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Abstract

In synthesis, assumption are constraints on the environments
that rule out certain environment behaviors. A key observation
is that even if we consider a system with LTLf goals on finite
traces, assumptions need to be expressed considering infinite
traces, using LTL on infinite traces, since the decision to stop
the trace is controlled by the agent. To solve synthesis of LTLf

goals under LTL assumptions, we could reduce the problem to
LTL synthesis. Unfortunately, while synthesis in LTLf and in
LTL have the same worst-case complexity (both are 2EXPTIME-
complete), the algorithms available for LTL synthesis are much
harder in practice than those for LTLf synthesis. Recently, it
has been shown that in basic forms of fairness and stability
assumptions we can avoid such a detour to LTL and keep the
simplicity of LTLf synthesis. In this paper, we generalize these
results and show how to effectively handle any kind of LTL
assumptions. Specifically, we devise a two-stage technique for
solving LTLf synthesis under general LTL assumptions and
show empirically that this technique performs much better
than standard LTL synthesis.

1 Introduction
Automated program synthesis is one of the most ambitious
problem of CS and AI: devise a “mechanical translation of
human-understandable task specifications to a program that
is known to meet the specifications” (Kreitz 1998; Vardi
2018). One of the most interesting forms of synthesis in
AI is reactive synthesis, where one synthesizes a program
for interactive/reactive ongoing computations (Church 1963;
Pnueli and Rosner 1989), and which is tightly related to
planning in nondeterministic domains (Ghallab, Nau, and
Traverso 2004; Geffner and Bonet 2013). We have a set
of boolean variables X controlled by the environment (the
fluents) and a set of boolean variables Y controlled by the
agent (the actions) and a specification Φ of the task of interest
in terms of linear-time temporal logic (LTL) (Pnueli 1977),
which is one of the most used logics in formal verification.
The synthesis has to produce a program, aka a strategy, for the
agent such that for every strategy adopted by the environment
the simultaneous execution of the two strategies produce a
trace that satisfies Φ (Pnueli and Rosner 1989; Finkbeiner
2016; Ehlers et al. 2017).

∗Authors names are ordered alphabetically by last name

Recently the problem of (reactive) synthesis has been stud-
ied in the case the task specification involves properties over
an unbounded but finite sequence of successive states. In
this case we do synthesis for LTL over finite traces (LTLf )
and its variants (De Giacomo and Vardi 2015). The al-
gorithms for LTLf synthesis are much simpler that those
for LTL synthesis and as a results much more scalable as
shown experimentally (Zhu et al. 2017; Camacho et al. 2018a;
Bansal et al. 2020).

In standard synthesis the environment is free to choose
an arbitrary move at each step, but in AI typically we have
a model of the world, i.e., of the environment’s behavior,
e.g., encoded in a planning domain (Green 1969; Geffner
and Bonet 2013; De Giacomo and Rubin 2018), or more
generally directly in temporal logic (Chatterjee, Henzinger,
and Jobstmann 2008; Bloem et al. 2014; Bonet et al. 2017;
D’Ippolito, Rodrı́guez, and Sardiña 2018). In other words,
we are interested in synthesis under assumptions (Aminof et
al. 2018; Camacho, Bienvenu, and McIlraith 2018; Aminof et
al. 2019; Zhu et al. 2020), which can be reduced to standard
synthesis of the implication:

Env→Goal

where Env is the specification of the environment (the
assumption) and Goal is the specification of the task of
the agent (Chatterjee, Henzinger, and Jobstmann 2008;
Aminof et al. 2019). The agent has to realize its task Goal
only on those traces that satisfy the assumption Env on the
environment. It is of interest to study synthesis under assump-
tions for LTLf goals. But, while it is natural to consider the
task specification Goal as an LTLf formula, requiring that
also Env is an LTLf formula is often too strong. Intuitively,
the environment has to react to the agent’s moves anyway,
independently of whether the agent accomplishes its task (in
a finite number of steps or not).

As a result Env typically needs to be expressed in LTL not
LTLf (Camacho, Bienvenu, and McIlraith 2018; Zhu et al.
2020). So, even when focusing on LTLf , what we need to
study is the case where we have the task Goal expressed in
LTLf and the assumption Env expressed in LTL.

One way to handle this case is to translate Goal into LTL
(De Giacomo and Vardi 2013) and then do LTL synthesis for
Env→Goal, c.f. (Zhu et al. 2017). But, as mentioned above,
while synthesis in LTLf and in LTL have the same worst-
case complexity, being both 2EXPTIME-complete (Pnueli and



Rosner 1989; De Giacomo and Vardi 2015), the algorithms
available for LTL synthesis are much harder in practice than
those for LTLf synthesis. In particular, the lack of efficient
algorithms for the crucial step of automata determinization is
a major obstacle for scalable implementations (Fogarty et al.
2013; Finkbeiner 2016). In spite of several advancements in
synthesis, such as reducing to parity games (Meyer, Sickert,
and Luttenberger 2018), bounded synthesis based on solving
iterated safety games (Kupferman and Vardi 2005; Finkbeiner
and Schewe 2013; Gerstacker, Klein, and Finkbeiner 2018),
or recent techniques based on iterated FOND planning (Ca-
macho et al. 2018b), LTL synthesis remains challenging.

In contrast, in LTLf synthesis the determination step can
be done through the much simpler subset construction (Rabin
and Scott 1959) and moreover the resulting DFA can be seen
as a game arena where environment and agent make their
own moves. On this arena, the agent wins if adversarial reach-
ability of the DFA accepting states is fulfilled (De Giacomo
and Vardi 2015).

In (Zhu et al. 2020) it is shown that one can maintain the
simplicity of LTLf synthesis in presence of LTL assumptions
expressing a basic form of fairness 23α, i.e., always even-
tually α, and a basic form of stability 32α, i.e., eventually
always α (where in both cases the truth value of α is under
the control of the environment).

In this paper, we generalize this result to arbitrary LTL
formulas, and provide a two-stage technique to effectively
handle any kind of LTL assumptions. These techniques take
advantage of the simpler way to handle LTLf goals in stage 1
and confines the difficulty of handling LTL assumption to the
bare minimum in stage 2. As a result, as long as the part of
assumptions that really require LTL and not LTLf is small we
do obtain scalability. Indeed, we show empirically that this
technique performs much better than standard LTL synthesis.

2 Preliminaries
LTL and LTLf . LTL is one of the most popular logics to
express dynamic properties in Formal Verification (Pnueli
1977). Given a set of propositions P the formulas of LTL are
generated by the following grammar:

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | ©ϕ | ϕU ϕ

where a ∈ P . We use common abbreviations such as eventu-
ally as 3ϕ .

= true U ϕ; always as 2ϕ .
= ¬3¬ϕ.

Formulas of LTL are interpreted over infinite traces π ∈
Pω. A trace π = π1, π2, . . . is a sequence of propositional
interpretations (sets), where for all i ≥ 0, πi ∈ 2P is the i-th
interpretation of π. Intuitively, πi is interpreted as the set of
propositions which are true at instant i. Given π, we define
when an LTL formula ϕ holds at position i, written π, i |= ϕ,
inductively on the structure of ϕ, as follows:

• π, i |= a iff a ∈ πi (for a ∈ P);
• π, i |= ¬ϕ iff π, i 6|= ϕ;
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;
• π, i |= ©ϕ iff π, i+ 1 |= ϕ;
• π, i |= ϕ1 U ϕ2 iff there exists j ≥ i such that π, j |= ϕ2,

and for all k, i ≤ k < j we have that π, k |= ϕ1.

We say π satisfies ϕ, written π |= ϕ, if π, 0 |= ϕ.
LTLf is a variant of LTL interpreted over finite traces in-

stead of infinite traces (De Giacomo and Vardi 2013).1 We
denote the last position (i.e., index) in the finite trace π by
last(π). The syntax of LTLf is exactly the same to the syntax
of LTL. We define the satisfaction relation π, i |= ϕ, stat-
ing that ϕ holds at position i, as for LTL, except that for the
temporal operators we have:
• π, i |= ©ϕ iff i < last(π) and π, i+ 1 |= ϕ;
• π, i |= ϕ1 U ϕ2 iff there exists j such that i ≤ j ≤ last(π)

and π, j |= ϕ2, and for all k, i ≤ k < j we have that
π, k |= ϕ1.
We say that a trace satisfies an LTLf formula ϕ, written

π |= ϕ, if π, 0 |= ϕ. In addition to the abbreviations used for
LTL we define the weak next operator •ϕ , ¬©¬ϕ. Over
finite traces, ¬©ϕ 6≡ ©¬ϕ, but we have that ¬©ϕ ≡ •¬ϕ.

Two-Player Games. We consider two-player games
played on finite arenas. Informally, two players, agent and
environment, play on a game arena. X and Y are disjoint sets
of Boolean variables: X controlled by the environment and Y
controlled by the agent. Playing the game proceeds in rounds.
In each round, first, the environment sets the truth value X
of X and then the agent replies by setting the truth value Y
of Y .2 A play describes how the agent and environment set
their variables at each round till the game stops.

Formally, an arena is a tuple A = 〈Σ, S, s0, δ〉, where
Σ = 2X∪Y is the alphabet, S is a set of states, s0 is an initial
state, and δ : S × Σ ⇀ S is the partial transition function.

A play in A is an infinite sequence ρ = s0, (X0 ∪
Y0), s1, (X1 ∪ Y1), . . . such that s0 is the initial state and
si+1 = δ(si, Xi ∪ Yi) for all i ≥ 0. A history ρn =
s0, (X0 ∪ Y0), s1, (X1 ∪ Y1), . . . , sn−1, (Xn−1 ∪ Yn−1), sn
is a finite prefix of a play ending in a state, and we denote
by lst(ρn) = sn its last state. The set of plays is denoted
as Play(A), and the set of histories is denoted as Hist(A).
Moreover, given ρ ∈ Play(A) (resp., h ∈ Hist(A)) we de-
note by ρ|Σ (resp., h|Σ) the projection of ρ (resp., h) on Σ.
Intuitively, h|Σ keeps only values of variables from Σ in ρ.

A strategy in A for the agent is a function σag : Hist(A)×
2X → 2Y , and for the environment is a function σenv :
Hist(A) → 2X . The strategies σag and σenv can be equiv-
alently defined as functions σag : (2X )+ → 2Y and σenv :
(2Y)∗ → 2X , respectively, as δ is deterministic. A strategy
σag is memoryless if σag(lst(h), X) = σag(lst(h

′), X) for
all h, h′ ∈ Hist(A) and X ∈ X , that is, the strategy only
depends on the last location of the history. We define memo-
ryless strategies for the environment analogously. Note that
a memoryless strategy can be defined on the set of states, in-
stead of the set of histories. Thus we have that the strategies
are of the form σag : S × 2X → 2Y and σenv : S → 2X .

1In this paper we focus on LTLf for simplicity, however one can
adopt its extension LDLf instead, without any changes in the results
and techniques reported.

2Here, we consider the environment as the first-player (as typical
in planning), but a version where the agent moves first can be
obtained by a small modification.



The outcome of two strategies σag and σenv in A, de-
noted outcome(A, σag, σenv), is the play ρ = s0(X0 ∪
Y0)s1(X1 ∪ Y1) . . . ∈ Play(A) such that for all i ≥ 0, we
have σenv(ρi) = Xi and si+1 = δ(si, Xi ∪ σag(ρi, Xi)).
A play π is consistent with agent strategy σag (resp., en-
vironment σenv) if π = outcome(A, σag, σenv) for some
environment strategy σenv (resp., agent σag).

A game is a tuple G = 〈A,W 〉, where A is the arena of
the game and W is the winning objective, which is set of
desirable plays W ⊆ Play(A) for the agent (resp. for the
environment). A play ρ ∈ Play(A) satisfies the winning ob-
jective W if ρ ∈W . An agent (resp., environment) strategy
σag (resp., σenv) is winning in G = 〈A,W 〉 for a winning
objective W if for every play ρ ∈ Play(A) consistent with
σag (resp., σenv) we have that ρ ∈W .

Given a state s′, we also say that the agent (resp., the envi-
ronment) has a winning strategy from s′ in G = 〈A,W 〉 for
a winning objective W if the agent (resp., the environment)
has a winning strategy in the game G = 〈A′,W 〉, where
A′ = 〈S, s′,Σ, δ〉, i.e., the same arena A but with the new ini-
tial state s′. By Winag(G) (resp., Winenv(G)) we denote the
set of states, from which the agent (resp., the environment)
has a winning strategy.

Here, we specifically consider reachability, safety, parity,
and LTL objectives.

• Reachability objectives. Given a set T ⊆ S of target states,
the reachability objective

Reach(T ) = {ρ ∈ Play(A) | ∃k ≥ 0 : lst(ρk) ∈ T}

requires that a state in T is visited at least once.

• Safety objectives. Given a set T ⊆ S of safe states, the
safety objective

Safe(T ) = {ρ ∈ Play(A) | ∀k ≥ 0 : lst(ρk) ∈ T}

requires that only states in T are visited. This is the dual
of reachability objectives.

• LTL objectives. Given an LTL formula ϕ over the variables
X ∪ Y , the LTL objective

LTL(ϕ) = {ρ | ρ|Σ |= ϕ}

requires that plays make the LTL formula ϕ true. Note
that from the play we are projecting out the states of the
arena (which are anyway determined by the sequences of
valuations of Σ).

• Parity objective. For some d ∈ N, let p : S × Σ →
{0, . . . , d − 1} be a priority function.3 Given a play
ρ = si(Xi ∪ Yi)i∈N

∈ Play(A), by p(ρ) = (p(si, Xi ∪
Yi))i∈N

we denote the associated priority sequence. The
parity objective Parity(p) is defined as the set of ρ such
that the minimum priority that appears infinitely often
along p(ρ) is even.

3In this paper we define the priority function on transitions,
which is nowadays the preferred definition for implementation and
in-line with other recent papers and tools (Giannakopoulou and
Lerda 2002; Duret-Lutz et al. 2016; Babiak et al. 2015; Kretı́nský,
Meggendorfer, and Sickert 2018).

Depending on the actual winning objective we get reachabil-
ity, safety, LTL, or parity games. Reachability, safety, and
parity games admit memoryless strategies, while LTL games
require finite-state strategies. All these games are determined,
i.e., from each state of the game if the player has no winning
strategy then the opponent has one (Martin 1975).

Finite-State Automata on Finite and Infinite Words. A
finite-state automaton is a tuple A = 〈Σ, Q, q0, δ〉, where Σ
is a finite input alphabet, Q is the finite set of states, q0 ∈ Q
is the initial state, δ : Q × Σ → 2Q is the nondeterminis-
tic transition function. An automaton A is deterministic if
|δ(q, a)| = 1, for all (q, a) ∈ Q× Σ, i.e., δ : Q× Σ→ Q.

A run on a finite word a0 . . . an is a finite sequence
q0 . . . qn such that qi+1 ∈ δ(qi, ai+1) for all 0 ≤ i < n.
A run on an infinite word a0a1 · · · is an infinite sequence
q0q1 . . . such that qi+1 ∈ δ(qi, ai+1) for all i ≥ 0.

Nondeterministic and deterministic finite-state automata
(NFA and DFA, respectively) on finite words are a pair (A, F ),
where F ⊆ Q is the set of accepting states. A run q0 . . . qn
of A is accepting if qn ∈ F . By L(A) we denote the set of
all words over Σ accepted by A.

A nondeterministic Büchi automaton (NBA) on infinite
words is a pair (A, F ), where F ⊆ Q, as for NFA, and a run
q0q1 . . . of A is accepting if for infinitely many i, qi ∈ F .

A deterministic parity automaton (DPA) on infinite words
is a pair (A, p), where p : Q×Σ→ {0, . . . , d− 1} for some
d ∈ N, is a priority function as defined for parity objectives
above. A run ρ of A is accepting if the minimum priority
that appears infinitely often along p(ρ) is even.

Here, we consider games played on arenas based on au-
tomata. Specifically, we consider games G = 〈A,W 〉, for
a variety of objectives W , where the arena is an automaton
A = 〈Σ, Q, q0, δ〉.

Reactive Synthesis. Reactive Synthesis is the problem of
producing a strategy for the agent such that it satisfies a given
property no matter how the environment behaves (Church
1963; Pnueli and Rosner 1989). LetX and Y disjoint boolean
variables, withX controlled by environment andY controlled
by the agent. As for two-player games, the idea is that the
environment sets the variables in X , and the agent then re-
sponds by setting the variables in Y . An agent strategy is a
function σag : (2X )+ → 2Y , and an environment strategy
is a function σenv : (2Y )∗ → 2X . A trace is a sequence
(X0 ∪ Y0)(X1 ∪ Y1) . . . over the alphabet 2X∪Y . An agent
strategy induces a trace (Xi∪Yi)i if σag(X0X1 . . . Xj) = Yj
for every j ≥ 0. An environment strategy induces a trace
(Xi ∪ Yi)i if σenv(ε) = X0 and σenv(Y0Y1 . . . Yj) = Xj+1

for every j ≥ 0. For an agent strategy σag and an environ-
ment strategy σenv let τ(σag, σenv) denote the unique trace
induced by both σag and σenv .

LTL Synthesis. Let ϕ be an LTL formula over X ∪ Y . An
agent strategy σag (resp., environment strategy σenv) realizes
ϕ if for every environment strategy σenv (resp., agent strategy
σag), the trace τ(σag, σenv) satisfies ϕ. In this case we say
that ϕ is agent realizable (resp., environment realizable).



The problem of LTL synthesis is to decide whether ϕ is
agent realizable and if so to compute a finite-state strategy
(Pnueli and Rosner 1989). Algorithm 1 shows a classical
approach to solve LTL synthesis.

Algorithm 1 LTL synthesis

Input: LTL formula ϕ;
Output: agent strategy σag that realizes ϕ;

1: Compute the corresponding NBA Aϕ;
2: Determinize Aϕ into a DPA Bϕ;
3: Solve the parity game over the arena Bϕ.

LTL synthesis is 2EXPTIME-complete (Pnueli and Ros-
ner 1989), but more importantly computing the resulting
DPA (Safra 1988; Piterman 2007) remains difficult to scale,
despite extensive research (Esparza and Kretı́nský 2014;
Sickert et al. 2016; Kretı́nský et al. 2017; Esparza et al. 2017).
Moreover, solving parity games requires essentially to com-
pute nested fixpoints corresponding to priorities (exponen-
tially many in general in the case of LTL synthesis). So even
this problem, although in UPTIME ∩ COUPTIME (Jurdzin-
ski 1998) and in fact quasi-polynomial (Calude et al. 2017),
remains hard in practice for large numbers of priorities.

LTLf Synthesis. Let ϕ be an LTLf formula over X ∪ Y .
Let τm(σag, σenv) be the finite trace that is a prefix up to m
of the trace τ(σag, σenv). An agent strategy σag (resp., envi-
ronment strategy σenv) realizes ϕ if for every environment
strategy σenv (resp., agent strategy σag) there exists m ≥ 0,
chosen by the agent, such that the finite trace τm(σag, σenv)
satisfies ϕ, that is, ϕ is agent (resp., environment) realizable.

The problem of LTLf synthesis is to decide whether ϕ
is agent realizable and computing a finite-state strategy if
one exists (De Giacomo and Vardi 2015). The algorithm for
solving LTLf synthesis is reported in Algorithm 2.

Algorithm 2 LTLf synthesis

Input: LTLf formula ϕ;
Output: agent strategy σag that realizes ϕ;

1: Compute the corresponding NFA Aϕ;
2: Determinize Aϕ into a DFA Bϕ;
3: Solve the reachability game on the arena Bϕ.

LTLf synthesis is 2EXPTIME-complete (De Giacomo and
Vardi 2013), i.e., the same as for infinite traces, but good
algorithms exist for obtaining DFA: compute NFA (De Gi-
acomo and Vardi 2015) and determinize using well-known
subset construction (Rabin and Scott 1959). Moreover,
solving DFA game just requires solving adversarial reach-
ability. Several recent papers are showing experimentally
that LTLf synthesis is indeed scalable (Zhu et al. 2017;
Camacho et al. 2018a; Camacho, Bienvenu, and McIl-
raith 2019; Zhu, Pu, and Vardi 2019; Zhu et al. 2020;
Bansal et al. 2020).

3 LTLf Synthesis Under LTL Assumptions
In this paper, we are interested in solving synthesis under
environment assumptions (Aminof et al. 2018; Camacho, Bi-

envenu, and McIlraith 2018; Aminof et al. 2019), i.e., assum-
ing that the behavior of the environment is forced to satisfy
certain restrictions. Examples of these are (nondeterminisitc)
domains specifications in planning, which specify effect of
actions (controlled by agent) in terms of fluents (controlled
by the environment) (Geffner and Bonet 2013), fairness as-
sumptions in strong cyclic planning (Cimatti et al. 2003), and
trajectories constrains in generalized planning (D’Ippolito,
Rodrı́guez, and Sardiña 2018; Bonet et al. 2017). Moreover
environment assumptions have been investigated also in for-
mal methods (Chatterjee, Henzinger, and Jobstmann 2008;
Bloem et al. 2014).

Here, we focus on LTLf synthesis under environment
assumptions, but it is important to clarify that even in
this setting we may need to consider environment assump-
tions expressed over infinite traces, since in LTLf syn-
thesis it is the agent that chooses when to terminate a
trace not the environment (De Giacomo and Vardi 2015;
Camacho, Bienvenu, and McIlraith 2018; Zhu et al. 2020).
Formally, we are interested in solving synthesis for:4

Env →Goal

where Goal is an arbitrary LTLf formula, which is the speci-
fication of a task for the agent, and Env is an arbitrary LTL
formula, which expresses restrictions on the environment
behavior.

We observe that not every LTL formula Env can be con-
sidered a meaningful environment assumption. To be so it
is required that the environment must have a strategy to win
Env in spite of whatever the agent does. That is the environ-
ment must be able to react to every agent action, resolving
its nondeterminism without getting stuck. Formally, Env
must be realizable by the environment, i.e., there must be
an environment’s strategy that solves Env . If not, the agent
can defeat the assumption on the environment instead of re-
alizing its goal, trivializing the synthesis for the implication
Env →Goal (Chatterjee, Henzinger, and Jobstmann 2008;
Aminof et al. 2019). Nevertheless, for the results in this paper,
no restriction on the LTL formula Env need to be imposed.

Definition 1 (LTLf Synthesis under LTL Assumptions).
1. The problem of LTLf synthesis under LTL assumptions is

a tuple P = 〈X ,Y, Env,Goal〉, where X and Y are two
disjoint sets of boolean variables, controlled respectively
by the environment and agent, Env is an LTL formula over
X ∪ Y , and Goal is an LTLf formula over X ∪ Y .

2. An agent strategy σag : (2X )+ → 2Y realizes Goal
under assumption Env if for every λ = X0, X1, . . . ∈
(2X )ω, such that π |= Env , there exists k ≥ 0 such
that πk |= Goal , where π = (X0 ∪ σag(X0)), (X1 ∪
σag(X0, X1)), . . . and πk is the prefix of π ending at k (i.e.,
πk = (X0 ∪ σag(X0)), (X1 ∪ σag(X0, X1)), . . . , (Xk ∪
σag(X0, X1, . . . , Xk)).

3. Solving P consists in finding an agent strategy that real-
izes Goal under assumption Env .

4In fact, the use of an implication in this context requires some
care. We refer to (Aminof et al. 2019) for a thorough discussion.



An agent strategy σag : (2X )+ → 2Y for the synthesis
problem P = 〈X ,Y, Goal, Env〉 is winning if it guarantees
the satisfaction of Goal under the condition that the environ-
ment behaves as specified by Env. A realizability procedure
for P aims verifying the existence of a winning strategy σag
and the synthesis procedure amounts to actually computing
σag , if it exists.

We observe that one way to solve this form of synthesis
is to translate Goal into LTL (De Giacomo and Vardi 2013)
and then do standard LTL synthesis for Env → Goal, see
e.g. (Camacho, Bienvenu, and McIlraith 2018). A much more
efficient technique to solve the problem P in the special case
of LTL assumptions of the form 23a (fairness) and 32a
(stability) with a propositional is proposed in (Zhu et al.
2020). Here we generalize some of the ideas in (Zhu et al.
2020) to handle any kind of LTL assumptions.

4 Solving Synthesis
To solve the synthesis problem P = 〈X ,Y, Env,Goal〉 we
proceed as follows:
• Translate the LTLf formula Goal into the corresponding

DFA (AGoal, Acc) with AGoal = 〈2X∪Y , QG, qG0 , δG〉;
• Focus on the environment as the main player; observe that

all the games we consider in this paper are determined (see
Section 2) so if the environment (resp., agent) does not
win its objective, then the agent (resp. environment) wins
the complement objective;

• Set as winning objective for the environment the LTL ob-
jective LTL(Env ∧2(¬Acc)), where Acc is a proposition
true iff the current state of the DFA is accepting;

• Solve the LTL game G = 〈AGoal, LTL(Env∧2(¬Acc))〉,
where LTL(Env ∧2(¬Acc)) is the winning objective for
the environment.

• Return the agent winning strategy, if one exists.
We show that this procedure is indeed sound and complete.

Theorem 1. P = 〈X ,Y, Env,Goal〉 is realizable iff the
environment does not have a winning strategy in the environ-
ment LTL game: G = 〈AGoal, LTL(Env ∧ 2(¬Acc))〉 i.e.,
iff the agent has a winning strategy in environment game
G (that is the agent wins the complement LTL objective
(Env→3Acc) in the arena AGoal). Moreover, every agent
winning strategy for G is a strategy for P , and vice-versa.

Proof. We prove the theorem in both directions.
←: If σag is an agent winning strategy in AGoal for the com-
plement winning objective (Env→3Acc) then define the
strategy hag(σag) of P as a mapping λ ∈ (2X )+ to σag(h).
Thus, a play ρ ∈ Play(A) consistent with the strategy σag is
winning for the agent in the environment game G such that
either of the following condition holds:
• ρ|Σ 6|= Env, then the trace π = (X0 ∪ hag(X0)), (X1 ∪
hag(X0, X1)), . . . consistent with hag does not satisfy Env.
• ρ|Σ |= Env and there exists j ≥ 0 such that lst(ρj) ∈
Acc. This implies that ρj|Σ |= Goal. Therefore, the
trace π = (X0 ∪ hag(X0)), (X1 ∪ hag(X0, X1)) consistent
with hag satisfies Env, and πj = (X0 ∪ hag(X0)), (X1 ∪

hag(X0, X1)), . . . , (Xj ∪ hag(X0, X1, . . . , Xj)) satisfies
Goal. Conclude that hag is an agent winning strategy that
realizes Goal assuming Env.
→: For this direction we assume that P is realizable, i.e.,
there exists a strategy hag that realizes Goal assuming Env.
Then, define the agent strategy σag(hag) of G as a mapping
from λ ∈ (2X )+ to hag(λ). Thus, consider a trace π induced
by hag such that either of the following condition holds:
• π 6|= Env, then the play ρ = s0, (X0∪σag(X0)), s1, (X1∪
σag(X0, X1)), . . . consistent with σag does not satisfy Env.
• π |= Env and there exists j ≥ 0 such that πj |= Goal.
Therefore, the play ρ = s0, (X0 ∪ σag(X0)), s1, (X1 ∪
σag(X0, X1)), . . . consistent with σag satisfies Env. More-
over, since πj |= Goal the play ρj|Σ |= Goal and then
lst(ρj) ∈ Acc. Conclude that σag is an agent winning
strategy in the environment game G = 〈AGoal, LTL(Env ∧
2(¬Acc))〉, i.e., winning for the complement objective
(Env → 3Acc) in the arena AGoal.

We remind the reader that LTL games over an arena A with
an LTL winning objective LTL(ψ) can be solved by translating
the formula ψ into a DPA and making the product of such a
DPA with the game arena G (Harding, Ryan, and Schobbens
2005; Sohail and Somenzi 2009) obtaining a party game,
which can be solved with standard techniques, e.g., (Zielonka
1998; Di Stasio et al. 2016). We show next that we can do
better by considering the specific form of Env ∧2(¬Acc),
which is a conjunction of a safety formula 2¬Acc (Manna
and Pnueli 1990) and a general LTL formula Env .

5 Two-stage Technique for Synthesis
Following (Sohail and Somenzi 2009), we can treat separately
the safety component, and use such separation to reduce the
size of the game arena before making the product with the
DPA for Env. Based on this idea, we devise a two-stage
algorithm.

Stage 1. In stage 1, given the DFA (AGoal, Acc) for Goal,
we solve the reachability game G = 〈AGoal, Reach(Acc)〉
by computing the agent winning set Winag and the mem-
oryless winning strategy σag for the winning objective
Reach(Acc). Therefore, for each state in Winag, σag re-
turns the assignment for the agent controlled variables Y ,
which eventually leads to a final state. Therefore, if the initial
state is in Winag, that is, σag realizes Goal independently
from Env being satisfied or not, nothing else is needed and
then the algorithm can stop returning Winag and σag .

Stage 2. In stage 2, we prune the game arena by removing
all states in Winag, which are winning for the agent, and
hence loosing for the environment, and all transitions in and
out of them, and by disabling all environment moves that can
lead to Winag . Formally, given G = 〈AGoal, Reach(Acc)〉,
we define the game G|¬Winag

= 〈A|¬Winag
,W 〉, in which

arena A|¬Winag
is given as (2X∪Y , S′, s′0, δ

′), where S′ =

QG \Winag , s′0 = qG0 , and the transition function is defined



as follows: δ′(s′, X ∪ Y ) is undefined if either s′ ∈Winag
or there exists Y ∈ 2Y such that δ(s′, X ∪ Y ) ∈Winag for
any X ∈ 2X ; δ′(s′, X ∪ Y ) = δG(s′, X ∪ Y ) otherwise.

Stage 2 then proceeds as follows: (i) computes the corre-
sponding DPA (AEnv, p) withAEnv = 〈2X∪Y , QE , qE0 , δE〉
for Env; (ii) builds the game product G|¬Winag

×AEnv =
〈Aι, Parity(pι)〉 of G|¬Winag

and AEnv as follows: Aι =

〈Σ, Sι, sι0, δι〉, where Sι = S′ × QE , sι0 = (s0, q
E
0 ), and

for (s, q) ∈ Sι and a ∈ Σ we have that δι((s, q), a) =
(δ′(s, a), δE(q, a)) if δ′(s, a) and δE(s, a) are defined, un-
defined otherwise. Parity(pι) is the parity objective for
the environment, where pι is the priority function defined
as pι((s, q), a) = p(s, a) for each (s, q) ∈ Sι and a ∈ Σ;
(iii) solves the resulting parity game G|¬Winag

×AEnv for
the environment by returning the winning states Win′env and
Win′ag for the environment and the agent respectively, and
the corresponding memoryless strategies σ′env and σ′ag (note
that these return the X and the Y from each state in Win′env
and each state in Win′ag respectively) , see e.g., (Zielonka
1998). Finally, if the initial state of G|¬Winag

×AEnv is in
Win′ag, i.e., the agent has a winning strategy for falsifying
Env in G|¬Winag

, then the algorithm returns the strategies
σag over G and σ′ag over G|¬Winag

× AEnv, along with
Winag and Win′ag respectively, that have to be combined to
construct the winning strategy for the agent in the LTL game
G = 〈AGoal, LTL(Env ∧ 2(¬Acc))〉 for the complement
winning objective LTL(Env → 3Acc). Then, we combine
the strategies obtained in the two stages in a strategy for
the original problem. The two-stage algorithm is detailed in
Algorithm 3.

Algorithm 3 LTLf synthesis under LTL assumptions

1: procedure SYNTHESIZE(P)
2: /* Stage 1 */
3: (AGoal, Acc) = LTLf TO DFA (Goal)
4: let G = 〈AGoal, Reach(Acc)〉;
5: (Winag, σag) = RGSOLVEag(G)
6: if s0 ∈Winag then
7: return GETSTRAT(Winag, σag)
8: /* Stage 2 */
9: (AEnv, p) =LTL TO DPA (Env)

10: (Win′ag, σ
′
ag) =PGSOLVEenv(G|¬Winag

×AEnv)
11: if s′0 ∈Win′ag then
12: return GETSTRAT(Winag, σag,Win′ag, σ

′
ag)

13: else
14: return ”Unrealizable”

The algorithm works by calling the following procedures:
(i) LTLf TO DFA (φ) translates an LTLf formula φ into the
corresponding DFA; (ii) RGSOLVEag(G) solves the reach-
ability game G for the agent by returning the winning set
Winag and the memoryless strategy σag; (iii) LTL TO DPA
(ϕ) translates an LTL formula ϕ into the corresponding DPA;
(iv) PGSOLVEenv(G) solves the parity game G for the envi-
ronment by returning the winning set Win′ag and the memo-
ryless strategy σ′ag for the agent. Note that, we do not report

Winenv and σenv for the environment as output of the solving
game procedure since we are only interested in the winning
sets and strategies of the agent; (iv) GETSTRAT combines the
strategies returned by stage 1 and 2 to generate the strategy
σag for the original problem as we detail next.

Strategy Extraction. We now detail the procedure GET-
STRAT that given (Winag, σag) and (Win′ag, σ

′
ag) builds a

finite-state transducer representing the strategy σag of the
original problem. We denote by η((s, q)) = s for (s, q) ∈ Sι
the projection of S′×QE on S′. Formally, the winning strat-
egy for the agent σag : (2X )+ → 2Y can be represented as
a deterministic finite transducer T = 〈2X∪Y , QT , qT0 , %, ωf 〉
based on the output of Algorithm 3:
• qT0 = s0 if s0 ∈Winag , qT0 = sι0 otherwise.

• QT = Winag ∪Win′ag;

• % : QT × 2X → QT is the transition function such that
given Y = ωf (q,X) we have that:

%(q,X) =


δG(q,X ∪ Y ) if q ∈Winag

δE(q,X ∪ Y ) if δE(q,X ∪ Y )

is defined
δG(η(q), X ∪ Y ) otherwise

• ωf : QT × 2X → 2Y is the output function defined as:

ωf (q,X) =



σag(q,X) if q ∈ Winag

σ′ag(q,X) if q ∈ Win′ag
and σ′ag(q,X) 6= ⊥

choose Y such that
δG(η(q), X∪Y ) ∈ Winag if q ∈ Win′ag

and σ′ag(q,X) = ⊥

The transducer T generates σag in the sense that for every
λ ∈ (2X )ω, we have σag(λ) = ωf (%(λ)), with the usual
extension of ωf to words over 2X from qT0 . Intutively the
strategy generated by T says that, if the environment decides
to stay in G|¬Winag

then the agent follows the strategy σ′ag
falsifying Env. Otherwise, the environment could escape
and visit some state s ∈Winag in G, as showed by Lemma
1, but in this case the agent follows the strategy σag reaching
an accepting state and then satisfying Goal.
Lemma 1. Let q ∈ Win′ag and σ′ag(q,X) = ⊥ for some
X ∈ 2X . Then there exists Y ∈ 2Y such that δG(η(q), X ∪
Y ) = s′ and s′ ∈Winag .

Proof. Let F = {s | ∃X∃Y.δP (s,X ∪ Y ) ∈ Winag} \
Winag, i.e., the set of predecessors of the states in Winag.
Thus, F ⊆ S′ and F ×QE is a subset of Sι. Then for every
(s, q) ∈ F × QE we have that σ′((s, q), X) = ⊥ for some
X ∈ 2X and there exists Y ∈ 2X such that δP (η(s, q), X ∪
Y ) ∈Winag .

Correctness. Now we prove soundness and completeness.
By Theorem 1 it suffices to show that T generates a winning
strategy σag for the agent in the LTL game for the environ-
ment G = 〈AGoal, LTL(Env ∧2(¬Acc))〉.



Theorem 2. Let G = 〈AGoal, LTL(Env ∧ 2(¬Acc))〉 be
an LTL game and σag a strategy for the agent. If σag(λ) =
ωf (%(λ)) then σag is a winning strategy for the agent in G
for the complement winning objective LTL(Env → 3Acc).

Proof. Let λ ∈ (2X )ω be an arbitrary infinite sequence and
ρ = s0, (X0 ∪ σag(X0)), s1, (X1 ∪ σag(X0, X1)), . . . ∈
Play(A) the corresponding play consistent with the strat-
egy σag for the complement winning objective LTL(Env →
3Acc). We show that ρ ∈ LTL(Env → 3Acc).
• s0 ∈ Winag, then Algorithm 3 stops at the first stage
returning a memoryless winning strategy σag for the agent in
G = 〈AGoal, Reach(Acc)〉 for the objective Reach(Acc).
Thus, the construction of ωf follows σag and then there exists
j ≥ 0 such that lst(ρj) ∈ Acc, that is, ρj|Σ satisfies Goal.
• s0 /∈ Win′ag and every state s along the play ρ belongs
to G|¬Winag

. Thus the strategy generated by ωf follows the
strategy σ′ag over G|¬Winag

×AEnv and then ρ|Σ 6|= Env.
• s0 6∈Winag and there exists j ≥ 0 such that ρj ∈ Hist(A)
and lst(ρj) = sj ∈Winag. Then, from sj the construction
of ωf generates the strategy based on σag that leads to some
state inAcc. Therefore, there exists k ≥ j such that lst(ρk) ∈
Acc, i.e., ρk|Σ |= Goal.

Finally, we show the optimality of the algorithm:
Theorem 3. Algorithm 3 solves LTLf synthesis under as-
sumptions in 2EXPTIME.

Proof. Stage 1 needs to build the corresponding DFA of an
LTLf formula which worst-case is 2EXPTIME (De Giacomo
and Vardi 2015), and solve the reachability game over the
DFA that is linear in the size of the game. Stage 2 builds
the corresponding DPA of an LTL formula which worst-case,
again, is 2EXPTIME (Safra 1988), and solves the parity game
over the DPA which cost is polynomial in the number of the
states and exponential in the number of the priorities.

6 Separating LTLf Assumptions
It is interesting to consider the case where part of the assump-
tions are expressed in LTLf , i.e., the environment assumptions
have the form Env = Env∞ ∧ Envf , where Env∞ can be
expressed as an LTL formula and Envf as an LTLf formula.
In this case the synthesis problem Env→Goal becomes

(Env∞ ∧ Envf )→Goal

which is equivalent to
Env∞→ (Envf →Goal)

where (Envf→Goal) is expressible in LTLf . Therefore, we
can synthesize for

Env∞→Goal′

where Goal′ = (Envf → Goal) is an LTLf formula and
Env∞ is an LTL one. In this way, Envf does not contribute
the resulting DPA and it can be handled during Stage 1 instead
of Stage 2 of our technique. Specifically we build a DFA as
the union of the DFA AEnvf , i.e., the complement of the DFA
for Envf , and the DFA AGoal for the goal. Thus, we get an
important advantage:

We handle a possibly large part of the environment as-
sumption at stage 1, thus avoiding its use during the
construction of the DPA, which is the most costly part of
the technique.
A notable case of Envf is when it expresses in LTLf a

propositional planning domain (De Giacomo and Vardi 2013;
Aminof et al. 2019). Translating a possibly nondeterminis-
tic domain in LTLf can be done in linear time in the size
of a compact representation like PDDL (McDermott et al.
1998). In fact, we can even do better by avoiding the explicit
translation into LTLf , as shown next.

Planning Domains. In (De Giacomo and Rubin 2018) it is
observed that each nondeterministic domain Dom, typical
of FOND planning (Geffner and Bonet 2013), can translated
in linear time into an equivalent DFA ADom.5 So we can use
Dom directly to build the arena of the game at stage 1. In
fact, more can be done. If the nondeterministic domain is
expressed in compact language as PDDL, we can transform
directly this representation in linear time into a symbolic
representation of a DFA ADom, and hence its complement
ADom, and take advantage of this to speed up the stage 1 of
our technique. In this case we get a second advantage:

We avoid the cost of the translation of the environment
assumption corresponding to the domain in generating
the DFA at stage 1.
We illustrate the whole construction of our two-stage tech-

nique with a simple example. Consider the following sim-
plified version of the classical Yale shooting domain in (De
Giacomo and Rubin 2018), where we have that a turkey is
either alive or not and the actions are shoot, which may either
kill the turkey or not, and wait, which does nothing (both
actions do not have preconditions). Consider as Goal the
LTLf formula 3¬a and as assumption Env the LTL formula
23shoot → 3(¬ a). Figures 1 and 2 represent the DFAs
ADom and AGoal for the domain and the goal, respectively.
Then, we build the arena of the game at stage 1 doing the
product between ADom and AGoal, obtaining the DFA Au
depicted in Figure 3.

Figure 1: DFA ADom for the
domain. Note that, any agent
action in init leads to a.

Figure 2: DFA for 3¬a

We now solve the reachability game over the game arena
Au by computing the set of states Winag, from which the

5For simplicity we do not consider preconditions, but instead
assume that domains have a special fluent PrecV iolated that is
the effect of doing an action violating the preconditions. Once
PrecV iolated is true no action can make it false.



Figure 3: Au = ADom ∪ AGoal

Figure 4: Au after removing
Winag , say A′u.

Figure 5: DPA for 23shoot →
3(not a).

Figure 6: Parity Game ob-
tained by cross product of
the DPA and A′u

agent can force to reach the final states, in our case the fi-
nal states themself. The agent winning strategy on Winag
is defined as follows: (not a, q1) → {shoot, wait} and
(Err, q1) → {shoot, wait}. Since the initial state is not
in Winag , we move to the stage 2.

At stage 2, we solve the parity game obtained by the prod-
uct between the DPA for Env (Figure 5) and Au after remov-
ing Winag (Figure 4), and we compute the winning states and
the winning stratetegy for the agent. By looking at Figure 6,
we can observe that all states are loosing for the environment.
Indeed, in a/q0, s0 the agent can continuously choose shoot
so that the smallest priority visited infinitely often is 1, that
is odd. Thus, an agent winning strategy is defined as fol-
lows: (init/q0, s0) → {wait, shoot}; (a/q0, s0) → shoot.
Finally, the winning strategy for the agent for the original
problem is the combination of the strategies of the two stages
as described in Section 5.

7 Experimental Analysis
We now examine the performance of our two-stage tech-
nique experimentally. We have implemented our two-stage
algorithm (Algorithm 3) in a new tool called 2SLS, writ-
ten in C++. 2SLS exploits the CUDD package as library
for the manipulation of Binary Decisions Diagrams (BDDs)
(Bryant 1986) used for the symbolic representations of DFAs
and DPAs. Specifically, 2SLS takes in input an LTLf formula
Goal, an LTL formula Env, the sets X and Y of input and
output variables, respectively, and (i) it builds the symbolic
DFA for Goal borrowing the construction from Syft (Zhu
et al. 2017), a tool for solving LTLf synthesis based on a
symbolic approach. Syft exploits MONA (Henriksen et al.
1995) to build the DFA and then converts it into a symbolic
representation. Then, (ii) it constructs the DPA for Env by
using OWL (Kretı́nský, Meggendorfer, and Sickert 2018),
a tool for translating LTL into different types of automata,
constructs its symbolic representation. Finally, (ii) it executes
Algorithm 3, which exploits APT as parity games solver (Di
Stasio et al. 2016), and returns an agent winning strategy.

In order to evaluate the performance of 2SLS, we compare

it to a direct reduction to LTL synthesis, which allows us
to utilize state-of-the-art tools for standard LTL synthesis.
Specifically, we have employed the LTLf -to-LTL translator
implemented in SPOT (Duret-Lutz et al. 2016) and chosen
Strix (Meyer, Sickert, and Luttenberger 2018), the winner
of the synthesis competition SYNTCOMP 2019 6 over LTL
synthesis track, as the LTL synthesis solver.

In addition, in special cases where assumptions are LTL for-
mulas of the form 23a (fairness) and 32a (stability), with
a propositional, we have also compared the performance of
2SLS with FSyft and StSyft (Zhu et al. 2020), tools for
solving LTL synthesis with fairness and stability assumptions,
respectively, which apply a BDD-based fixpoint-evaluation
on the corresponding DFA of Goal for checking the assump-
tions 23a and 32a. FSyft and StSyft perform much better
then Strix based on a direct reduction to LTL synthesis.

Experiment Setup. All tests were ran on a computer clus-
ter. Each test took an exclusive access to a node with Intel(R)
Xeon(R) CPU E5-2650 v2 processors running at 2.60GHz.
Time out was set to 1000 seconds.

Experiments on Fairness and Stability. Specifically, we
start by evaluating the performance of 2SLS on simple as-
sumptions of the form 23a and 32a, so as to compare it
also with FSyft and StSyft. Actually (Zhu et al. 2020) adopt
an ad-hoc technique to solve these types of assumptions and
hence their technique is expected to perform significantly
better. Instead, we show that our general technique performs
comparably. This is a quite interesting outcome.

As a first benchmark, following (Zhu et al. 2020), we used
problems generated from a scalable counter game, described
as follows: (i) there is an n-bit binary. At each round, the
environment chooses whether to increment the counter or
not. The agent can choose to grant the request or ignore
it; (ii) the goal is to get the counter having all bits set to 1,
so the counter reaches the maximal value; (iii) the fairness
assumption is to have the environment infinitely request the
counter to be incremented; (iv) the stability assumption is to
have the environment eventually keep requesting the counter
to be incremented. We can easily reduce solving the counter
game above to solving LTLf synthesis with LTL assumptions.
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Figure 7: Stable LTLf synthesis. Comparison of running time
among 2SLS, StSyft and Strix, in log scale.

We evaluated the efficiency of 2SLS in terms of the num-
ber of solved cases and total time cost expressed in seconds.
Figure 8 and Figure 7 show the running time of the various

6http://www.syntcomp.org/syntcomp-2019-results/
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Figure 8: Fair LTLf synthesis. Comparison of running time among
2SLS, FSyft and Strix, in log scale.

tools. Here we only show realizable cases with counter bits
n ≤ 10. The x-labels c-rea-n indicate the realizability and
the number of counter bits of each case. As expected, both
of FSyft and StSyft perform much better than Strix, solving
more cases in less running time. Interestingly, 2SLS is able
to obtain comparable performance wrt FSyft when dealing
with LTLf synthesis under fairness assumptions, and even a
slight advantage over StSyft for stability assumptions.

Experiments of General LTL Assumptions. Next we
evaluate our approach with general LTL assumptions. We
drop the comparison with FSyft and StSyft that do not sup-
port general assumptions, and focus instead on Strix, which
is one of the best tools for LTL synthesis currently available.
In particular, we translate LTLf goals to LTL through SPOT,
and use Strix on the resulting pure LTL formula.

To test the advantage of our two-stage technique it is im-
portant that both the LTL assumption and the LTLf goal con-
tribute to the synthesis. Indeed, in the limit case where we
have only an LTL assumption with an empty LTLf goal our
technique would do nothing in the first stage and would sim-
ply solve classical LTL synthesis in the second stage.

Moreover, the part of assumption that specifies the possible
transitions of the environment, which can be quite large as
it happens for planning domains, can be expressed in LTLf
instead of LTL. Hence we are in the situation where the
assumption Env is of the form Env∞∧Envf where Env∞
is expressible in LTL and Envf in LTLf . In this case we can
reduce Env∞ ∧ Envf → Goal to Env∞ → Goal′ where
Goal′ = (Envf → Goal) as discussed in Section 6.

Based on these considerations we built benchmarks where
the Goal is a conjunction of increasing size of random LTLf
formulas of the form 2(pj → 3qj) with pj and qj propo-
sitions under the control of the environment and the agent,
respectively; and the LTL assumption is a conjunction of for-
mulas of the form (23pi ∨32qi), where we start with one
conjunct and introduce a new conjunct every 10 conjuncts in
theGoal. Note that, formulas of the form (23pi∨32qi) are
the most general kind of LTL formulas according to (Maler
and Pnueli 1990).

As we see from Figure 9, when the entire formula is small
the optimization of Strix makes it a little bit faster than 2SLS,
but as the formula becomes larger than 8 conjuncts, 2SLS
starts showing an exponential improvement with respect to
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Figure 9: General LTL assumptions. Comparison of running time
among 2SLS and Strix, in log scale.

Strix. This gives us an indication of the advantage of adapting
our two-stage technique.

In spite the advantage over Strix, 2SLS also did not shine
in this experiment. Indeed, Strix reaches this timeout with
13 conjuncts in the Goal and 2 conjuncts in the LTL assump-
tion, while 2SLS reaches the timeout with 17 conjuncts in
the Goal (and still 2 conjuncts in the LTL assumption). In
fact, 2SLS reaches the timeout in building the DFA, a step
performed by MONA. Specifically, the LTLf formula is trans-
lated into first-order logic on finite sequences (Zhu et al.
2017) and then MONA is used as a black box to generate the
(minimal) DFA. In such DFA states are represented explicit
and transitions symbolically. Then, the DFA if further manipu-
lated to have a full symbolic representation (this step is linear
in the DFA). In this process the bottleneck is the construction
of the DFA by MONA, which reaches the timeout because
the intermediate steps of the construction of the DFA. This is
the reason of the timeout we get for 17 conjuncts. There are
recent techniques that aim at improving the construction of
the DFA, see, e.g., (Bansal et al. 2020) and these could give a
much higher scalability.

Planning domains. When dealing with nondeterministic
planning domains as part of the assumption, an essential step
is translating the domain expressed as PDDL into a symbolic
DFA with maximum efficiency. While how to translate PDDL
into DFA is well-known (De Giacomo and Rubin 2018), how
to perform it in a practically efficient and optimized way
is open to further investigation. A promising direction for
the translation might be borrowing insights from reactive
planning (He et al. 2019). Instead of having only agent
actions with nondeterministic effects, the reactive planning
domain has agent actions and environment actions. Agent
and environment actions contrast each other in a turn-based
fashion. We intend to look into this approach in the future.

8 Conclusion
In this paper, we have proposed a two-stage technique for
synthesis in LTLf under general LTL assumptions. The inter-
esting aspect of out technique is that it confines the use of
DPA, which is per se problematic, only when it is really nec-
essary (stage 2). Experiments, although preliminary, show
the effectiveness of our two-stage technique.
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