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Abstract
We study a generalized form of planning under par-
tial observability, in which we have multiple, pos-
sibly infinitely many, planning domains with the
same actions and observations, and goals expressed
over observations, which are possibly temporally
extended. By building on work on two-player (non-
probabilistic) games with imperfect information in
the Formal Methods literature, we devise a general
technique, generalizing the belief-state construc-
tion, to remove partial observability. This reduces
the planning problem to a game of perfect informa-
tion with a tight correspondence between plans and
strategies. Then we instantiate the technique and
solve some generalized-planning problems.

1 Introduction
Automated planning is a fundamental problem in Artificial
Intelligence. Given a deterministic dynamic system with a
single known initial state and a goal condition, automated
planning consists of finding a sequences of actions (the plan)
to be performed by agents in order to achieve the goal
[M. Ghallab and Traverso, 2008]. The application of this
notion in real-dynamic worlds is limited, in many situations,
by three facts: i) the number of objects is neither small nor
predetermined, ii) the agent is limited by its observations,
iii) the agent wants to realize a goal that extends over time.
For example, a preprogrammed driverless car cannot know
in advance the number of obstacles it will enter in a road,
or the positions of the other cars not in its view, though it
wants to realize, among other goals, that every time it sees
an obstacle it avoids it. This has inspired research in recent
years on generalized forms of planning including conditional
planning in partially observable domains [Levesque, 1996;
Rintanen, 2004], planning with incomplete information for
temporally extended goals [De Giacomo and Vardi, 1999;
Bertoli and Pistore, 2004] and generalized planning for mul-
tiple domains or infinite domains [Levesque, 2005; Srivas-
tava et al., 2008; Bonet et al., 2009; Hu and Levesque, 2010;
Hu and De Giacomo, 2011; Srivastava et al., 2011; Felli et
al., 2012; Srivastava et al., 2015].

We use the following running example, taken from [Hu and
Levesque, 2010], to illustrate a generalized form of planning:

Example 1 (Tree Chopping). The goal is to chop down a tree,
and store the axe. The number of chops needed to fell the
tree is unknown, but a look-action checks whether the tree
is up or down. Intuitively, a plan solving this problem alter-
nates looking and chopping until the tree is seen to be down,
and then stores the axe. This scenario can be formalized as
a partially-observable planning problem on a single infinite
domain (Example 2, Figure 1), or on the disjoint union of
infinitely many finite domains (Section 3).

The standard approach to solve planning under partial ob-
servability for finite domains is to reduce them to planning
under complete observability. This is done by using the
belief-state construction that removes partial observability
and passes to the belief-space [Goldman and Boddy, 1996;
Bertoli et al., 2006]. The motivating problem of this work
is to solve planning problems on infinite domains, and thus
we are naturally lead to the problem of removing partial-
observability from infinite domains.

In this paper we adopt the Formal Methods point of view
and consider generalized planning as a game G of imperfect
information, i.e., where the player under control has partial
observability. The game G may be infinite, i.e., have in-
finitely many states.

Our technical contribution (Theorem 4.5) is a general
sound and complete mathematical technique for removing
imperfect information from a possibly infinite game G to get
a game Gβ, possibly infinite, of perfect information. Our
method builds on the classic belief-state construction [Reif,
1984; Goldman and Boddy, 1996; Raskin et al., 2007], also
adopted in POMDPs [Kaelbling et al., 1998; LaValle, 2006].1
The classic belief-state construction fails for certain infinite
games, see Example 3. We introduce a new component to
the classic belief-state construction that isolates only those
plays in the belief-space that correspond to plays in G. This
new component is necessary and sufficient to solve the gen-
eral case and capture all infinite games G.

We apply our technique to the decision problem that asks,
given a game of imperfect information, if the player under
control has a winning strategy (this corresponds to decid-
ing if there is a plan for a given planning instance). We
remark that we consider strategies and plans that may de-

1However, our work considers nondeterminism rather than prob-
ability, and qualitative objectives rather than quantitative objectives.



pend on the history of the observations, not just the last ob-
servation. Besides showing how to solve the running Tree
Chopping example, we report two cases. The first case is
planning under partial observability for temporally extended
goals expressed in LTL in finite domains (or a finite set of
infinite domains sharing the same observations). This case
generalizes well-known results in the AI literature [De Gia-
como and Vardi, 1999; Rintanen, 2004; Bertoli et al., 2006;
Hu and De Giacomo, 2011; Felli et al., 2012]. The sec-
ond case involves infinite domains. Note that because game
solving is undecidable for computable infinite games (simply
code the configuration space of a Turing Machine), solving
games with infinite domains requires further computability
assumptions. We focus on games generated by pushdown au-
tomata; these are infinite games that recently attracted the
interest of the AI community [Murano and Perelli, 2015;
Chen et al., 2016]. In particular these games have been solved
assuming perfect information. By applying our technique,
we extend their results to deal with imperfect information un-
der the assumption that the stack remains observable (it is
known that making the stack unobservable leads to undecid-
ability [Azhar et al., 2001]).

2 Generalized-Planning Games
In this section we define generalized-planning (GP) games,
known as games of imperfect information in the Formal
Methods literature [Raskin et al., 2007], that capture many
generalized forms of planning.

Informally, two players (agent and environment) play on a
transition-system. Play proceeds in rounds. In each round,
from the current state s of the transition-system, the agent
observes obs(s) (some information about the current state),
and picks an action a from the set of actions Ac, and then the
environment picks an element of tr(s, a) (tr is the transition
function of the transition-system) to become the new current
state. Note that the players are asymmetric, i.e., the agent
picks actions and the environment resolves non-determinism.

Notation. WriteXω for the set of infinite sequences whose
elements are from the set X , write X∗ for the finite se-
quences, and X+ for the finite non-empty sequences. If π is
a finite sequence then Last(π) denotes its last element. The
positive integers are denoted N, and N0 := N ∪ {0}.

Linear-temporal logic. We define LTL over a finite set
of letters Σ.2 The formulas of LTL (over Σ) are generated
by the following grammar: ϕ ::= x | ϕ ∧ ϕ | ¬ϕ | Xϕ |
ϕUϕ where x ∈ Σ. We introduce the usual abbreviations
for, e.g., ∨,F. Formulas of LTL (over Σ) are interpreted over
infinite words α ∈ Σω . Define the satisfaction relation |= as
follows: i) (α, n) |= x iff αn = x; ii) (α, n) |= ϕ1 ∧ ϕ2 iff
(α, n) |= ϕi for i = 1, 2; iii) (α, n) |= ¬ϕ iff it is not the
case that (α, n) |= ϕ; iv) (α, n) |= Xϕ iff (α, n+ 1) |= ϕ; v)
(α, n) |= ϕ1 Uϕ2 iff there exists i ≥ n such that (α, i) |= ϕ2

and for all j ∈ [n, i), (α, j) |= ϕ1. Write α |= ϕ if (α, 0) |=
ϕ and say that α satisfies the LTL formula ϕ.

2This is without loss of generality, since if LTL were defined over
a set of atomic propositions AP we let Σ = 2AP and replace atoms
p ∈ AP by

∨
p∈x x to get equivalent LTL formulas over Σ.

Arenas. An arena of imperfect information, or simply an
arena, is a tuple A = (S, I,Ac, tr,Obs, obs), where S is a
(possibly infinite) set of states, I ⊆ S is the set of initial
states, Ac is a finite set of actions, and tr : S×Ac→ 2S \{∅}
is the transition function, Obs is a (possibly infinite) set of
observations, and obs : S → Obs, the observation func-
tion, maps each state to an observation. We extend tr to
sets of states: for ∅ 6= Q ⊆ S, let tr(Q, a) denote the set
∪q∈Qtr(q, a).

Sets of the form obs−1(x) for x ∈ Obs are called ob-
servation sets. The set of all observation sets is denoted
ObsSet. Non-empty subsets of observation sets are called
belief-states. Informally, a belief-state is a subset of the states
of the game that the play could be in after a given finite se-
quence of observations and actions.

Finite and finitely-branching. An arena is finite if S is
finite, and infinite otherwise. An arena is finitely-branching if
i) I is finite, and ii) for every s, a the cardinality of tr(s, a) is
finite. Clearly, being finite implies being finitely-branching.

Strategies. A play in A is an infinite sequence π =
s0a0s1a1s2a2 . . . such that s0 ∈ I and for all i ∈ N0,
si+1 ∈ tr(si, ai). A history h = s0a0 . . . sn−1an−1sn is a
finite prefix of a play ending in a state. The set of plays is
denoted Ply(A), and the set of histories is denoted Hist(A)
(we drop A when it is clear from the context). For a his-
tory or play π = s0a0s1a1 . . . write obs(π) for the sequence
obs(s0)a0obs(s1)a1 . . .. A strategy (for the agent) is a func-
tion σ : Hist(A) → Ac. A strategy is observational if
obs(h) = obs(h′) implies σ(h) = σ(h′). In Section 3 we
will briefly mention an alternative (but essentially equiva-
lent) definition of observational strategy, i.e., as a function
Obs+ → Ac. We do not define strategies for the environ-
ment. A play π = s0a0s1a1 . . . is consistent with a strategy
σ if for all i ∈ N we have that if h ∈ Hist(A) is a prefix of π,
say h = s0a0 . . . sn−1an−1sn, then σ(h) = an+1.

GP Games. A generalized-planning (GP) game, is a tuple
G = 〈A,W 〉 where the winning objective W ⊆ Obsω is a
set of infinite sequences of observation sets. A GP game with
restriction is a tuple G = 〈A,W, F 〉 where, in addition, F ⊆
Sω is the restriction. Note that unlike the winning objective,
the restriction need not be closed under observations. A GP
game is finite (resp. finitely branching) if the arena A is finite
(resp. finitely branching).

Winning. A strategy σ is winning in G = 〈A,W 〉 if
for every play π ∈ Ply(A) consistent with σ, we have that
obs(π) ∈ W . Similarly, a strategy is winning in G =
〈A,W, F 〉 if for every play π ∈ Ply(A) consistent with σ,
if π ∈ F then obs(π) ∈ W . Note that a strategy is winning
in 〈A,W,Ply(A)〉 if and only if it is winning in 〈A,W 〉.

Solving a GP game. A central decision problem is the
following, called solving a GP game: given a (finite repre-
sentation of a) GP game of imperfect information G, decide
if the agent has a winning observational-strategy.

GP games of perfect information. An arena/GP game has
perfect information if Obs = S and obs(s) = s for all s. We
thus suppress mentioning Obs and obs completely, e.g., we
write A = (S, I,Ac, tr) and W,F ⊆ Sω . Note that in a GP
game of perfect information every strategy is observational.



Figure 1: Part of the arena Achop (missing edges go to the
failure state). The numbers correspond to the number of
chops required to fell the tree. The arena is not finitely-
branching since it has infinitely many initial states {uk}×N0.

Example 2 (continued). We formalize the tree-chopping plan-
ning problem. Define the GP game Gchop = 〈Achop,W 〉
where Achop = 〈S, I,Ac, tr,Obs, obs〉, and:

− S = {down, success, failure}∪({uk}×N0)∪({up}×
N),

− Ac = {chop, look, store}, I = {uk} × N,

− tr is illustrated in Figure 1,

− Obs = {DN,X,×,UK,UP},
− obs maps down 7→ DN, (up, i) 7→ UP for i ∈ N,

(uk, i) 7→ UK for i ∈ N0, failure 7→ ×, and
success 7→ X, and

− the objective W is defined as α ∈W iff α |= FX.

The mentioned plan is formalized as the observational-
strategy σchop that maps any history ending in (uk, i) to look
(for i ∈ N0), (up, i) to chop (for i ∈ N), down to store, and
all others arbitrarily (say to store).

Note: σchop is a winning strategy, i.e., no matter which ini-
tial state the environment chooses, the strategy ensures that
the play (it is unique because the rest of the GP game is de-
terministic) reaches the state success having observation X.

3 Generalized-Planning Games and
Generalized Forms of Planning

In this section we establish that generalized-planning (GP)
games can model many different types of planning from the

AI literature, including a variety of generalized forms of plan-
ning:

1. planning on finite transition-systems, deterministic ac-
tions, actions with conditional effects, partially observ-
able states, incomplete information on the initial state,
and temporally extended goals [De Giacomo and Vardi,
1999];

2. planning under partial observability with finitely many
state variables, nondeterministic actions, reachability
goals, and partial observability [Rintanen, 2004];

3. planning on finite transition systems, nondeterministic
actions, looking for strong plans (i.e., adversarial non-
determinism) [Bertoli et al., 2006];

4. generalized planning, consisting of multiple (possibly
infinitely many) related finite planning instances [Hu
and Levesque, 2010; Hu and De Giacomo, 2011].

We discuss the latter in detail. Following [Hu and De
Giacomo, 2011], a generalized-planning problem P is de-
fined as a sequence of related classical planning problems.
In our terminology, fix finite sets Ac,Obs and let P be a
countable sequence G1,G2, . . . where each Gn is a finite
GP game of the form 〈Sn, {ιn},Ac, trn,Obs, obsn,Wn〉. In
[Hu and De Giacomo, 2011], a plan is an observational-
strategy p : Obs+ → Ac, and a solution is a single plan
that solves all of the GP games in the sequence. Now, we
view P as a single infinite GP game as follows. Let GP

denote the disjoint union of the GP games in P. Formally,
GP = 〈S, I,Ac, tr,Obs, obs,W 〉 where

− S = {(s, n) : s ∈ Sn, n ∈ N},
− I = {(ιn, n) : n ∈ N},
− tr((s, n), a) = {(t, n) : t ∈ trn(s, a)},
− obs(s, n) = obsn(s),

− W = ∪nWn.

Then: there is a correspondence between solutions for P and
winning observational-strategies in GP.

For example, consider the tree-chopping problem as for-
malized in [Hu and Levesque, 2010; Hu and De Giacomo,
2011]: there are infinitely many planning instances which are
identical except for an integer parameter denoting the num-
ber of chops required to fell the tree. The objective for all
instances is to fell the tree. Using the translation above we
get a GP game with an infinite arena which resembles (and,
in fact, can be transformed to) the GP game in Example 2.

4 Generalized Belief-State Construction
In this section we show how to remove imperfect information
from generalized-planning (GP) games G. That is, we give
a transformation of GP games of imperfect information G
to GP games of perfect information Gβ such that the agent
has a winning observational-strategy in G if and only if the
agent has a winning strategy in Gβ. The translation is based
on the classic belief-state construction [Reif, 1984; Raskin et
al., 2007]. Thus, we begin with a recap of that construction.



Belief-state Arena.3 Let A = (S, I,Ac, tr,Obs, obs) be
an arena (not necessarily finite). Recall from Section 2 that
observation sets are of the form obs−1(x) for x ∈ Obs, and
are collectively denoted ObsSet. Define the arena of perfect
information Aβ = (Sβ, Iβ,Ac, trβ) where,

− Sβ is the set of belief-states, i.e., the non-empty subsets
of the observation-sets,

− Iβ consists of all belief-states of the form I ∩ X for
X ∈ ObsSet,

− trβ(Q, a) consists of all belief-states of the form
tr(Q, a) ∩X for X ∈ ObsSet.

The idea is that Q ∈ Sβ represents a refinement of the
observation set: the agent, knowing the structure of G ahead
of time, and the sequence of observations so far in the game,
may deduce that it is in fact in a state from Q which may be
a strict subset of its corresponding observation set X .4

NB. Since Aβ is an arena, we can talk of its histories and
plays. Although we defined Sβ to be the set of all belief-
states, only those belief-states that are reachable from Iβ are
relevant. Thus, overload notation and write Sβ for the set of
reachable belief-states, and Aβ for the corresponding arena.
This notation has practical relevance since if A is countable
there are uncountably many belief-states; but in many cases
only countably many (or, as in the running example, finitely
many) reachable belief-states.

The intuition for the rest of this section is illustrated in the
next example.

Figure 2: Part of the arena Aβ
chop (missing edges go the the

failure state). Each circle is a belief-state. The winning
objective is FX, and the restriction is ¬GF[UK ∧ X look ∧
XXUP].

Example 3 (continued). Figure 2 shows the arena Aβ
chop cor-

responding to the arena from tree-chopping game Gchop, i.e.,

3In the AI literature, this is sometimes called the belief-space.
4To illustrate simply, suppose there is a unique initial state s, and

that it is observationally equivalent to other states. At the beginning
of the game the agent can deduce that it must be in s. Thus, its initial
belief-state is {s} and not its observation-set obs−1(obs(s)). This
belief can (and, in general, must) be exploited if the agent is to win.

− Sβ are the following belief-states: {(uk, n) |n ∈ N0},
denoted UK; {(up, n) |n ∈ N}, denoted UP; {down},
denoted DN; {success}, denoted X; and {failure}.

− Iβ is the belief-state UK,

− and trβ is shown in the figure.

Note that the agent does not have a winning strategy in
the GP game with arena Aβ

chop and winning condition FX.
The informal reason is that the strategy σchop (which cod-
ifies “alternately look and chop until the tree is sensed to
be down, and then store the axe”), which wins in G, does
not work. The reason is that after every look the oppo-
nent can transition to UP (and never DN), resulting in the
play ρ = (UK look UP chop)ω , i.e., the repetition of
(UK look UP chop) forever. Such a play of Aβ

chop does not
correspond to any play in Achop. This is a well known phe-
nomena of the standard belief-set construction [Sardiña et al.,
2006], which our construction overcomes by adding a restric-
tion that removes from consideration plays such as ρ (as dis-
cussed in Example 5).

The following definition is central. It maps a history
h ∈ Hist(A) to the corresponding history hβ ∈ Hist(Aβ)
of belief-states.

Definition 4.1. For h ∈ Hist(A) define hβ ∈ Hist(Aβ) in-
ductively as follows.

− For s ∈ I , define sβ ∈ Iβ to be I ∩ obs−1(obs(s)). In
words, sβ is the set of initial states the GP game could
be in given the observation obs(s).

− If h ∈ Hist(A), a ∈ Ac, s ∈ S, then (has)β := hβaB
whereB := tr(Last(hβ), a)∩obs−1(obs(s)). In words,
B is the set of possible states the GP game could be in
given the observation sequence obs(has).

In the same way, for π ∈ Ply(A) define πβ ∈ Ply(Aβ).
Extend the map pointwise to sets of plays P ⊆ Ply(A), i.e.,
define Pβ := {πβ ∈ Ply(Aβ) |π ∈ P}. Finally, we give
notation to the special case that P = Ply(A): write Im(A)
for the set {πβ |π ∈ Ply(A)}, called the image of A.

By definition, Im(A) ⊆ Ply(Aβ). However, the converse
is not always true.
Example 4 (continued). There is a play of Aβ

chop that is not in
Im(Achop), e.g., ρ = (uk look up chop)ω . Indeed, suppose
πβ = ρ and consider the sequence of counter values of π.
Every look action establishes that the current counter value
in π is positive (this is the meaning of the tree being up), but
every chop action reduces the current counter value by one.
This contradicts that counter values are always non-negative.
Remark 4.2. If A is finitely-branching then Im(A) =
Ply(Aβ). To see this, let ρ be a play in Aβ, and consider
the forest whose nodes are the histories h of A such that hβ
is a prefix of ρ. Each tree in the forest is finitely branching
(because A is), and at least one tree in this forest is infinite.
Thus, by Kőnig’s lemma, the tree has an infinite path π. But
π is a play in A and πβ = ρ.

Definition 4.3. For ρ ∈ Ply(Aβ), say ρ = B0a0B1a1 . . . ,
define obs(ρ) to be the sequence obs(q0)a0obs(q1)a1 . . .



where qi ∈ Bi for i ∈ N0 (this is well defined since, by
definition of the state set Sβ, each Bi is a subset of a unique
observation-set).

The classic belief-state construction transforms 〈A,W 〉
into 〈Aβ,W 〉. Example 3 shows that this transformation may
not preserve the agent having a winning strategy if A is infi-
nite. We now define the generalized belief-state construction
and the main technical theorem of this work.
Definition 4.4. Let G = 〈A,W 〉 be a GP game. Define
Gβ = 〈Aβ,W, Im(A)〉, a GP game of perfect information
with restriction. The restriction Im(A) ⊆ Ply(Aβ) is the
image of Ply(A) under the map π 7→ πβ.
Theorem 4.5. Let A be a (possibly infinite) arena of imper-
fect information, Aβ the corresponding belief-state arena of
perfect information, and Im(A) ⊆ Ply(Aβ) the image of A.
Then, for every winning objective W , the agent has a win-
ning observational-strategy in the GP game G = 〈A,W 〉 if
and only if the agent has a winning strategy in the GP game
Gβ = 〈Aβ,W, Im(A)〉. Moreover, if A is finitely-branching
then Gβ = 〈Aβ,W 〉.5

Proof. The second statement follows from the first statement
and Remark 4.2. For the first statement, we first need some
facts that immediately follow from Definition 4.1.

1. (h1)β = (h2)β if and only if obs(h1) = obs(h2).
2. For every h ∈ Hist(Aβ) that is also a prefix of πβ there

is a history h′ ∈ Hist(A) that is also a prefix of π such
that (h′)β = h. Also, for every h′ ∈ Hist(A) that is also
a prefix of π there is a history h ∈ Hist(Aβ) that is also
a prefix of πβ such that (h′)β = h.

Second, there is a natural correspondence between obser-
vational strategies of A and strategies of Aβ.

– If σ is a strategy in Aβ then define the strategy ω(σ)
of A as mapping h ∈ Hist(A) to σ(hβ). Now, ω(σ)
is observational by Fact 1. Also, if π is consistent with
ω(σ) then πβ is consistent with σ. Indeed, let h be a
history that is also a prefix of πβ. We need to show
that hσ(h) is a prefix of πβ. Suppose that σ(h) = a.
Take prefix h′ of π such that (h′)β = h (Fact 2). Then
ω(σ)(h′) = σ((h′)β) = σ(h) = a. Since π is assumed
consistent with ω(σ), conclude that h′a is a prefix of π.
Thus ha is a prefix of πβ.

– If σ is an observational strategy in A then define the
strategy κ(σ) of Aβ as mapping h ∈ Hist(Aβ) to σ(h′)
where h′ is any history such that h′β = h. This is well-
defined by (†) and the fact that σ is observational. Also,
if ρ is consistent with κ(σ), then every π with πβ = ρ
(if there are any) is consistent with σ. Indeed, let h′
be a history of π and take a prefix h of πβ such that
(h′)β = h (Fact 2). Then κ(σ)(h) = σ(h′), call this
action a. But πβ is assumed consistent with κ(σ), and
thus ha is a prefix of πβ. Thus h′a is a prefix of π.

We now put everything together and show that the agent
has a winning observational-strategy in G iff the agent has a
winning strategy in Gβ.

5The case that A is finite appears in [Raskin et al., 2007].

Suppose σ is a winning strategy in Gβ. Let π ∈ Ply(A) be
consistent with the observational strategy ω(σ) of G. Then
πβ ∈ Im(A) is consistent with σ. But σ is assumed to be
winning, thus obs(πβ) ∈ W . But obs(π) = obs(πβ). Con-
clude that ω(σ) is a winning strategy in G.

Conversely, suppose σ is a winning strategy in G. Let ρ ∈
Im(A) be consistent with the strategy κ(σ) of Gβ, and take
π ∈ Ply(A) be such that πβ = ρ (such a π exists since we
assumed ρ ∈ Im(A)). Then π is consistent with σ. But σ
is assumed to be winning, thus obs(π) ∈ W . But obs(ρ) =
obs(πβ) = obs(π). Conclude that κ(σ) is a winning strategy
in Gβ.

Remark 4.6. The proof of Theorem 4.5 actually shows how
to transform strategies between the GP games, i.e., σ 7→ ω(σ)
and σ 7→ κ(σ), and moreover, these transformations are in-
verses of each other.

We end with our running example:
Example 5 (Continued). Solving Gchop (Figure 1) is equiva-
lent to solving the finite GP game Gβ

chop of perfect informa-
tion, i.e., 〈Aβ

chop,W, Im(Achop)〉, where the arena A is shown
in Figure 2. To solve this we should understand the structure
of Im(Achop). It is not hard to see that a play ρ ∈ Ply(Aβ

chop)

is in Im(Achop) if and only if it contains only finitely many in-
fixes of the form “UK look UP”. This property is expressible
in LTL by the formula ¬GF[UK ∧ X look ∧ XXUP]. Thus
we can apply the algorithm for solving finite games of perfect
information with LTL objectives (see, e.g., [Pnueli and Ros-
ner, 1989; de Alfaro et al., 2001]) to solve Gβ

chop, and thus
the original GP game Gchop.

5 Application of the Construction
We now show how to use generalized-planning (GP) games
and our generalized belief-state construction to obtain effec-
tive planning procedures for sophisticated problems. For the
rest of this section we assume Obs is finite (A may be infi-
nite) so that we can consider LTL temporally extended goals
over the alphabet Obs. For instance, LTL formulas specify
persistent surveillance missions such as “get items from re-
gion A, drop items at region B, infinitely often, and always
avoid region C”.
Definition 5.1. Let ϕ be an LTL formula over Obs×Ac. For
an arena A, define [[ϕ]] = {π ∈ Ply(A) | obs(π) |= ϕ}.

The following is immediate from Theorem 4.5 and the fact
that solving finite LTL games of perfect information is decid-
able [Pnueli and Rosner, 1989; de Alfaro et al., 2001]:
Theorem 5.2. Let G = 〈A, [[ϕ]]〉 be a GP game with a finite
arena (possibly obtained as the disjoint union of several are-
nas sharing the same observations), and ϕ be an LTL winning
objective. Then solving G can be reduced to solving the finite
GP game Gβ = 〈Aβ, [[ϕ]]〉 of perfect information, which is
decidable.

Although we defined winning objectives to be observable,
one may prefer general winning conditions, i.e., W ⊆ Sω .
In this case, for finite arenas there is a translation from
parity-objectives to observable parity-objectives [Chatterjee



and Doyen, 2010]; moreover, for reachability objectives, a
plan reaches a goal T ⊆ S iff it reaches a belief-state B ⊆
T [Bertoli et al., 2006].

Next we look a case where the arena is actually infi-
nite. Recently, the AI community has considered games gen-
erated by pushdown-automata [Murano and Perelli, 2015;
Chen et al., 2016]. However, the games considered are of
perfect information and cannot express generalized-planning
problems or planning under partial observability. In contrast,
our techniques can solve these planning problems on push-
down domains assuming that the stack is not hidden (we re-
mark that if the stack is hidden, then game-solving becomes
undecidable [Azhar et al., 2001]):

Theorem 5.3. Let G = 〈A, [[ϕ]]〉 be a GP game with a
pushdown-arena with observable stack, and ϕ is an LTL for-
mula. Then solving G can be reduced to solving Gβ =
〈Aβ, [[ϕ]]〉, a GP game with pushdown-arena with perfect
information, which is decidable.

Proof. Let P be a pushdown-automaton with states Q, ini-
tial state q0, finite input alphabet Ac, and finite stack alpha-
bet Γ. We call elements of Γ∗ stacks, and denote the empty
stack by ε. Also, fix an observation function on the states,
i.e., f :Q→Obs for some set Obs (we do not introduce no-
tation for the transition function of P ). A pushdown-arena
AP = (S, I,Ac, tr,Obs, obs) is generated by P as follows:
the set of states S is the set of configurations of P , i.e.,
pairs (q, γ) where q ∈ Q and γ ∈ Γ∗ is a stack-content
of P ; the initial state of A is the initial configuration, i.e.,
I = {(q0, ε)}; the transition function of A is defined as
tr((q, γ), a) = (q′, γ′) if P can move in one step from state
q and stack content γ to state q′ and stack content γ′ by con-
suming the input letter a; the observation function obs maps
a configuration (q, γ) to f(q) (i.e., this formalizes the state-
ment that the stack is observable). Observe now that: (1)
the GP game A is finitely-branching; (2) the GP game Aβ

is generated by a pushdown automaton (its states are subsets
of Q). Thus we can apply Theorem 4.5 to reduce solving A,
a GP-game with imperfect information and pushdown arena,
to Aβ, a GP-game with perfect information and pushdown
arena. The latter is decidable [Walukiewicz, 2001].

6 Related work in Formal Methods
Games of imperfect information on finite arenas have been
studied extensively. Reachability winning-objectives were
studied in [Reif, 1984] from a complexity point of view: cer-
tain games were shown to be universal in the sense that they
are the hardest games of imperfect information, and optimal
decision procedures were given. More generally, ω-regular
winning-objectives were studied in [Raskin et al., 2007], and
symbolic algorithms were given (also for the case of random-
ized strategies).

To solve (imperfect-information) games on infinite arenas
one needs a finite-representation of the infinite arena. One
canonical way to generate infinite arenas is by parametric
means. In this line, [Jacobs and Bloem, 2014] study the
synthesis problem for distributed architectures with a para-
metric number of finite-state components. They leverage re-

sults from the Formal Methods literature that say that for cer-
tain types of token-passing systems there is a cutoff [Emer-
son and Namjoshi, 1995], i.e., an upper bound on the num-
ber of components one needs to consider in order to syn-
thesize a protocol for any number of components. Another
way to generate infinite arenas is as configuration spaces
of pushdown automata. These are important in analysis of
software because they capture the flow of procedure calls
and returns in reactive programs. Module-checking push-
down systems of imperfect information [Bozzelli et al., 2010;
Aminof et al., 2013] can be thought of as games in which
the environment plays non-deterministic strategies. Although
undecidable, by not hiding the stack (cf. Theorem 5.3) decid-
ability of module-checking is regained.

Finally, we note that synthesis of distributed systems has
been studied in the Formal Methods literature using the tech-
niques of games, starting with [Pnueli and Rosner, 1990].
Such problems can be cast as multi-player games of imper-
fect information, and logics such as ATL with knowledge can
be used to reason about strategies in these games. However,
even for three players, finite arenas, and reachability goals,
the synthesis problem (and the corresponding model checking
problem for ATLK) is undecidable [Dima and Tiplea, 2011].

7 Critical Evaluation and Conclusions
Although our technique for removing partial observability is
sound and complete, it is, necessarily, not algorithmic: in-
deed, no algorithm can always remove partial observability
from computable infinite domains and result in a solvable
planning problem (e.g, one with a finite domain).6

The main avenue for future technical work is to establish
natural classes of generalized-planning problems that can be
solved algorithmically. We believe the methodology of this
paper will be central to this endeavor. Indeed, as we showed
in Section 5, we can identify Im(A) in a number of cases.
We conjecture that one can do the same for all of the one-
dimensional planning problems of [Hu and Levesque, 2010;
Hu and De Giacomo, 2011].

The framework presented in this paper is non-probabilistic,
but extending it with probabilities and utilities associated
to agent choices [Kaelbling et al., 1998; LaValle, 2006;
Bonet and Geffner, 2009; Geffner and Bonet, 2013] is of great
interest. In particular, POMDPs with temporally-extended
winning objectives (e.g., LTL, Büchi, parity) have been stud-
ied for finite domains [Chatterjee et al., 2010]. We leave for
future work the problem of dealing with such POMDPs over
infinite domains.
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