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a b s t r a c t

In artifact-centric business process models it is usually assumed that the specification of the activities
requires stating all the effects of the activity execution over the information base (i.e. over the artifacts
it handles). In particular, these effects have to deal with integrity constraint enforcement to ensure a
proper treatment of integrity constraints during activity execution. Manually specifying this treatment
is a difficult, expensive and error-prone task, because of the inherent difficulty of getting rid of all the
implication entailed by the constraints and also of the way to properly handle it.

In this paper, we advocate for separating constraint handling from the specification of activities in
such a way that only the effects of the activity over the artifacts have to be defined (without needing
to care about the constraints). Then, we propose an approach to automatically generate an extension
to the original business process model that allows identifying at run-time the additional updates that
have to be applied to the information base to repair all constraint violations caused by the activity
execution.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Information and processes are the two main assets of any
rganization [1,2]. Information is related to the data defined
hrough the artifacts managed by the business, together with
he constraints that impose conditions on this data and which
re directly drawn from the requirements of the domain of the
rganization. Processes correspond to the services offered by the
rganization to perform its business, together with the associa-
ions which establish restrictions over the order of execution of
hese services.

Recently, artifact-centric business process modeling, which
dvocates a sort of middle ground between a conceptual formal-
zation of dynamic systems and their actual implementation, has
een recognized as an appropriate approach to specify the busi-
ess of an organization since it allows specifying data, processes
nd the link among them; and because it has shown to be quite
ffective in practice [3–6].
Despite the variety of existing proposals to specify artifact-

entric Business Process Models (BPMs), there is a large consen-
us that any of them must contain a conceptual model for data,
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such as a UML class diagram [7], which always includes a set of
integrity constraints; and a model for the processes, expressed,
e.g. in BPMN [8,9]. Then, several alternatives exist regarding the
way to establish the link between data and processes. However,
this is usually achieved through the formal specification of the
effects that the execution of an activity causes in the contents of
the information base.

Several proposals assume that process activities are specified
through OCL operation contracts [10]. Thus, for instance, link-
ing data and processes in this way has shown to be a feasible
and practical way to achieve automatic executability of artifact-
centric BPMs [11]. Other languages might be chosen to establish
the link, but the crucial point here is to choose a language whose
expressiveness is, essentially, first-order logics (i.e., relational
algebra), as it happens with the OCL expressions mostly used [12].
The approach we present in this paper is independent of the
language used to specify process activities although we use OCL
in our examples.

Little has been said and analyzed regarding how the specifica-
tion of process activities should handle the integrity constraints
in the data model. Until now, the usual approach is to assume that
the specification of the behavior of the process activities should
ensure that no integrity constraint is violated after its execution
(or, otherwise, the activity should be rolled back).

However, the business process and the data model can evolve
independently one from the other. Therefore, in the current ap-

proach, changes in the requirements leading over the data may
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Fig. 1. BPMN diagram for permanently hiring or firing an assistant professor.
equire modifying the business process model, at least with re-
ards to the specification of process activities, without the busi-
ess of the organization having suffered any variation. Moreover,
rying to state, at design time, the intended runtime behav-
or of an activity not to violate any integrity constraint is not
nly difficult and error-prone, but even impossible in certain
ituations. For this reason, best practices for requirements spec-
fication suggest that this is not an appropriate approach for
he sake of facilitating requirements definition, modifiability and
onsistency [13].
We propose in this paper a novel approach aimed at au-

omatically handling integrity constraints. In our approach, the
efinition of the process activity has to incorporate only the
ntrinsic changes over the data required by the business, while
ealing with the constraints is left out at execution time through
n automatic repairing mechanism. That makes business pro-
ess definition much easier and allows the process and the data
odels to evolve independently.
Since constraints can be repaired in several ways, the domain

xpert (i.e. the person executing the process) should be allowed
o choose at execution time the most appropriate action to apply
n each situation. Note that the chosen repair can lead to another
iolation which, in turn, requires additional repairing. Selecting
epairs blindly can easily lead to a wrong decision and should be
voided.
To properly deal with this phenomenon, we realized that the

equence of actions required to repair a constraint can be seen as
process. Then, all potential sequences of repairing actions may
e modeled as a BPM itself. Therefore, given a constraint violation,
e build a BPM-like model that shows all possible ways to repair

t. Then, the domain expert may use this extended model to select
he proper repairing actions by having a global sense of all the
epair implications. By inspecting the model, the domain expert
an see which is the shortest path to reach consistency, which is
he way to avoid a certain undesired repairing action, etc., and
hoose the repair(s) accordingly.
Given an artifact-centric BPM, where the data is described

hrough a data model containing integrity constraints and the
ehavior of the activities is described in terms of modifications
ver this data model, we can automatically compute, at design
ime, the whole chain of activities that, when executed, will repair
onstraint violations. Therefore, we can extend the original BPM
odel by considering the flow of additional activities that have

o be performed to preserve integrity constraints. This extension
98
can be computed for each activity of the original BPM. Since
the computation of the extended BPM model is performed at
design time, it does not negatively impact the performance of the
original process execution.

Moreover, by modeling the repairing process as a kind of
BPM, the process designer may customize these models at design
time to forbid some undesired repairing paths or certain updates.
Then, the user may use the resulting BPM at execution time
to determine how to deal with constraint violations. When the
execution of the extended model is finished, the execution of the
business process will continue as specified in the original BPM.

The work proposed here grows from an initial proposal we
presented in [14], where we outlined the technicalities regarding
how to achieve this automatic behavior. In this paper, we extend
the technical contribution by providing an in-depth explanation
of the treatment of the logics behind our approach, a discussion
about the execution termination for the generated BPM models,
and a simplification of the generated BPM model through activity
merging. Moreover, we provide a different perspective of our
work related to the use of our approach in practice and the
advantages it provides to the organizations.

The remainder of the paper is structured as follows. Section 2
motivates our approach and introduces our running example.
Section 3 defines basic concepts. Sections 4 and 5 explain in detail
the technicalities of our contribution. Finally, Sections 6 and 7
deal with the related work and the conclusions, respectively.

2. Motivation

We will motivate the need to separate the management of
the business process from the treatment of integrity constraints
using the following example. Assume a business process to decide
whether an assistant professor with a temporal contract should
be hired permanently or fired. This is a regular process we may
encounter in different universities. The BPM diagram in Fig. 1
states the typical activities performed to hire an assistant pro-
fessor, and the order in which they should be executed. Almost
identical BPM diagrams would be used by other universities
pursuing the same goal.

Note that the process starts when an assistant professor is
hired. Then, the time event states that a certain period of time
after that hiring he has to be evaluated for tenure. In particular,
three evaluations are performed in parallel regarding his publica-
tions, his teaching and other activities performed while in their
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Fig. 2. Fragment of the class diagram stating work situation.

role of assistant professor. Once this is done, the commission
writes a report justifying the decision taken and then the assistant
is either promoted to a tenure or fired.

Making this decision requires having some data about the
ssistant, both regarding his activity (i.e. publications, teaching,
aculty management, etc.) and work situation. Fig. 2 specifies the
ragment of this data regarding work situation. Note that the
ystem stores information about current and former professors,
nd for current professors it states whether they are assistant or
enured. Moreover, assistant professors must have a supervisor
hich has to be a current professor.
The information regarding the activity of a current or former

rofessor would be associated to the Professor class so that it is
not lost when the professor ceases his activity at the University.
For the sake of simplicity, this information is not shown in the
diagram because it does not change when a professor is promoted
or fired. We also omit the attributes in the figure because they are
not relevant for our discussion.

Note that the class diagram contains several graphical con-
straints stating conditions that each state of the information base
should satisfy. Thus, for instance, the Current and Former classes
re disjoint, i.e. a professor cannot be both at the same time,
nd all professors are either current or former; as stated by the
isjoint/complete constraint at the top of the hierarchy. The same
pplies to assistant and tenured professors. Moreover the mul-
iplicity constraint at the supervisor end states that an assistant
s supervised by exactly one current professor. These constraints
espond to specific business requirements of each university and
ay vary from one to another but are independent of the BPM
hich might the same for all universities.
We also have to specify an operation contract for each activity

n the BPMN diagram to define the link between the BPM and the
lass diagram. We will concentrate here on the behavior of the
ctivities OfferTenuredContract and FireAssistant.
OfferTenuredContract does not pose any particular problem as

ar as the treatment of constraints goes, because switching the
rofessor from Assistant to Tenured (and deleting the information
egarding his supervisor) is enough to achieve the goal and it will
ever violate any constraint. So, this behavior can be defined by
eans of the following OCL contract:

OfferTenuredContract(a: Assistant)
post: a.oclIsTypeOf(Tenured) and not

a.oclIsTypeOf(Assistant)

However, things become more complex when having to spec-
fy FireAssistant. Here, switching the professor from Assistant to
ormer (and deleting the information regarding his supervisor)
s enough to achieve the business goal. However, a constraint
99
will always be violated if applying only this update to the infor-
mation base. Note that because of this firing and given that the
fired assistant may act as a supervisor of other assistants (this
is not forbidden in our data model), we should ensure that all
these assistants are assigned to a new a supervisor to satisfy the
minimum 1 multiplicity constraint.

Assuming that the business process designer would realize of
this situation (which is not trivial at all), he would start then
the hard task of having to specify at design time which is the
appropriate way to handle this potential violation during process
execution. In particular, it is impossible for him to know which
will be the most appropriate professors during process execution
to substitute the fired one or the conditions under which they
will be selected. Note also that this decision of having to look for
new supervisors has nothing to do with the business process itself
which remains valid.

One possible way to solve this problem would be to assume
that a single current supervisor will take care of all substitutions.
Then, we could specify it through the following contract. How-
ever, it is clear that this is not necessarily a good solution to apply
whenever someone is fired, but it is impossible to do something
better given the rigidity of current proposals for process activity
specification.

FireAssistant(a: Assistant , c: Current)
post: a.oclIsTypeOf(Former) and not

a.oclIsTypeOf(Current) and
a.supervised@pre ->forAll(s | s.supervisor = c)

This way of understanding the operation contracts corre-
sponds to a strict interpretation [15]. A strict interpretation as-
sumes passive behavior of operations, since it prevents an op-
eration from being applied if an integrity constraint is violated
(although both its preconditions and postconditions are satisfied).

Things become even more difficult within this approach when
requirements evolution is taken into account. Assume, for in-
stance, that after some years it is decided that all tenured pro-
fessors should supervise an assistant. This constraint could be
specified in OCL as follows:

context Tenured inv allSupervising:
self.supervised -> notEmpty()

This evolution is not related to the business process of pro-
moting a professor, which remains the same, but to the changing
conditions that the university imposes over its professors. There-
fore, no changes should be applied to the BPM. However, current
approaches require changing the specification of OfferTenured-
Contract because in addition to changing the assistant to tenured
it is required to assign him now an assistant to supervise. Again,
as before, the problem relies on deciding who this assistant will
be at design time.

Further evolution may then require that all supervisors should
be tenured, as stated by the following OCL constraint. This would
imply additional changes, again difficult to identify and to specify,
on both OfferTenuredContract and FireAssistant.

context Assistant inv supervisorIsTenured:
self.supervisor.oclIsTypeOf(Tenure)

We have seen so far the strong drawbacks of having to in-
corporate the treatment of constraints into the specification of
the activities. However, we can overcome them by considering an
extended interpretation of operation contracts [15] and delaying
the treatment of constraints at execution time as we propose to
do through the techniques proposed in this paper.

An extended interpretation of an operation assumes that the
operation, when executed, not only applies the specified behavior
in its contract but also all the necessary changes to ensure that



X. Oriol, G. De Giacomo, M. Estañol et al. Future Generation Computer Systems 117 (2021) 97–110

n
p
a
A
d
i

w
C

p
v
w
a

3

a

c
n

A

̸

t
d
i

∀

o
W
a
a
G
e
r

l
w
i

p

x

w
t
I
e
a
i

4

e
b
o
h
p

4

s
b
i
o
b
c

p
i
n
t
s
i

o constraint is violated. That is, the operation entails some re-
airing reactive behavior. In this way, there is no need to specify
dditional effects in the postcondition to deal with constraints.
s a consequence, the evolution of the requirements over the
ata model will not affect at all the BPM and the definition of
ts activities.

According to this proposal, the following simple OCL contracts
ould be enough to specify initially the behavior of OfferTenured-
ontract and FireAssistant and should not be modified because of

evolution.

OfferTenuredContract(a: Assistant)
post: a.oclIsTypeOf(Tenured) and not

a.oclIsTypeOf(Assistant)

FireAssistant(a: Assistant)
post: a.oclIsTypeOf(Former) and not

a.oclIsTypeOf(Assistant)

Then, the approach we propose in this paper would suffice to
roperly handle at execution time possible integrity constraint
iolations entailed by the execution of these activities. In this way
e make BPM specification simpler and more appropriate to the
ctual behavior of the organizations.

. Basic concepts

In this section, we give an overview of the logic background
nd notation used throughout the paper.
Terms, atoms and literals A term t is either a variable or a

onstant. An atom is formed by a n-ary predicate p together with
terms, i.e., p(t1, . . . , tn). We may write p(t) for short. If all the

terms t of an atom are constants, we say that the atom is ground.
literal l is either an atom p(t), a negated atom¬p(t), or a built-in

literal ti ω tj, where ω is an arithmetic comparison (i.e., <, ≤, =,
=).

Derived/base predicates A predicate p is said to be derived if
he boolean evaluation of an atom p(t) depends on one or more
erivation rules, otherwise, it is said to be base. A derivation rule
s a rule of the form:

t. p(th)← φ(t)

Where th ⊆ t . In the formula, p(th) is an atom called the head
f the rule and φ(t) is a conjunction of literals called the body.
e assume all derivation rules to be safe (i.e., all the variables

ppearing in the head or in a negated or built-in literal of the body
lso appear in a positive literal of the body) and non-recursive.
iven several derivation rules with predicate p in its head, p(t) is
valuated to true if and only if one of the bodies of such derivation
ules is evaluated to true.

We extend the notion of base/derived predicates to atoms and
iterals. That is, when the predicate of some atom/literal is base,
e say that such atom/literal is base too, otherwise, we say that

t is derived.
Instance, and instantiation A ground atom of some base

redicate p is called an instance of p. Then, a finite set I of
instances of one or more predicates is called an instantiation.

Substitution A substitution σ is a set of the form {x1/t1, . . . ,
n/tn} where each variable xi is unique. The domain of a substi-
tution is the set of all xi and is referred as dom(σ ). We say that
σ is ground if every ti is a constant. The literal lσ is the literal
resulting from simultaneously substituting any occurrence of xi
in l for its corresponding ti. Similarly, we define the conjunction
φσ as the conjunction resulting from simultaneously applying the
substitution σ to all the literals of φ.

Denial constraints A denial constraint is a rule of the form:

∀t. φ(t)→⊥
100
where φ is a conjunction of (possibly derived) literals and ⊥ is an
atom that evaluates to false. We suppose all denial constraints
to be safe (i.e., each variable appearing in a negated or built-in
literal also appears in a positive literal). Intuitively, the left hand
side (LHS) of a denial constraint express a condition that should
never be satisfied by an instantiation.

Disjunctive embedded dependencies A disjunctive embedded
dependency (ded) is a rule of the form:

∀t. φ(tφ)→
⋁
i=1..n

∃yi. ψi(ti, yi)

here all literals are positive and base. It is important to highlight
hat n might be 0, and thus, the right-hand side might be empty.
n such case, we use the convention that the empty disjunction
valuates to false [16] and write ⊥ to represent so. Note that deds
re a kind of tuple-generating dependencies allowing disjunctions
n the right hand side.

. Generating violation handling extensions in BPM

We describe in this section our approach for automatically
mbedding the reactive behavior into the original BPM specified
y the business designer. We provide first a general overview
f the approach, and then explain in detail the six steps that
ave to be performed. Finally, we provide a discussion about the
racticality of our approach in a real life setting.

.1. Overview

When executing any process activity, a violation of a con-
traint can occur. As we have seen, this violation can be repaired
y considering additional updates to perform. However, this may
n turn violate other constraints again, thus, forcing the execution
f more updates to preserve the consistency of the information
ase. This is the inherent difficulty of the problem of integrity
onstraint repairing.
Fortunately, the constraints that might be violated when re-

airing other constraints can be determined at design time;
.e., we can identify them by inspecting the constraints’ defi-
ition itself, without considering the contents of the informa-
ion base. Indeed, several approaches build a dependency-graph
howing this relation among the constraints [17,18]. So, the idea
s that, to repair a constraint violation C and to ensure that no
other constraint has been violated, we have to repair C , check
the constraints pointed out by C and repair them if necessary
(which might require inspecting and repairing other constraints,
recursively).

In essence, our idea is that we can see the dependency graph
as a BPMN diagram establishing which activities have to be
carried out (and in which order) to repair a constraint violation.
That is, each activity in the diagram stands for an update to apply
in order to repair a constraint violation. Then, this activity is
followed by those additional activities that repair the constraint
that might have been violated because of the previously applied
data update. When we reach the final BPM end event, we are sure
that the initially violated constraint has been repaired, and that it
has been repaired in such a way that no other constraint is now
violated.

More in detail, our method uses the following steps which will
be further explained in the remainder of this section:

1. Translating integrity constraints into RGDs. Repair-generating
dependencies (RGDs) are logic formulas that, given an
information base state and a data update, derive new
updates that must be applied to repair a constraint viola-
tion [19]. In this step, we translate the constraints into the
corresponding RGDs.
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2. Building the dependency-graph of RGDs. When executing
RGDs to derive new updates, one RGD can cause the viola-
tion of another constraint, thus triggering the execution of
another RGD. In the dependency-graph, we explicitly show
this interaction, i.e., which RGDs might trigger other RGDs.

3. Associating each activity to the affected part of the
dependency-graph. Given an activity in the initial BPM, its
execution can only violate some constraints, thus triggering
only some specific RGDs from the dependency-graph. In
this step, we automatically prune all those RGDs that can
never be triggered.

4. Translating the dependency-graph fragment into a BPM dia-
gram. Intuitively, RGDs are translated as activities in the
BPMN diagram and the dependency-graph edges deter-
mine the flow between them.

5. Merging activities. Given the activities, it is possible to
merge some of them in order to reduce the size of the
BPMN diagram. The rationale behind merging activities
is that some of them are always executed consecutively,
which means that they can be merged into a single one
that executes the overall effect.

6. Customization. Finally, the BPM designer can decide to
prune some of the suggested ways to repair a constraint
in the BPMN diagram. Indeed, our method generates all
possible activities that can be applied to repair a violation.
However, it may be the case that some of them are not
desirable in the domain. In this step, we show how to prune
at design time the undesired repair actions.

In this way, for each activity in the initial BPM, we compute its
PM extension which guarantees that, when executed, it checks
nd repairs all violations that may occur. This extension could
hen be integrated in the original BPM through a CASE tool, and be
sed at run time to repair constraint violations through a process
xecutor, such as [11]. The visualization of the computed BPM
xtension is out of the scope of this paper which concentrates on
ow to automatically obtain and execute this extension.
It is worth mentioning also that, although we use BPMN and

ML/OCL in our examples, other notations, like service blueprints
or instance, might be used as well as long as they are detailed
nough to be executed [20]. In particular, we only need these
otations to be translatable into first-order logics, which is the
asic framework of our approach.
It is well-known that a BPM instance execution is not transac-

ional since it is usually implemented as a sequence of database
ransactions. Thus, the state of the world may change due to
oncurrent process execution during a repair execution intro-
ucing more inconsistencies or an activity execution may fail.
evertheless, in this paper we assume that two tasks cannot
e executed simultaneously, as they might interact to cause a
onstraint violation, and this is one limitation of our approach.
herefore, in such cases, these tasks should be serialized. An
pproach for detecting non-parallelizable activities due to con-
traint conflicts can be found at [21], but an in-depth analysis of
oncurrency is left out for further work.

.2. Translating UML/OCL constraints into RGDs

RGDs are tuple-generating dependencies that, given an in-
ormation base state and a set of updates, derive new updates
hat perform a repair of a constraint violation [19]. RGDs can
e automatically obtained from the UML/OCL constraints in the
onceptual schema by performing the following three steps:

1. Translating UML/OCL constraints into denials
2. Incorporating events into denials
101
3. Transform event rules into RGDs

Note that, although we only talk about integrity constraints
in this paper, the UML/OCL languages allow for the definition of
structural constraints regarding the information model but also
semantic constraints, such as the business rules required by the
organization. Some examples of these semantic constraints have
been shown in our motivating example. The advantage of our
approach is that we can treat all of them uniformly.

4.2.1. Translating UML/OCL constraints into denials
A denial is a rule stating that a certain condition (as given by

the expression in its body) can never hold in an information base
state. I.e. they define situations that can never happen as well as
integrity constraints do. Denials are specified as logic rules with
⊥ in its head.

UML/OCL constraints, i.e. textual constraints defined in OCL
and graphical and implicit constraints in the UML schema, can be
automatically translated into denials as given in [17]. The ratio-
nale behind is that most UML and OCL constraints are equivalent
to first order logics [12], and every first-order constraint can be
rewritten as a denial [22].

As an example, consider the UML specialization constraint
stating that each Assistant is a Current professor, and the implicit
eferential constraint stating that each Supervisor is also a Current
rofessor. They can be translated to the following denials:

Assistant(x) ∧ ¬Current(x)→⊥
upervises(x, y) ∧ ¬Current(x)→⊥

Intuitively, the first rule states that, if there is an Assistant
, but x does not appear as a Current professor, then there is a
constraint violation. Similarly, the second rule specifies that if x
upervises y, but x is not a Current professor, then, there is also a
constraint violation.

We assume in this paper that constraints in the conceptual
schema are specified by means of the UML/OCLuniv subset [23].
This entails two main advantages: (1) it ensures that the gener-
ated process extensions will always terminate despite the loops
that can appear in the BPM (as we will show in Section 5.2);
(2) obtaining RGDs is much simpler for UML/OCLuniv than for
general UML/OCL. It is worth mentioning, however, that denials
can be obtained from any first-order equivalent language.

We consider that all UML/OCL constraints are translated into
denials as given in [17] except for minimum multiplicity con-
straints whose rewriting into RGDs will be made adhoc as ex-
plained later.

4.2.2. Incorporating events into denials
Denials only refer to the contents of the information base,

but they do not take into account the update that can lead to
the violation of the condition they define. Therefore, they do not
provide enough information to embed in the BPM the required
reactive behavior. We need to incorporate events, i.e. updates,
into the denials with this purpose.

An update of the information base may be either an insertion,
denoted by the event ιP(a) or a deletion, denoted by δP(a). Given
a fact P(a) in the current information base and the events in
the update, we can deduce whether P(a) will hold in the new,
updated, information base according to the following event rule
equivalences [24]:

PN (x) ≡ ιP(x) ∨ P(x) ∧ ¬δP(x)

¬PN (x) ≡ δP(x) ∨ ¬P(x) ∧ ¬ιP(x)

The first rule states that a fact P(x) will be true in the new state
(denoted by PN (x)) if and only if an insertion event ιP(x) happens
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n the update or if P(x) was already true in the old state and it
as not been deleted (P(x) ∧ ¬δP(x)). The rule for ¬PN (x) works

similarly.
Event rule equivalences are sound and complete to define the

truth value of a fact after the application of an update. Sound in
the sense that the changes they define are correct and complete
because no other rule is needed to define all possible changes.
They can be understood as a sort of "frame axioms" to specify
that all facts not affected by the events are not changed while
executing that update [25].

We can incorporate events into denials by replacing each
literal in the initial denial by the previous event rule equivalences
and then transforming the result into conjunctive normal form. In
this way we will obtain several rules with events for each denial.
They correspond to the different ways an update can violate the
condition stated by the denial.

When we apply the replacement given by the equivalence
event rules to the denials in our running example we obtain:

ιAssistant(x) ∧ ¬Current(x) ∧ ¬ιCurrent(x)→⊥
Assistant(x) ∧ ¬δAssistant(x) ∧ δCurrent(x)→⊥
Assistant(x) ∧ δCurrent(x)→⊥
Supervises(x, y) ∧ ¬Current(x) ∧ ¬ιCurrent(x)→⊥
Supervises(x, y) ∧ ¬δSupervises(x, y) ∧ δCurrent(x)→⊥
ιSupervises(x, y) ∧ δCurrent(x)→⊥

The first three rules ensures that an update will not violate
the constraint that nobody can be an assistant but not a current
professor. The first rule states that if x has been inserted as an
assistant, but he was not current before nor inserted as such, then
the constraint is violated. The second one prevents an assistant
to be deleted as current but not as an assistant. The third one
specifies that it is not possible to insert an assistant but delete
him as current in an update. Rules for the second constraint
behave in a similar way.

4.2.3. From event rules to RGDs
Once we have incorporated events into the denials, the RGDs

for each denial can be easily obtained moving the negated events
from the left hand side (LHS) of the rule to its right hand side
(RHS). This corresponds to following the logical equivalence A ∧
¬p→ C ≡ A→ C ∨ p.

Applying this transformation to the rules in our running ex-
ample we obtain the following RGDs:

ιAssistant(x) ∧ ¬Current(x)→ ιCurrent(x) (1)

Assistant(x) ∧ δCurrent(x)→ δAssistant(x) (2)

ιAssistant(x) ∧ δCurrent(x)→⊥ (3)

ιSupervises(x, y) ∧ ¬Current(x)→ ιCurrent(x) (4)

Supervises(x, y) ∧ δCurrent(x)→ δSupervises(x, y) (5)

ιSupervises(x, y) ∧ δCurrent(x)→⊥ (6)

RGD 1 states that if a new Assistant x is inserted when x is
not a Current professor, then it must also be inserted that x is a
Current professor to ensure that the information base state does
not violate the constraint that nobody can be an assistant but
not to be a current professor. RGD 2 behaves in a similar way by
repairing the constraint through a deletion of x as an Assistant.

RGD 3 is not properly a repair-generating dependency since it
specifies a situation where no additional event can be applied to
satisfy the constraint. This is so because the events in the update
are contradictory and cannot be applied together. In this case, we
have that it is not possible to insert someone as an assistant and
delete him as a current professor at the same time. In general,
any RGD with ⊥ in the head cannot be repaired.
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RGDs 4, 5 and 6 behave in a very similar way.
It is worth noting that not all RGDs are deterministic since

some violations can be repaired in different ways. RGDs cap-
ture this non-determinism by means of disjuncts and existential
variables in the RHS.

Disjunctions in the RGDs will appear when moving several
negated events from the LHS to the RHS of a rule. For instance,
obtaining the RGDs for the completeness constraint that states
that each Current professor is either Assistant or Tenured will give
raise to the following RGD with disjunctions in its head:

δAssistant(x) ∧ ¬Tenured(x) ∧ Current(x)→ δCurrent(x) ∨ ιTenured(x)

(7)

Intuitively, this RGD states that if we delete an assistant pro-
fessor, we either also delete him as current professor or insert
him as tenured. As before, this RGD would be obtained by trans-
lating first the constraint into a denial, incorporating events into
the denial and moving negated event literal in the LHS to its RHS.

All UML/OCLuniv constraints are translated to RGDs as we
have explained so far. The only exception are the minimum
multiplicity constraints 1 in the conceptual schema. In this case
we propose making a direct translation to RGDs, as we did in [19].

As an example, the multiplicity constraint stating that each
assistant is supervised by one current professor would give raise
to the following RGDs:

ιAssistant(x)→ ιSupervises(y, x) (8)
δSupervises(y, x) ∧ ¬OtherSuper(x)→

δAssistant(x) ∨ ιSupervises(z, x) (9)
OtherSuper(x)← Supervises(z, x) ∧ ¬δSupervises(z, x)

The first rule states that, when inserting a new assistant pro-
fessor x, we should also insert a supervisor y for x. The second
RGD detects a violation if we delete a supervisor y of an assistant
professor x, and x does not have any other supervisor. This is
detected through the OtherSuper derivation rule (defined below
rule 9),1 which specifies that x will have another supervisor if it
has a supervisor z that is not being deleted.

Note that RGD (9) is non-deterministic since it requires choos-
ing between deleting the assistant professor x, or adding a new
supervisor z for him/her. The second choice is non-deterministic
since we can chose different values for z (i.e. its value is not
bounded by the LHS of the rule).

Given a general minimum multiplicity constraint 1 for mem-
ber M2 of an association A between M1 and M2, we will always
obtain non-deterministic RGDs (and a derivation rule) defined by
the following pattern:

ιM1(m1)→ ιA(m1,m2)
δA(m1,m2) ∧ ¬OtherM1(m1)→ δM1(m1) ∨ ιA(m1,m′2)
OtherM1(m1)← A(m1,m′2) ∧ ¬δA(m1,m′2)

It is worth noting that in our approach existential variables
will only appear in an RGD when translating UML minimum
multiplicities.

Given the domain where the business process has been de-
fined, it is likely that some of the events will never happen. For
instance, Professor objects are never deleted in our example since
we keep a historical track of professorships (thus moving them
from current to former when they leave). For this reason, some
of the RGDs we obtain can be simplified (by removing the literals

1 Do not confuse RGDs (generating new tuples to be inserted/deleted, denoted
y→), with derivation rules (deducing contents of the information base, denoted

by ←).



X. Oriol, G. De Giacomo, M. Estañol et al. Future Generation Computer Systems 117 (2021) 97–110

c
r

f

Fig. 3. Dependency graph for RGDs (7), (2), and (5).
(
T
g
f
i
c

4

t
b
b
t
B
g
f

t
c
o
b

f

e
h
u
i
s
a
p

o
l
t

s
ι

c
h

e

orresponding to those events that will never happen) or even
emoved if they only refer to all such events.

The events that do not happen in a domain can be drawn
rom the UML class diagram itself. When a class/association A
is add-only, the event of deleting an instance of A cannot take
place. Similarly, if a class/association A is frozen, no insertion nor
deletion event on A can be in the update. In our example, Professor
is an add-only class.

4.3. Building the dependency-graph of RGDs

Given a set of RGDs, we can build a dependency-graph which
shows the RGDs that may trigger the execution of other RGDs. For
instance, assume that a process removes an assistant professor
x. RGD (7) states that we have to additionally choose between
inserting x as tenured or deleting x as current. If we opt for
deleting x as current professor, we can trigger all RGDs having
δCurrent in its LHS. This happens with RGDs (2) and (5), for
instance. Then, we have that RGD (7) can trigger RGDs (2) and
(5).

For the sake of self-completeness, we summarize in the fol-
lowing how to build a dependency-graph from a set of RGDs as
proposed in [18].

The dependency-graph contains a round vertex (called
constraint-vertex) for each LHS of a RGD, and also a square vertex
for each structural event in the RHS of a RGD (called repair-
vertex). There is an edge (straight arrow) from the constraint-
vertex of an RGD to each one of its repair-vertices to state that
if the condition in the constraint-vertex is satisfied, one of its
repair-vertices must be executed. Moreover, there is an edge
(dotted arrow) from a repair-vertex to each of the constraint-
vertices that may have been violated because of the execution
of the repair.

As an example, the triggering relationship between RGDs (7)
and RGDs (2) and (5) are depicted in Fig. 3.

In general, there is a triggering relationship between the repair
vertex R of a RGD to the constraint vertex C of another RGD if
R and C have an event in common. Indeed, this means that the
repair of the first constraint is an update that can potentially
violate the second constraint.

Some of the edges in the dependency-graph can be safely
removed, as stated in [17,18], since they will never be triggered.
For instance, the edge between RGD (7) and RGD (2) will never
be applied since if RGD (7) is fired, then RGD (2) can never
be violated. This is so because when violating the completeness
constraint by deleting an assistant professor, and repairing it by
deleting him as current, it is impossible to violate the hierarchy
constraint (which states that every associate professor is a current
professor).
 m
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We say that a trigger between a repair-vertex R1 from RGD1
and a constraint-vertex C2 from RGD2 is lively if and only if
there is an instance of the data D that satisfies RGD1 through R1
(i.e., D |= LHS(RGD1)σ and D |= R1σ for some σ ), but violates C2
i.e., D |= C2σ for some σ , but D ̸|= RHS(RGD2)σσ 2 for any σ2).
riggers that are non lively are removed from the dependency
raph. They can be detected through syntactic criteria, such as
inding p∧¬p contradictions, or realizing that some repair-vertex
s subsumed by some constraint-vertex (as in the case of the
ompleteness vs hierarchy constraint RGDs).

.4. Associating activities to the dependency-graph

The dependency-graph we have obtained so far is built by
aking only into account the definition of the integrity constraints,
ut this graph should also incorporate the activities in the BPM to
e able to determine the constraints that might be violated when
he BPM activities are executed. This is achieved by specifying the
PM activity as an RGD, including this RGD in the dependency-
raph, and identifying the RGDs in the former graph reachable
rom it.

A BPM activity can be seen as an RGD whose repair is, in fact,
he execution of the update in its postcondition. For instance,
onsider the activity fireAssistant, from Fig. 1, stating the removal
f an assistant professor. The effect of this activity can be specified
y means of the following RGD:

ireAssistant(x)→ δAssistant(x) ∧ ιFormer(x) (10)

Note that the execution of an operation can lead to several
vents which can combine insertions and deletions freely, as it
appens in our example. Moreover, we handle attribute updates
sing the classic encoding of an update as a deletion and an
nsertion of the same tuple with the new values changed. This is
ound since all insertions and deletions from the repairing BPM
re only applied and checked for consistency at the end of the
rocess.
A similar way for deriving the events entailed by the execution

f an activity is already used in [11], where an automatic trans-
ation from BPM activities specified through OCL constraints into
his kind of rules is given.2

Now the new RGDs are included in the dependency-graph as
hown in Fig. 4. In our example, the new RGD δAssistant(x) ∧
Former(x) points to RGD (2) since both have the δAssistant predi-
ate in common. However, it does not point to RGD (8) since they
ave no shared predicate.
As a result, we have that the RGDs possibly affected by the

xecution of a BPM activity are those in the fragment of the

2 They are not explicitly named RGDs in [11], but the way they are formalized
akes them an RGD in practice.
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Fig. 4. Dependency graph including an RGD representing the effect of an activity.
g

ependency-graph reachable from the RGD encoding the effect
f that activity. In our example, RGD (7) and RGD (5), but not
GD (8). RGDs that are not reachable from these new RGDs are
emoved since they refer to constraints that will never be violated
uring the integrity maintenance process raised from the activity.

.5. Translating the dependency-graph into a BPM

Once we know the relevant part of the dependency-graph,
e translate it into a BPMN diagram. This will allow us to pilot
he process of integrity maintenance in the same way as clas-
ical BPMN diagrams. The basic idea of the translation is that
onstraint-vertices are translated to BPMN gateway events that
llow a user to choose between the available repairs, while a
epair-vertex becomes a BPMN activity that applies the repair.
hen, these activities are followed either by an OR-gateway which
oints out to the (BPM translation of) constraint-vertices that
ay have been violated because of the applied repair or by an
nd-event if no constraints is violated.
More precisely, the translation of a constraint-vertex depends

n the number of repair-vertices it has. If there is no repair, the
onstraint-vertex becomes a BPMN error event meaning that if
e reach the violation of that constraint then there is no possible
ay to repair it and an error is thrown. If there is a single repair,
he constraint-vertex becomes the BPMN-activity that applies it.
f there is more than one potential repair, the constraint-vertex
s translated to an event-gateway that enables the domain expert
hoosing his preferred way to repair the violation.
The translation of a repair-vertex always produces a unique

ctivity that applies the changes that repair the constraint. This
ctivity may require domain expert input to choose the value
or the existential variables since this entails decision making at
usiness level. For instance, in RGD (9) we have a repair vertex
hich inserts a new supervisor z to an assistant x. If the domain
xpert selects this repair, he will be required to explicitly choose
specific value for z at execution time.
After applying a repair, several constraints can be violated. The

R-gateway will take care of this situation since several paths will
e activated in this case. They will lead to the constraint-vertices
hat allow to perform the repair of the newly violated constraints.

We ensure that we only repair actually violated constraints
hrough the guard conditions in the OR-gateway’s outgoing flows.
hat is, an outgoing flow pointing to a constraint vertex c has,

as guard, the logic condition encoded in c . Thus, the only way
to execute an activity that repairs a violation is through the
guard that first checks the constraint. So, the repairs will only be
performed when the repair needs to be applied.

Note that we do not use OR-joins for synchronizing the activ-
ities execution. Such synchronization is not necessary since each
path execution represents a different violation repair strategy
for some particular values, and the repair for such values is
independent from the rest of violations and repairs. We capture
 t
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this behavior using OR-gateways without OR-joins for ease of
readability.3

The translation from a dependency-graph to a BPM is for-
mally given by the algorithm in Fig. 5. Its input parameters are
the (relevant part of) the dependency graph and the constraint-
vertex representing the BPMN activity that triggers the mainte-
nance process (behaving as start activity). As output, it provides
the resulting BPM. It is easy to see that the algorithm runs in
polynomial time with regards to the input.

Fig. 6 shows the result of applying the algorithm in Fig. 5 to
the RGDs in Fig. 4. The obtained BPM shows that when executing
fireAssistant it may happen that we satisfy all the constraints, or
that we need to either insert the deleted assistant as a tenure, or
to delete him as current professor. If the domain expert decides
to delete him as current professor, he will also need to remove
its supervisor relationships, if any.

4.6. Merging activities

In the BPM obtained so far, each activity represents a single
event to apply. However, BPM activities can capture in general
more than one event and achieving it will also allow reducing
the size of the model. Thus, we aim now at merging these single-
event activities into more complex activities. We first explain the
intuition behind our approach through our running example, and
then, present its logic foundations.

4.6.1. Merging activities intuition
Merging activities is devoted to reducing the size of the gener-

ated BPM. However, we have to carefully select which activities
can be merged. For instance, two parallel activities following a
gateway should not be merged since we would lose the infor-
mation provided by the gateway. Hence, in our example, the
activities ins_Tenure and del_Current should not be merged since
we would lose the semantics of the gateway stating that the
domain expert must choose between the two.

We can merge two activities when this will not alter the
semantics of the resulting BPM. That is, the repairs captured by
the BPM. This situation occurs when the execution of an activity
determines necessarily the execution of another one, with no free
choice by the domain expert. In general, any activity coming from
an RGD whose RHS is composed of only one event, and that does
not contain any existential variable, can be merged with the activ-
ities that might potentially violate it. This is because the absence
of another repairing event and the absence of existential variables
makes the execution of this extra event absolutely deterministic.

For instance, in Fig. 7 we show an extended BPM for our run-
ning example, showing that, after deleting any current professor,
we must delete all its supervising relationships. Note that the
second activity has to be applied in case there is a violation, and

3 If the business expert prefers avoiding this kind of diagrams, since OR-
ateways are usually synchronized with OR-joins, our method can be adapted
o replace OR gateways by a combination of XORs and tasks.
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Fig. 6. BPM for repairing activity fireAssistant if there is a violation.

hat the domain expert has no free-choice. Thus, they both can
e merged into a single one.

.6.2. Foundations for merging activities
Two activities p and q can be merged if the RGD corresponding

o activity q has the form:

(x, y) ∧ p(x)→ q(x) (11)

here φ is an arbitrary conjunctions of literals.
In the current translation into BPMN, the p(x) activity leads to

n OR-gateway that checks whether RGD (11) is being violated
through a guard-condition). If this is the case, the OR-gateway
eads the process to a q(x) activity, which in turn, can imply the
iolation of other RGDs. This is shown in Fig. 8(a). Note that,
henever we execute p(x), we have to execute q(x) if φ(x, y)

s true. This is a deterministic behavior and the domain expert
annot make any choice about it.
 ψ
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Fig. 7. Example showing the merge of two activities.

Instead of encoding φ(x, y) as a guard-condition that leads to
(x), merging allows to incorporate the if condition inside the
ctivity of p(x) and apply q(x) at the very same time as p(x). In
his way, we reduce the number of nodes from the BPM. This is
hown in Fig. 8(b).
In case there are several activities that could violate RGD (11),

(x) should be merged with all of them. Note that if q(x) can
e merged with one activity, it can be merged with any other
ne that points to it. This is because the determining factor of
erge-ability is the determinism of the RGD (11).
The process of merging can be recursively applied. Indeed,

onsider an extra RGD:

(x, y) ∧ q(x)→ r(x) (12)
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Fig. 8. Showing the merge of two activities.
Fig. 9. Showing the merge of two activities.
Fig. 10. Final BPM for the fireAssistant operation.
Again, q(x) might violate RGD (12), and if this is the case, we
will have to apply r(x) for sure. Thus, we can merge r(x) activity
inside the activity where q(x) is placed, that is, p(x). This is shown
in Fig. 9, where (a) represents the BPM before merging, and (b)
the result after merging.

It is worth mentioning that the process of merging we apply
right now is non-deterministic. That is, given a BPM, several
possible merges can be applied. Nevertheless, we conjecture that,
no matter the order, applying all the merges until no other merge
can be applied will always bring the same final fixpoint BPM.
Checking this conjecture is left as further work.

4.7. Customization

The merged BPM represents all possible ways to repair the
various constraints that can eventually be violated by the activity
execution. This is due to the fact that RGDs capture all possible
ways to repair a constraint [19], and all the RGDs are represented
in the BPM.

However, it might be the case that some of the proposed re-
pairs are not desirable in the domain of the problem. For instance,
in our running example, a domain expert might consider that,
repairing the fireAssistant operation by means of inserting tenures
is not a valid repair since it would necessarily imply hiring new
people. Then, this kind of repair should be avoided at execution
time.

To achieve this, we have to consider the RGDs which result
in inserting tenures. These RGDs are no longer appropriate and
should be deleted from the dependency graph. In terms of the
BPMN diagram, this implies removing any activities that insert
tenures and all the subsequent activities.

In Fig. 10 we show the final BPM generated for repairing any
violation occurring when executing the fireAssistant operation.
Note that, in this BPM, we have merged the activities del_Current
with del_Supervises, and the activities ins_Superviseswith ins_Emp.

Intuitively, this BPM tells us that, when we fire an assistant,
we need to delete him as a current professor and, additionally,
delete any supervising association he has. When doing so, it
106
might be the case that another assistant professor ends without
having a current professor supervising him/her. In this case, we
have to choose between removing this unsupervised assistant, or
adding a current professor to supervise him. In case we delete the
unsupervised assistant, we might need to repeat all the process
again (delete the assistants supervised by him/her, etc.). In case
we insert a new supervisor for him/her, we have to check that we
do not insert as a supervisor an assistant who has been deleted
(if that was the case, the repair would entail a contradiction and
an exception would be raised).

Note that our proposal relies on incorporating the BPM model
obtained from the RGDs into the initial BPM model so that it
entails in it the reactive behavior required to keep constraints
satisfied. This is done automatically, and requires only as input
the initial BPM model; the data class diagram and its integrity
constraints defined in UML/OCL; and the OCL specification of the
activities in the BPM. In this way, the business analyst can still
define and keep the business process and the integrity constraints
separately, and use our approach to endow the repairing behav-
ior, entailed by the constraints, into the (relevant) activities of
the BPM. Then, business analyst input is only required in this
final customization task in order to adjust the reactive behavior
to the particular domain of the BPM. In fact, the only interaction
required from the business analyst is to remove those repairing
activities that are undesired according to this domain.

4.8. Discussion

It can be argued that our approach would be very complex
in a real-life setting, since: (1) for each activity a repair process
model should be generated; (2) this repair process model should
be verified and customized by the domain expert. Moreover, the
generated repair process models have to be considered in the
original process model and this may make real life process models
very large, and with many variations.

Although true, this complexity is due to the intrinsic nature
of the automatic repairing problem, which becomes even harder
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hen BPM processes are taken into account. However, the cur-
ent alternative of embedding explicitly constraint handling in
he operation contracts shows the drawbacks stated in Section 2
nd makes it inapplicable in many practical situations as the ones
e outlined there. Therefore, in a real life setting, some kind of
ompromise should be achieved between the two alternatives.
In fact, we could for instance hide the extensions and show

hem only on-demand so that the user would only be aware of the
complexity of the repairing when this was strictly necessary. We
also understand that manually revising all the generated repairing
processes might be very hard in a real scenario. However, we
could apply our technique only on crucial activities instead of all,
or on-demand according to the needs of the business modeler.

Also, we could take the structural events of future activities
into account, and apply formal reasoning techniques, to suggest
how to customize the current repairing-process to ensure that
a repairing activity allows the remaining future activities in the
BPM to be executed as well.

In summary, our approach is a way to automatically generate
repairing processes for some activity given a set of constraints
in an artifact-centric BPM setting. This is by itself an innovative
and complex problem, and the presented approach is a first step
towards solving it. In any case, this current solution is already
practical for generating, at least, repairing processes for pre-
selected activities. It is left as further work to discuss which
activities should be pre-selected, e.g. due to their being critical
to the process, to apply this analysis.

5. Executing BPM extensions to repair violations

We first explain how our generated BPM extension is exe-
cuted, with special emphasis on the interpretation of OR-
gateways. Then, we discuss about the termination of this auto-
matically generated BPM extensions. We end the section by using
an existing BPM executor to run our generated extension to show
the feasibility of our approach.

5.1. Business process extension execution semantics

Intuitively, the BPMN language is based on token seman-
tics [26]. Each diagram node consumes and generates tokens.
Roughly, when a process begins its execution, a token is gen-
erated by its start event for each of its outgoing flows. Each
activity is activated when a token reaches one of its incoming
flows. When finishing its execution, the activity generates a token
for each of its outgoing flows. When a token reaches an OR-
gateway, all the conditions of the gateway’s outgoing flows are
analyzed. The gateway places a token on each outgoing flow
whose condition evaluates to true. If no condition is true, then, a
token is placed in the default flow. For our purposes, this intuitive
token semantics suffices, but it is worth mentioning that they can
be formalized by means of petri-nets [27].

The key idea of our approach is that, when running our BPM
extension, each token will correspond to a different constraint
violation. Since there are several constraints that can be violated
simultaneously, when executing the BPM extension, there might
be several tokens alive simultaneously.

The generation of these tokens is done by the OR-gateways.
An OR-gateway generates a token for each outgoing flow satis-
fying the corresponding guard-condition. Thus, since the guard-
conditions evaluate to true when there is a violation, the OR-
gateway will generate, for each detected violation, a new token
in the corresponding outgoing flows. Then, each of these tokens
will trigger the execution of the activity that repairs the violation.
After the activity’s execution, another OR-gateway checks for
more violations and generates the corresponding tokens. If no
 p
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violation occurs, the OR-gateway generates a token in its default
path, which leads to the end event, since no more repairs are
needed.

For instance, when running the BPM example of Fig. 10, we
start with only one token placed in the activity fireAssistant. This
activity represents the event in the original process model that
can lead to the violation of several constraints, and thus, to the
execution of their repairing activities.

Once this initial activity is executed, the token reaches an OR-
gateway. This OR-gateway checks if the assistant who has been
fired was also a current professor; if this is the case, the activ-
ity del_Current+del_Supervises is executed. Once this is executed,
another OR-gateway checks if, after removing the supervising
relationships, some assistant has ended without a supervisor. If
this is the case, the OR-gateway creates a new token for each
unsupervised assistant, and thus, for each one of this tokens, the
user has to choose between removing the unsupervised assistant,
or adding a new supervisor to him/her. Note that the tokens
that need to be spawned by an OR-gateway can be automatically
generated by means of a query into the information base that
obtains the data that violates a particular constraint.

The execution of the process terminates when all the tokens
have reached the end events, or when one of them arrives into an
error end event. In the first case, the process terminates because
it has repaired all the violations and thus, the information base is
valid again. In the second case, the process terminates because it
has found a violation that cannot be repaired.4

For our purposes, we do not commit the changes established
by the execution of those activities until all the tokens have
successfully reached the end-event. That is, all the updates are
delayed to be applied in a unique transaction at the end of the
execution of the repairing-process rather than one at a time.
There are two reasons behind this: (1) to avoid information base
rollbacks in case one of the tokens reaches an error event, (2)
it is known that applying the events one at a time loses the
information of the previously-applied events, which might result
in changes which contradict past events (e.g., deleting, at the
end of the process, a tuple that was inserted previously to repair
some violation) [28]. In order to be able to check the constraints
through queries, these delayed changes are temporally stored in
some auxiliary tables, similarly to the views in [29].

5.2. Ensuring execution termination

The generated BPM extension might have cycles. Without any
doubt, this is a source of non-termination of the processes. That
is, there is the theoretic possibility in which a user gets stuck in
executing the BPM in an infinite loop.

This non-termination is inherent to the problem we are tack-
ling. Indeed, it is easy to see that undecidable problems, such as
first-order satisfiability, can be reduced to our BPM execution.
Roughly speaking, any first-order set of constraints is (finitely)
satisfiable iff there is a finite execution trace of the BPM they
generate. Since first-order finite satisfiability is not decidable,
knowing whether a BPM has a finite execute trace is also unde-
cidable, which implies that some BPM will have infinite execution
traces.

Fortunately, the very same solutions that apply in first-order
logics also apply to our approach. In particular, there are multiple
studies on finding decidable subsets of first-order logics which
can be applied to our work. Intuitively, if we limit the con-
straints to be written in some particular subsets that guarantees

4 Following the BPMN standard, we use the common behavior of terminating
he whole process instance when we reach an unhandled error event. Other
ossibilities are allowed.
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ecidability, the generated BPM will ensure the finiteness of its
races.

From the whole set of strategies for ensuring first-order logic
ecidability, we are interested on those based on showing the
ossibility of always building a finite database state that satisfies
hem. Other strategies exist, such as those used in Description
ogics, but they do not match our particular purposes. Take,
or instance, DL-Lite [30]. DL-Lite constraints’ satisfiability is de-
idable, but its decidability does not come from ensuring the
xistence of finite instances, but comes from first-order logic
ewritability, which means that it is possible to ensure the sat-
sfiability of DL-Lite schemas by executing an SQL query. In fact,
L-Lite schemas can be infinitely satisfiable without being finitely
atisfiable [31].
The strategies we are interested in are, basically, finite-model

roperty, and those based on the chase-algorithm termination.
he subsets of first-order logics that enjoy finite-model property
FMP) are those subsets that ensure that, given a set of first-order
onstraints written in it, if these constraints are satisfiable, then,
hey are finitely satisfiable. In terms of our approach, writing
ome constraints in some subset that enjoys FMP means that
he generated BPM has, at least, one finite executable trace (that
omputes the finite instance that satisfies the constraints). An
xample of first-order logic subset enjoying FMP, and directly
haracterized in UML/OCL notation, is OCL-Lite [32].
FMP ensures that at least one finite executable trace exists, but

t does not ensure that all possible executable traces are finite. To
nsure that all possible executable traces are finite, we have to
ook for a more tight condition. In particular, chase-termination.

Roughly speaking, chase is an algorithm for building an in-
tance that shows that a set of first-order constraints is (finitely)
atisfiable. The basic idea is that, if we guarantee that the chase
lgorithm can build a finite instance that satisfies the given first-
rder constraints, then, the generated BPM will also guarantee
hat its execution traces are also finite. The rationale behind
his behavior is that the BPM generated is just a constructive
lgorithm for building the information base state that satisfies
he constraints, thus, imitating the chase behavior. In fact, every
PM execution trace corresponds to a chase trace over the repair-
enerating dependencies. Thus, ensuring that all chase traces are
inite also ensures that all BPM traces will also be finite. A direct
ubset of UML/OCL that enjoys such condition is OCLuniv [23].

.3. Prototype tool implementation

In order to show the feasibility of our approach, we have
mplemented a prototype tool by means of adapting our previous
ersion of the OpExec Java library [11]. OpExec is a Java library
apable of parsing and executing BPMN activities. Since OpExec
s not meant to control the BPM flow neither provide a GUI
indeed, controlling the BPM flow and bringing a GUI is a different
roblem [33]), we have to simulate the BPM flow of the original
rocess programmatically. For the BPM extensions, however, we
ave extended OpExec to parse and execute the condition gate-
ays that check the current information base state, and lead the
xecution to the corresponding next activity. This adaptation can
e downloaded at http://www.essi.upc.edu/~xoriol/opexec/.
Using this library, a BPM-user can effectively repair the vi-

lations that take place when executing its activities, such as
hose discussed as examples in our paper. In particular, the library
etects the violations and automatically applies, consecutively,
he necessary activities to reach a new consistent information
ase state. Another example, ready to be executed, can be found
t the given web page.
The purpose of this library is only meant to show that our

olution can be implemented in practice, and let the possibility
108
to the interested reader to download and try a prototype im-
plementation. In addition, due to the difficulty of finding BPMN
diagrams with first-order constraints, our tool already provides
one example to play with it. Since it is not possible to determine
the efficiency of our method by bringing one unique example, we
refer the interested reader to check the previous discussion from
Section 5.2, where we discuss the complexity and the termination
of the method using already known results from well-studied
languages such as Description Logics and OCL.

6. Related work

Given a process model, and the definition of its tasks or activ-
ities, this paper presents an approach to automatically generate
the necessary structural events to ensure data consistency, and
representing them by means of a BPM. Due to this, it is possible
to make changes to the underlying data model, while keeping the
business process model the same.

This section analyzes other works in the areas of constraint
repair, process compliance (considering data) and consistency
between UML diagrams.

6.1. Constraint repair

Constraint repair is an area close to our proposal, as it deals
with the detection of constraint violations and how to repair
them. The techniques described in [34–36] are able to incre-
mentally evaluate constraints, and they could be apply to detect
the cases in which an activity would lead to a constraint viola-
tion. However, they cannot derive the repairs that would need
to be applied; hence, they would not work with an extended
interpretation of operation contracts.

Closer to our proposal, the approach in [37] is able to auto-
matically create operations to modify the instances of a schema,
whereas the work of [38] can complete the behavior of an opera-
tion with additional updates to satisfy the constraints. However,
our approach can naturally encode structural events applied re-
cursively (i.e., by means of a loop in the BPM), whereas these ap-
proaches might hang because of infinitely unfolding the recursion
into a single method.

6.2. Compliance in business process models

There are many approaches that deal with the correctness or
compliance of artifact-centric business process models [2,7,39–
42]. All these approaches analyze the semantic correctness of the
model, considering all its dimensions; however, they work with
a strict interpretation of the activities, as they cannot generate
the required updates to fulfill the integrity constraints of the data
model.

The work of [29] proposes DB-nets as an intermediate layer
between a data model and a process model. The goal of the DB-
net is to ensure that updates to the database take place at a
point in time where no constraints are violated. This approach
is different to our work, since we automatically generate the
required structural events to fulfill the constraints. Similarly, [43]
connects a BPMN process with a data model with the goal of
detecting potential data design flaws. Again, the focus is not on
correcting data issues, but on detecting them.

Following a completely different approach, [44] automatically
generates a compliant artifact-centric process model given cer-
tain rules. In this case, tasks can be executed at any time, and do
not follow a particular order. It is also worth mentioning [45]. It
deals with the recovery of interweaved process instances when
there are complex relationships between them.

http://www.essi.upc.edu/~xoriol/opexec/
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There are other works dealing with process compliance at
esign-time [46,47] and runtime [48], but without considering
ata. However, [46] focuses on detecting violations of task order
xecution and, like we do in our work, proposes repairs.

.3. Consistency between UML diagrams

In spite of the fact that our approach uses a UML class diagram
nd a BPMN diagram, the latter could be replaced by a UML
ctivity diagram. For this reason, it is worth mentioning some
orks which, although not explicitly artifact-centric, take into
onsideration the consistency between different UML models. In
articular, [49] focuses on the consistency between UML activity
iagrams and class diagrams. However, it considers that the ob-
ect flow acts as a precondition and postcondition of the tasks
nd, unlike our approach, does not consider the changes they
ake to the data.
On the other hand, [50] performs a systematic mapping review

n this topic. It lists the different consistency rules found in the
nalyzed works. Of the rules dealing with the class, state machine
nd activity diagrams, none of them would be applicable to our
pproach, either because we do not use the constructs (e.g. object
odes, swimlanes) or because we define the models from an
nalytical point of view [51], and hence, they are not relevant
e.g. visibility of attributes, assigning responsibility to classes).

. Conclusions

This paper presents an approach to generate repairs for the
ctivities in artifact-centric business process models. Given a data
odel, a process model and the specification of the activities in

he process, our approach is able to generate extensions to the
ctivities in order to ensure that the integrity constraints in the
ata model are fulfilled.
As we have shown, the main advantage of our approach is that

he data model can evolve independently from the business pro-
ess model and the specification of the activities; i.e. a change in
he data model does not necessarily imply changes in the process
r its activities. Although we use a UML class diagram, a BPMN
iagram and OCL operation contracts, our work can be used with
ny other model which can be translated into first-order logic.
We extend our previous work [14], by entering into more de-

ail of the logics behind our approach and discussing termination
hen generating the BPM extensions. We also simplify the BPM
xtensions by adding an activity merging step.
As further work, we would like to analyze the usage of BPM

easoning tools to simplify our generated BPMN diagrams. An-
ther area of interest is the development of heuristics or an
id to help choose the best repair when there are different re-
air options available. Last but not least, we could apply formal
easoning techniques to check if a repairing activity leads to a
ituation where the remaining activities in the BPM cannot be
xecuted.
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