51, 66]. There the transition relation itself is de-
scribed in terms of TGDs that map the current state, represented
as a relational database instance, to the next one. Null values are
used to model the incorporation of new, unknown data into the sys-
tem. The process evolution is essentially a form of chase. Under
suitable weak acyclicity conditions this chase terminates, guaran-
teeing in turn that the system is finite-state. Decidability is then
shown for a first-order µ-calculus without first-order quantification
across states. This approach was extended by [24], where TGDs
are replaced by actions allowing negation in the preconditions. In
this revised framework, values imported from the external environ-
ment are represented by uninterpreted function terms, which play
the same role as nulls in the work by [51, 66]. Since both [24]
and [51, 66] rely on a purely relational setting, this choice leads to
an ad-hoc interpretation of equality, where each null value/function
term is considered only equal to itself.

Differently from these works, [37] considered a first-order vari-
ant of CTL with no quantification across states as verification for-
malism. The framework supports the incorporation of new values
from the external environment as parameters of the actions; the

corresponding execution semantics considers all the possible actual
values, thus leading to an infinite-state transition systems. As for
decidability of verification, it is shown that, under the assumption
that each state of the system (constituted by the union of artifacts’
relational instances) has a bounded active domain, it is possible to
construct a faithful (i.e., sound and complete with respect to the ver-
ification logic) abstract transition system which, differently from
the original one, has a finite number of states. [38] looks at quan-
tification across in this setting. It relies on the semantic property
of genericity [8] (called there “uniformity”), which guarantees that
the transition system representing the execution of the process un-
der study is not able to distinguish among states that have the same
constants and the same patterns of data. Under the assumptions
of genericity and state boundedness, decidability of verification is
achieved for a richer logic, namely CTL with quantification across
states, interpreted under the active domain semantics.

In [26], a comprehensive study of relational DCDSs is provided,
where new information from the external world can be incorporated
into the system through calls to deterministic and non-deterministic
services. Verification for variants of first-order µ-calculus is inves-
tigated, where first-order quantification affects the objects across
the possibly infinite states of the system. With such an expressive
formalism, attention must be paid so as not to accumulate along a
run an unbounded amount of information about which the formula
to be verified may predicate. The accumulation of information may
occur in the variables that are used as arguments of quantification,
hence one needs to suitably control how these variables are quanti-
fied upon in the formula. In particular, two variants of first-order µ-
calculus are singled out. The first one, called history-preserving µ-
calculus, preserves knowledge of objects encountered along a run,
by relying on an active domain semantics. In this case, decidability
(in EXPTIME in the initial database) is obtained under the assump-
tion that the data introduced along a run are bounded, though they
may not be bounded in the overall system (run-boundedness con-
dition). The second one, called persistence-preserving µ-calculus,
preserves knowledge of an object only if the object is continuously
present across successive states. In this case, decidability (again in
EXPTIME in the initial database) is obtained even when infinitely
many values are introduced along a run, as long as there is an over-
all bound on the number of objects accumulated in the same state
(state-boundedness condition). Technically, decidability is shown
in both cases by relying on finite-state abstractions that are faithful
(i.e., sound and complete) according to suitable notions of bisim-
ulations, tailored towards the two verification languages. The ab-
stractions exploit an implicit form of genericity, which is enforced
by the model underlying DCDSs and by the services they interact
with. Even though run-boundedness and state-boundedness are se-
mantic conditions that are undecidable to check, sufficient syntactic
conditions have been singled out, respectively relying on the notion
of weak acyclicity in data exchange [92], and on the novel notion
of generate-recall acyclicity.

Considering the combination of the results in [38] and [26], we
can observe that, for state-bounded systems, in the presence of
first-order quantification over the active domain of the current state,
without limiting the scope of quantification to the objects that per-
sist across states, verification is decidable in case of CTL (i.e., with
alternation-fee fixpoints), but becomes undecidable for LTL, and
hence for the µ-calculus in general. The proof of undecidability in
[26] is based on a reduction to LTL with freeze quantifiers [68].

5. CONCLUSIONS AND OUTLOOK
In this work, we surveyed the research on foundations of data-

aware (business) processes that has been carried out in the database

theory community. This community has developed rich techniques
to deal with data and processes and among the various areas of
computer science it is probably the one in the best position to lay
the foundations of data-aware process analysis.

Several challenges are ahead of us. In particular, the work done
in the last years on verification of data-aware processes shows that
the analysis techniques proposed are exponential in those data that
“change”. So circumscribing what can be changed by a process
appears to be a key issue to make verification practical. This is
particularly relevant in the context of processes acting on web data
like those that are the focus of [12, 84].

Notably, recent significant works on the analysis of data-aware
processes, such as those in [38, 26], rely on a mix of contributions,
formalisms, and techniques that have their roots in several areas
of computer science, in particular database theory, formal meth-
ods, logic, process management, and knowledge representation. In
particular, with respect to the latter, it is worth noting that a field
where data and processes have always been considered together is
that of reasoning about actions in Artificial Intelligence. Since the
introduction of Situation Calculus in [99, 106], a first-order setting
was considered for describing the states that actions could modify.
An additional difficulty is the presence of incomplete information,
typical of knowledge bases. Verification of processes is obviously
of interest, but most decidability results are based on bounding the
domain, thus reducing to a propositional case. The techniques dis-
cussed here do impact that literature as well and reflect into condi-
tions for decidability of verification (see, e.g., [67, 25]).

We also notice that the majority of contemporary techniques
for data-aware process analysis rely on the construction of faith-
ful, finite-state abstractions starting from the infinite-state transi-
tion system representing the original model. In principle, this en-
ables the exploitation of conventional model checkers to actually
address the analysis problem, which is a promising approach. At
the same time, we stress the importance of further pursuing the
cross-fertilization with other research such as that of data words
[44, 45] that have developed techniques to deal with systems whose
state space is in general infinite due to the presence of data.

Acknowledgements
We would like to thank Babak Bagheri Hariri, Riccardo De Masel-
lis, Alin Deutsch, Paolo Felli, Rick Hull, Maurizio Lenzerini,
Alessio Lomuscio, Fabio Patrizi, Jianwen Su, and Moshe Vardi for
stimulating ideas, inspiring discussions, and novel insights on the
topics of this paper. This research has been partially supported by
the EU under the ICT Collaborative Project ACSI (Artifact-Centric
Service Interoperation), grant agreement n. FP7-257593. Diego
Calvanese acknowledges the kind support of the Wolfgang Pauli
Institute Vienna and of the Technical University Vienna for his sab-
batical stay.

6. REFERENCES
[1] M. Abadi and Z. Manna. Temporal logic programming. J.

of Symbolic Computation, 8(3):277–295, 1989.
[2] S. Abiteboul, O. Benjelloun, and T. Milo. Positive active

XML. In Proc. of the 23rd ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems
(PODS 2004), pages 35–45, 2004.

[3] S. Abiteboul, P. Bourhis, A. Galland, and B. Marinoiu. The
AXML artifact model. In Proc. of the 16th Int. Symp. on
Temporal Representation and Reasoning (TIME 2009),
pages 11–17, 2009.

[4] S. Abiteboul, P. Bourhis, and V. Vianu. Comparing
workflow specification languages: a matter of views. In

Proc. of the 14th Int. Conf. on Database Theory
(ICDT 2011), pages 78–89, 2011.

[5] S. Abiteboul, P. Bourhis, and V. Vianu. Comparing
workflow specification languages: A matter of views. ACM
Trans. on Database Systems, 37(2):10:1–10:59, 2012.

[6] S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal
versus first-order logic to query temporal databases. In
Proc. of the 15th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS’96), pages
49–57, 1996.

[7] S. Abiteboul and R. Hull. IFO: A formal semantic database
model. ACM Trans. on Database Systems, 12(4):297–314,
1987.

[8] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley Publ. Co., 1995.

[9] S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of
Active XML systems. In Proc. of the 27th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2008), pages 221–230, 2008.

[10] S. Abiteboul, L. Segoufin, and V. Vianu. Modeling and
verifying Active XML artifacts. Bull. of the IEEE Computer
Society Technical Committee on Data Engineering,
32(3):10–15, 2009.

[11] S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of
Active XML systems. ACM Trans. on Database Systems,
34(4):23:1–23:44, 2009.

[12] S. Abiteboul, P. Senellart, and V. Vianu. The ERC webdam
on foundations of web data management. In Proc. of the
21st Int. World Wide Web Conf. (WWW 2012), pages
211–214, 2012.

[13] S. Abiteboul and V. Vianu. Transactions in relational
databases (preliminary report). In Proc. of the 10th Int.
Conf. on Very Large Data Bases (VLDB’84), pages 46–56,
1984.

[14] S. Abiteboul and V. Vianu. Transactions and integrity
constraints. In Proc. of the 4th ACM SIGACT SIGMOD
Symp. on Principles of Database Systems (PODS’85),
pages 193–204, 1985.

[15] S. Abiteboul and V. Vianu. Deciding properties of
transactional schemas. In Proc. of the 5th ACM SIGACT
SIGMOD Symp. on Principles of Database Systems
(PODS’86), pages 235–239, 1986.

[16] S. Abiteboul and V. Vianu. A transcation language complete
for database update and specification. In Proc. of the 6th
ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’87), pages 260–268, 1987.

[17] S. Abiteboul and V. Vianu. Equivalence and optimization of
relational transactions. J. of the ACM, 35(1):70–120, 1988.

[18] S. Abiteboul and V. Vianu. Procedural and declarative
database update languages. In Proc. of the 7th ACM
SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’88), pages 240–250, 1988.

[19] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. In Proc. of
the 17th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’98), pages
179–187, 1998.

[20] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. J. of
Computer and System Sciences, 61(2):236–269, 2000.

[21] A. Aiken, J. Widom, and J. M. Hellerstein. Behavior of
database production rules: Termination, confluence, and
observable determinism. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data, pages 59–68, 1992.

[22] J. F. Allen. Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(11):832–843,
1983.

[23] A. Awad, G. Decker, and M. Weske. Efficient compliance
checking using BPMN-Q and temporal logic. In Proc. of
the 6th Int. Conference on Business Process Management
(BPM 2008), volume 5240 of Lecture Notes in Computer
Science, pages 326–341. Springer, 2008.

[24] B. Bagheri Hariri, D. Calvanese, G. De Giacomo,
R. De Masellis, and P. Felli. Foundations of relational
artifacts verification. In Proc. of the 9th Int. Conference on
Business Process Management (BPM 2011), volume 6896
of Lecture Notes in Computer Science, pages 379–395.
Springer, 2011.

[25] B. Bagheri Hariri, D. Calvanese, M. Montali,
G. De Giacomo, R. De Masellis, and P. Felli. Description
logic Knowledge and Action Bases. J. of Artificial
Intelligence Research, 46, 2013.

[26] B. Bagheri Hariri, D. Calvanese, M. Montali,
G. De Giacomo, and A. Deutsch. Verification of relational
data-centric dynamic systems with external services. In
Proc. of the 32nd ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS 2013), 2013.

[27] C. Baier and J.-P. Katoen. Principles of Model Checking.
MIT Press, 2008.

[28] J. Bailey, L. Crnogorac, K. Ramamohanarao, and
H. Søndergaard. Abstract interpretation of active rules and
its use in termination analysis. In Proc. of the 6th Int. Conf.
on Database Theory (ICDT’97), volume 1186 of Lecture
Notes in Computer Science, pages 188–202. Springer, 1997.

[29] J. Bailey, G. Dong, and K. Ramamohanarao. Structural
issues in active rule systems. In Proc. of the 6th Int. Conf.
on Database Theory (ICDT’97), volume 1186 of Lecture
Notes in Computer Science, pages 203–214. Springer, 1997.

[30] J. Bailey, G. Dong, and K. Ramamohanarao. Decidability
and undecidability results for the termination problem of
active database rules. In Proc. of the 17th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’98), pages 264–273, 1998.

[31] Z. Bao, S. B. Davidson, and T. Milo. Labeling workflow
views with fine-grained dependencies. Proc. of the VLDB
Endowment, 5(11):1208–1219, 2012.

[32] M. Baudinet. Temporal logic programming is complete and
expressive. In Proc. of the 16th ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages
(POPL’89), pages 267–280, 1989.

[33] M. Baudinet. On the expressiveness of temporal logic
programming. Information and Computation,
117(2):157–180, 1995.

[34] M. Baudinet, M. Niézette, and P. Wolper. On the
representation of infinite temporal data and queries. In
Proc. of the 10th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS’91), pages
280–290, 1991.

[35] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying
business processes. In Proc. of the 32nd Int. Conf. on Very
Large Data Bases (VLDB 2006), pages 343–354, 2006.

[36] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying
business processes with BP-QL. Information Systems,
33(6):477–507, 2008.

[37] F. Belardinelli, A. Lomuscio, and F. Patrizi. Verification of
deployed artifact systems via data abstraction. In Proc. of
the 9th Int. Joint Conf. on Service Oriented Computing
(ICSOC 2011), volume 7084 of Lecture Notes in Computer
Science, pages 142–156. Springer, 2011.

[38] F. Belardinelli, A. Lomuscio, and F. Patrizi. An abstraction
technique for the verification of artifact-centric systems. In
Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2012), 2012.

[39] M. Benedikt, T. Griffin, and L. Libkin. Verifiable properties
of database transactions. In Proc. of the 15th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’96), pages 117–127, 1996.

[40] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and
M. Mecella. Automatic composition of transition-based
semantic web services with messaging. In Proc. of the 31st
Int. Conf. on Very Large Data Bases (VLDB 2005), pages
613–624, 2005.

[41] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam,
and F. Y. Wu. Artifact-centered operational modeling:
Lessons from customer engagements. IBM Systems
Journal, 46(4):703–721, 2007.

[42] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su.
Towards formal analysis of artifact-centric business process
models. In Proc. of the 5th Int. Conference on Business
Process Management (BPM 2007), volume 4714 of Lecture
Notes in Computer Science, pages 288–234. Springer, 2007.

[43] K. Bhattacharya, R. Guttman, K. Lyman, F. F. Heath,
S. Kumaran, P. Nandi, F. Y. Wu, P. Athma, C. Freiberg,
L. Johannsen, and A. Staudt. A model-driven approach to
industrializing discovery processes in pharmaceutical
research. IBM Systems Journal, 44(1):145–162, 2005.

[44] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and
L. Segoufin. Two-variable logic on data words. ACM Trans.
on Computational Logic, 12(4):27, 2011.

[45] M. Bojanczyk and T. Place. Toward model theory with data
values. In Proc. of the 39th Int. Coll. on Automata,
Languages and Programming (ICALP 2012), pages
116–127, 2012.

[46] A. J. Bonner. Workflow, transactions, and datalog. In Proc.
of the 18th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’99), pages
294–305, 1999.

[47] A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu.
Rewriting systems with data. In Proc. of the 16th Int. Symp.
on Fundamentals of Computation Theory (FCT 2007),
2007.

[48] A. Bouajjani, P. Habermehl, and R. Mayr. Automatic
verification of recursive procedures with one integer
parameter. Theoretical Computer Science, 295, 2003.

[49] Y. Breitbart, A. Deacon, H.-J. Schek, A. P. Sheth, and
G. Weikum. Merging application-centric and data-centric
approaches to support transaction-oriented multi-system
workflows. SIGMOD Record, 22(3):23–30, 1993.

[50] O. Burkart, D. Caucal, F. Moller, and B. Steffen.
Verification of infinite structures. In Handbook of Process
Algebra. Elsevier, 2001.

[51] P. Cangialosi, G. De Giacomo, R. De Masellis, and
R. Rosati. Conjunctive artifact-centric services. In Proc. of

the 8th Int. Joint Conf. on Service Oriented Computing
(ICSOC 2010), volume 6470 of Lecture Notes in Computer
Science, pages 318–333. Springer, 2010.

[52] A. K. Chandra and D. Harel. Computable queries for
relational data bases. J. of Computer and System Sciences,
21(2):156–178, 1980.

[53] P. P. Chen. The Entity-Relationship model: Toward a
unified view of data. ACM Trans. on Database Systems,
1(1):9–36, Mar. 1976.

[54] J. Chomicki. Temporal inegrity constraints in relational
databases. Bull. of the IEEE Computer Society Technical
Committee on Data Engineering, 17(2):33–37, 1994.

[55] J. Chomicki. Temporal query languages: a survey. In Proc.
of the 1st Int. Conf. on Temporal Logic (ICTL’94), volume
827 of Lecture Notes in Computer Science, pages 506–534.
Springer, 1994.

[56] J. Chomicki. Efficient checking of temporal integrity
constraints using bounded history encoding. ACM Trans. on
Database Systems, 20(2):149–186, 1995.

[57] J. Chomicki and T. Imielinski. Temporal deductive
databases and infinite objects. In Proc. of the 7th ACM
SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’88), pages 61–73, 1988.

[58] J. Chomicki and D. Niwinski. On the feasibility of checking
temporal integrity constraints. In Proc. of the 12th ACM
SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’93), pages 202–213, 1993.

[59] J. Chomicki and D. Niwinski. On the feasibility of checking
temporal integrity constraints. J. of Computer and System
Sciences, 51(3):523–535, 1995.

[60] D. Cohn and R. Hull. Business artifacts: A data-centric
approach to modeling business operations and processes.
Bull. of the IEEE Computer Society Technical Committee
on Data Engineering, 32(3):3–9, 2009.

[61] E. Damaggio, A. Deutsch, R. Hull, and V. Vianu.
Automatic verification of data-centric business processes.
In Proc. of the 9th Int. Conference on Business Process
Management (BPM 2011), volume 6896 of Lecture Notes in
Computer Science, pages 30–16. Springer, 2011.

[62] E. Damaggio, A. Deutsch, and V. Vianu. Artifact systems
with data dependencies and arithmetic. In Proc. of the 14th
Int. Conf. on Database Theory (ICDT 2011), pages 66–77,
2011.

[63] E. Damaggio, A. Deutsch, and V. Vianu. Artifact systems
with data dependencies and arithmetic. ACM Trans. on
Database Systems, 37(3):22, 2012.

[64] S. B. Davidson, T. Milo, and S. Roy. A propagation model
for provenance views of public/private workflows. In Proc.
of the 16th Int. Conf. on Database Theory (ICDT 2013),
pages 165–176, 2013.

[65] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V.
Ramakrishnan. Logic based modeling and analysis of
workflows. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems
(PODS’98), pages 25–33, 1998.

[66] G. De Giacomo, R. De Masellis, and R. Rosati. Verification
of conjunctive artifact-centric services. Int. J. of
Cooperative Information Systems, 21(2):111–139, 2012.

[67] G. De Giacomo, Y. Lesperance, and F. Patrizi. Bounded
situation calculus action theories and decidable verification.
In Proc. of the 13th Int. Conf. on the Principles of

Knowledge Representation and Reasoning (KR 2012),
pages 467–477, 2012.

[68] S. Demri and R. Lazić. LTL with the Freeze quantifier and
register automata. In Proc. of the 21st IEEE Symp. on Logic
in Computer Science (LICS 2006), pages 17–26, 1996.

[69] D. Deutch and T. Milo. A quest for beauty and wealth (or,
business processes for database researchers). In Proc. of the
30th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS 2011), pages 1–12, 2011.

[70] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic
verification of data-centric business processes. In Proc. of
the 12th Int. Conf. on Database Theory (ICDT 2009), pages
252–267, 2009.

[71] A. Deutsch, M. Marcus, L. Sui, V. Vianu, and D. Zhou. A
verifier for interactive, data-driven web applications. In
Proc. of the ACM SIGMOD Int. Conf. on Management of
Data, pages 539–550, 2005.

[72] A. Deutsch, L. Sui, and V. Vianu. Specification and
verification of data-driven web services. In Proc. of the
23rd ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS 2004), pages 71–82, 2004.

[73] A. Deutsch, L. Sui, and V. Vianu. Specification and
verification of data-driven web applications. J. of Computer
and System Sciences, 73(3):442–474, 2007.

[74] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. A system for
specification and verification of interactive, data-driven web
applications. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 772–774, 2006.

[75] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of
communicating data-driven web services. In Proc. of the
25th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS 2006), pages 90–99, 2006.

[76] J. Esparza. Decidability of model checking for infinite-state
concurrent systems. Acta Informatica, 34(2):85–107, 1997.

[77] J. Esparza. Decidability and complexity of Petri net
problems – An introduction. In Lectures on Petri Nets I,
Lecture Notes in Computer Science, pages 374–428.
Springer, 1998.

[78] X. Fu, T. Bultan, R. Hull, and J. Su. Verification of Vortex
workflows. In Proc. of the 7th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS 2001), volume 2031 of Lecture Notes in Computer
Science, pages 143–157. Springer, 2001.

[79] D. M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal
Logic: Mathematical Foundations and Computational
Aspects, volume 28 of Oxford Logic Guides. Oxford
University Press, 1994.

[80] S. K. Gadia. Weak temporal relations. In Proc. of the 5th
ACM SIGACT SIGMOD Symp. on Principles of Database
Systems (PODS’86), pages 70–77, 1986.

[81] C. E. Gerede and J. Su. Specification and verification of
artifact behaviors in business process models. In Proc. of
the 5th Int. Conf. on Service Oriented Computing
(ICSOC 2007), volume 4749 of Lecture Notes in Computer
Science, pages 181–192. Springer, 2007.

[82] M. H. Graham, N. D. Griffeth, and B. Smith-Thomas.
Reliable scheduling of database transactions for unreliable
systems. In Proc. of the 3rd ACM SIGACT SIGMOD Symp.
on Principles of Database Systems (PODS’84), pages
300–310, 1984.

[83] D. Harel. Recurring dominoes: Making the highly
undecidable highly understandable. Ann. of Discrete
Mathematics, 24:51–72, 1985.

[84] J. M. Hellerstein. The declarative imperative: Experiences
and conjectures in distributed logics. SIGMOD Record,
39(1):5–19, 2010.

[85] R. Hull. Artifact-centric business process models: Brief
survey of research results and challenges. In Proc. of the On
the Move Confederated Int. Conf. (OTM 2008), volume
5332 of Lecture Notes in Computer Science, pages
1152–1163. Springer, 2008.

[86] R. Hull, M. Benedikt, V. Christophides, and J. Su.
E-services: a look behind the curtain. In Proc. of the 22nd
ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS 2003), pages 1–14, 2003.

[87] R. Hull and J. Su. The Vortex approach to integration and
coordination of workflows. In Proc. of the Workshop on
Cross-Organisational Workflow Management and
Co-ordination, volume 17 of CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/, 1999.

[88] C. S. Jensen and R. T. Snodgrass. Temporal data
management. IEEE Trans. on Knowledge and Data
Engineering, 11(1):36–44, 1999.

[89] F. Kabanza, J.-M. Stévenne, and P. Wolper. Handling
infinite temporal data. In Proc. of the 9th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’90), pages 392–403, 1990.

[90] R. Karel, C. Richardson, and C. Moore. Warning: Don’t
assume your business processes use master data –
Synchronize your business process and master data
strategies. Report, Forrester, Sept. 2009.

[91] Z. M. Kedem and A. Tuzhilin. Relational database
behavior: Utilizing relational discrete event systems and
models. In Proc. of the 8th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems
(PODS’89), pages 336–346, 1989.

[92] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In Proc. of the 24th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2005), pages 61–75, 2005.

[93] R. Krishnamurthy and U. Dayal. Theory of serializability
for a parallel model of transactions. In Proc. of the 1st ACM
SIGACT SIGMOD Symp. on Principles of Database
Systems (PODS’82), pages 293–305, 1982.

[94] S. Kumaran, R. Liu, and F. Y. Wu. On the duality of
information-centric and activity-centric models of business
processes. In Proc. of the 20th Int. Conf. on Advanced
Information Systems Engineering (CAiSE 2008), pages
32–47, 2008.

[95] R. Lazic, T. Newcomb, J. Ouaknine, A. W. Roscoe, and
J. Worrell. Nets with tokens which carry data. Fundamenta
Informaticae, 88(3):251–274, 2008.

[96] U. W. Lipeck. Transformation of dynamic integrity
constraints into transaction specifications. In Proc. of the
Int. Conf. on Database Theory (ICDT’88), volume 326 of
Lecture Notes in Computer Science, pages 322–337.
Springer, 1988.

[97] R. Liu, K. Bhattacharya, and F. Y. Wu. Modeling business
contexture and behavior using business artifacts. In Proc. of
the 19th Int. Conf. on Advanced Information Systems
Engineering (CAiSE 2007), volume 4495 of Lecture Notes
in Computer Science, pages 324–339. Springer, 2007.

http://ceur-ws.org/

[98] N. A. Lynch. Concurrency control for resilient nested
transactions. In Proc. of the 2nd ACM SIGACT SIGMOD
Symp. on Principles of Database Systems (PODS’83),
pages 166–181, 1983.

[99] J. McCarthy and P. J. Hayes. Some philosophical problems
from the standpoint of aritificial intelligence. Machine
Intelligence, 4:463–502, 1969.

[100] A. Meyer, S. Smirnov, and M. Weske. Data in business
processes. Technical Report 50, Hasso-Plattner-Institut for
IT Systems Engineering, Universität Potsdam, 2011.
Available online at http:
//opus.kobv.de/ubp/volltexte/2011/5304/.

[101] A. Nigam and N. S. Caswell. Business artifacts: An
approach to operational specification. IBM Systems Journal,
42(3):428–445, 2003.

[102] C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and W. M. P.
van der Aalst. From BPMN process models to BPEL web
services. In Proc. of the 4th IEEE Int. Conf. on Web
Services (ICWS 2006), pages 285–292. IEEE Computer
Society Press, 2006.

[103] P. Picouet and V. Vianu. Semantics and expressiveness
issues in active databases. In Proc. of the 14th ACM
SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’95), pages 126–138, 1995.

[104] P. Picouet and V. Vianu. Expressiveness and complexity of
active databases. In Proc. of the 6th Int. Conf. on Database
Theory (ICDT’97), volume 1186 of Lecture Notes in
Computer Science, pages 155–172. Springer, 1997.

[105] M. Reichert. Process and data: Two sides of the same coin?
In Proc. of the On the Move Confederated Int. Conf.
(OTM 2012), volume 7565 of Lecture Notes in Computer
Science, pages 2–19. Springer, 2012.

[106] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. The MIT
Press, 2001.

[107] A. Reuter, S. Ceri, J. Gray, B. Salzberg, and G. Weikum.
Databases and workflow management: What is it all about?
(panel). In Proc. of the 21st Int. Conf. on Very Large Data
Bases (VLDB’95), page 632, 1995.

[108] C. Richardson. Warning: Don’t assume your business
processes use master data. In Proc. of the 8th Int.
Conference on Business Process Management (BPM 2010),
volume 6336 of Lecture Notes in Computer Science, pages
11–12. Springer, 2010.

[109] K. Schmidt. LoLA: A low level analyser. In Proc. of the
21st Int. Conf. on Application and Theory of Petri Nets
(ICATPN 2000), Lecture Notes in Computer Science, pages
465–474. Springer, 2000.

[110] K. Schmidt. Using Petri net invariants in state space
construction. In Proc. of the 9th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS 2003), volume 2619 of Lecture Notes in Computer
Science, pages 473–488. Springer, 2003.

[111] R. T. Snodgrass. The temporal query language TQuel. In
Proc. of the 3rd ACM SIGACT SIGMOD Symp. on
Principles of Database Systems (PODS’84), pages
204–213, 1984.

[112] E. Soisalon-Soininen and D. Wood. An optimal algorithm
for testing for safety and detecting deadlocks in locked
transaction systems. In Proc. of the 1st ACM SIGACT
SIGMOD Symp. on Principles of Database Systems
(PODS’82), pages 108–116, 1982.

[113] M. Spielmann. Verification of relational transducers for
electronic commerce. In Proc. of the 19th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2000), pages 92–103, 2000.

[114] M. Spielmann. Verification of relational transducers for
electronic commerce. J. of Computer and System Sciences,
66(1):40–65, 2003.

[115] J. K. Strosnider, P. Nandi, S. Kumaran, S. P. Ghosh, and
A. Arsanjani. Model-driven synthesis of SOA solutions.
IBM Systems Journal, 47(3):415–432, 2008.

[116] J. Su. Letter from the editor of the special issue on
management of data-centric business workïňĆows. Bull. of
the IEEE Computer Society Technical Committee on Data
Engineering, 32(3):2, Sept. 2009.

[117] J. van Benthem. Temporal logic. In D. Gabbay, C. Hogger,
and J. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, Volume 4, pages
241–350. Oxford Scientific Publishers, 1996.

[118] W. M. P. van der Aalst. A decade of business process
management conferences: Personal reflections on a
developing discipline. In Proc. of the 10th Int. Conference
on Business Process Management (BPM 2012), volume
7481 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2012.

[119] W. M. P. van der Aalst and C. Stahl. Modeling Business
Processes: a Petri Net-Oriented Approach. The MIT Press,
2011.

[120] W. M. P. van der Aalst, M. Weske, and D. Grünbauer. Case
handling: A new paradigm for business process support.
Data and Knowledge Engineering, 53(2):129–162, 2005.

[121] M. Y. Vardi. A temporal fixpoint calculus. In Proc. of the
15th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL’88), pages 250–259,
1988.

[122] M. Y. Vardi. Model checking for database theoreticians. In
Proc. of the 10th Int. Conf. on Database Theory
(ICDT 2005), volume 3363 of Lecture Notes in Computer
Science, pages 1–16. Springer, 2005.

[123] V. Vianu. Dynamic constraints and database evolution. In
Proc. of the 2nd ACM SIGACT SIGMOD Symp. on
Principles of Database Systems (PODS’83), pages
389–399, 1983.

[124] V. Vianu. Dynamic Constraints and Database Evolution.
PhD thesis, University of Southern California, 1983.

[125] V. Vianu. Object projection views in the dynamic relational
model. In Proc. of the 3rd ACM SIGACT SIGMOD Symp.
on Principles of Database Systems (PODS’84), pages
214–220, 1984.

[126] V. Vianu. Automatic verification of database-driven
systems: a new frontier. In Proc. of the 12th Int. Conf. on
Database Theory (ICDT 2009), pages 1–13, 2009.

[127] T. Yoneda, A. Shibayama, B.-H. Schlingloff, and E. M.
Clarke. Efficient verification of parallel real-time systems.
In Proc. of the 5th Int. Conf. on Computer Aided
Verification (CAV’93), volume 697 of Lecture Notes in
Computer Science, pages 321–346. Springer, 1993.

 http://opus.kobv.de/ubp/volltexte/2011/5304/
 http://opus.kobv.de/ubp/volltexte/2011/5304/

	Introduction
	The BPM Perspective
	Dynamics in Database Theory
	Database Evolution and Transactions
	Temporal Data Management
	Active Databases
	Workflow Formalisms and Systems
	Temporal Integrity Constraints

	Business Process Analysis in Database Theory
	Relational Transducers
	Data-Driven Web Systems
	Artifact-Centric Systems
	Data-Centric Dynamic Systems

	Conclusions and Outlook
	References

