
Planning for Temporally Extended Goals in Pure-Past Linear Temporal Logic

Luigi Bonassi1, Giuseppe De Giacomo2,3, Marco Favorito4,* , Francesco Fuggitti3,5,† ,
Alfonso Emilio Gerevini1, Enrico Scala1

1 University of Brescia, Italy
2 University of Oxford, UK
3 Sapienza University, Italy

4 Bank of Italy
5 York University, Canada

luigi.bonassi@unibs.it, degiacomo@diag.uniroma1.it, fuggitti@diag.uniroma1.it, marco.favorito@gmail.com,
alfonso.gerevini@unibs.it, enrico.scala@unibs.it

Abstract
We study classical planning for temporally extended goals ex-
pressed in Pure-Past Linear Temporal Logic (PPLTL). PPLTL
is as expressive as Linear-time Temporal Logic on finite
traces (LTLf), but as shown in this paper, it is computation-
ally much better behaved for planning. Specifically, we show
that planning for PPLTL goals can be encoded into classical
planning with minimal overhead, introducing only a number
of new fluents that is at most linear in the PPLTL goal and no
spurious additional actions. Based on these results, we imple-
mented a system called Plan4Past, which can be used along
with state-of-the-art classical planners, such as LAMA. An
empirical analysis demonstrates the practical effectiveness of
Plan4Past, showing that a classical planner generally per-
forms better with our compilation than with other existing
compilations for LTLf goals over the considered benchmarks.

Introduction
In AI Planning, a temporally extended goal is a (possibly
complex) property that the state-trace induced by a plan
has to satisfy. Planning for temporally extended goals has a
long tradition in AI Planning, including pioneering work in
the late ’90s (Bacchus, Boutilier, and Grove 1996; Bacchus
and Kabanza 1996; Bacchus, Boutilier, and Grove 1997;
Bacchus and Kabanza 2000), work on planning via Model
Checking (Cimatti et al. 1997; De Giacomo and Vardi 1999;
Giunchiglia and Traverso 1999), and work on declarative
and procedural constraints (Baier and McIlraith 2006; Baier
et al. 2008). Also, the standard language PDDL3 (Gerevini
et al. 2009) incorporates a class of temporally extended
goals called state-trajectory constraints.

Linear-time Temporal Logic (LTL) is a powerful for-
malism to express temporally extended goals, which has
been advocated as an excellent tool to express properties
of processes in Formal Methods (Baier, Katoen, and Guld-
strand Larsen 2008). Since AI Planning is usually inter-
ested in tasks that terminate, a finite-trace variant of LTL,

*Views and opinions expressed are of the author’s own and are
not representative of the Bank of Italy’s official position.

†Corresponding Author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

namely LTLf , has often been employed (Bacchus and Ka-
banza 1996; Baier and McIlraith 2006; De Giacomo and
Vardi 2013). Notably, an alternative to LTLf is the Pure-Past
Linear Temporal Logic, or PPLTL (Lichtenstein, Pnueli, and
Zuck 1985), which has been attractive in expressing non-
Markovian rewards in MDPs (Bacchus, Boutilier, and Grove
1996), normative properties in multi-agent systems (Fisher
and Wooldridge 2005; Knobbout, Dastani, and Meyer 2016;
Alechina, Logan, and Dastani 2018), explanations in dy-
namical systems (Sohrabi, Baier, and McIlraith 2011), or
synthesis specifications (Cimatti et al. 2020). PPLTL looks at
the trace backward instead of forward as LTLf and does so
by expressing properties on traces using past operators only.
PPLTL and LTLf have the same expressive power, but trans-
lating a formula from one into the other (and vice versa) can
be prohibitive since the best-known algorithms are 3EXP-
TIME. See (De Giacomo et al. 2020) for a survey on PPLTL.

Planning for LTLf goals in deterministic domains requires
some properties to be achieved along the execution of a plan
and has already been studied in, e.g., (Baier and McIlraith
2006; De Giacomo and Vardi 2013; Torres and Baier 2015).
Similarly, planning for PPLTL goals requires reaching, from
a specified initial state, a certain state satisfying the PPLTL
goal, i.e., the state-trace produced to reach such a state sat-
isfies the goal formula.

From the literature, it is well-known that LTL and vari-
ants have a convenient fixpoint characterization that allows
for splitting any formula into a propositional formula to be
checked at the current instant and a temporal formula to
be checked at the next instant (Gabbay et al. 1980; Manna
1982; Emerson 1990). This property has already been ex-
ploited in AI, e.g., in the MetateM approach (Barringer et al.
1989), and later under the name of “formula progression” in
(Bacchus and Kabanza 1996), which is perhaps the most in-
fluential work on planning for temporally extended goals.

Analogously, when we consider PPLTL formulas, such a
fixpoint characterization splits the formula into a proposi-
tional formula on the current instant and a temporal for-
mula on the past to be checked at the previous instant. How-
ever, while the future has not happened yet and needs to be
guessed, the past has already happened and needs only to be

read. This implies that PPLTL formulas can be easily evalu-
ated by recursively applying their fixpoint characterization.
Moreover, the evaluation of PPLTL formulas can be done
by storing previous values of a small number of formulas
(at most linear in the original formula), à la dynamic pro-
gramming. A similar line of reasoning was exploited to con-
veniently handle non-Markovian rewards expressed using
PPLTL in (Bacchus, Boutilier, and Grove 1997), but never
fully formalized. In this paper, we formalize it rigorously,
proving its correctness, and exploit it to show that planning
for PPLTL goals can be encoded into classical planning with
minimal overhead by only introducing few new fluents, at
most linear in the size of the PPLTL goal, and without adding
any spurious actions. These new fluents keep track of the
satisfaction of few key subformulas of the temporal goal at
planning time, reducing planning for temporally extended
goals to classical planning. The use of PPLTL is crucial to
obtain such nice results since it avoids any form of guessing
about the future. Conversely, if we specify goals in LTLf , the
encoding into classical planning, while clearly possible, re-
sults either in worst-case exponential encodings (Baier and
McIlraith 2006) or in encodings that include additional spu-
rious actions significantly increasing the plan length (Torres
and Baier 2015).

We have implemented our approach in a system called
Plan4Past, which can be used along with state-of-the-
art classical planners. The experimental analysis using the
state-of-the-art planner LAMA (Richter and Westphal 2010)
shows the practical effectiveness of Plan4Past by compar-
ing it against existing techniques for LTLf goals.

Background
Classical Planning
Following (Geffner and Bonet 2013), a planning domain
model is a tuple D = ⟨2F , A, α, tr⟩, where 2F is the set
of possible states and F is a set of fluents (atomic proposi-
tions); A is the set of actions; α(s) ⊆ A is the set of ap-
plicable actions in state s; and tr(s, a) is the deterministic
transition function determining the successor state s′ that
follows action a in state s. Such a (deterministic) domain
model D is assumed to be compactly represented (e.g., in
PDDL (McDermott et al. 1998)), i.e., its size is |F|, and a
state is an assignment for all fluents in F . Given the set of
literals of F as Lits(F) := F ∪{¬f | f ∈ F}, every action
a ∈ A is a pair ⟨Prea,Eff a⟩, where Prea ⊆ Lits(F) rep-
resents action preconditions and Eff a represents action ef-
fects given in the form of conditional effects. A conditional
effect is of the form c ▷ e with c, e ⊆ Lits(F) and c pos-
sibly empty. An action a can be applied in a state s if the
set of literals in Prea holds true in s. A conditional effect
c ▷ e is triggered in a state s if c is true in s. Applying a in
s results in a successor state s′ determined by Eff a in such
a way that ∀f ∈ F , f holds true in s′ if and only if either
(i) f was true in s and no conditional effect c ▷ e triggered
in s deletes it (¬f ∈ e) or (ii) there is a conditional effect
c ▷ e triggered in s that adds it (f ∈ e). In case of conflict-
ing effects, similarly to other works (Röger, Pommerening,
and Helmert 2014), we assume a delete-before-adding se-

mantics. A classical planning problem combines a domain
with an initial state and a goal, and consists in looking for
a sequence of actions that transforms the initial state into a
desired goal state. Formally, a planning problem is a tuple
Γ = ⟨D, s0, G⟩, where D is a domain model, s0 is the initial
state, i.e., an initial assignment to fluents in F , and G is a
set of literals over F called the reachability goal. A solution
to planning problem Γ is a sequence of actions a ∈ A called
plan π = a0, . . . , an−1 such that, when executed, induces
a finite state-trace s0, . . . , sn, where si+1 = tr(si, ai) and
ai ∈ α(si) for i = 0, . . . , n−1, and G ⊆ sn.

Classical Planning with Pure-Past Linear
Temporal Logic Goals
Pure-Past Linear Temporal Logic (PPLTL) is the variant of
LTLf that talks about the past instead of the future. PPLTL
has been recently surveyed in (De Giacomo et al. 2020),
where it is denoted as PLTLf . Here, we summarize its main
characteristics and give some examples. Given a set P of
propositions, PPLTL is defined as:

φ ::= p | ¬φ | φ ∧ φ | Yφ | φSφ

where p ∈ P , Y is the yesterday operator and S is the
since operator. We define the following common abbre-
viations: φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2), the once operator
Oφ ≡ true Sφ, the historically operator Hφ ≡ ¬O¬φ, the
weak-yesterday operator WYϕ ≡ ¬Y¬ϕ, and the proposi-
tional Boolean constants true ≡ p ∨ ¬p, false ≡ ¬true .
Also, start ≡ ¬Y(true) expresses that the trace has started.

PPLTL formulas are interpreted on finite nonempty traces,
also called histories, τ = s0 · · · sn where si at instant i is a
propositional interpretation over the alphabet 2P . We denote
the length of τ by length(τ) = n+1 and the last element of
τ by last(τ) = sn.

Given a trace τ = s0 · · · sn, we denote by τi,j , with
0 ≤ i ≤ j ≤ n, the sub-trace si . . . sj obtained from τ start-
ing from position i and ending in position j. We define the
satisfaction relation τ, i |= φ, stating that φ holds at instant
i, as follows:

• τ, i |= p iff length(τ) ≥ 1 and p ∈ si (for p ∈ P);
• τ, i |= ¬φ iff τ, i ̸|= φ;
• τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2;
• τ, i |= Yφ iff i ≥ 1 and τ, i− 1 |= φ;
• τ, i |= φ1 Sφ2 iff there exists k, with 0 ≤ k ≤ i <
length(τ) such that τ, k |= φ2 and for all j, with k <
j ≤ i, we have that τ, j |= φ1.

A PPLTL formula φ is true in τ , denoted τ |= φ, if
τ, length(τ)−1 |= φ. We denote by sub(φ) the set of all
subformulas of φ obtained from the abstract syntax tree
of φ (De Giacomo and Vardi 2013). For instance, if φ =
a∧¬Y(b∨(c∨d)), where a, b, c, d are atomic, then sub(φ) =
{a, b, c, d, (c ∨ d), b ∨ (c ∨ d),Y(b ∨ (c ∨ d)),¬Y(b ∨ (c ∨
d)), a∧¬Y(b∨ (c∨ d))}. Thus, |sub(φ)| defines the size of
a PPLTL formula φ.

PPLTL can be used to specify goals on planning problems.

PDDL3 Operator PPLTL Formula LTLf Formula

at-end θ θ F(θ ∧ end)
always θ Hθ Gθ
sometime θ Oθ Fθ
sometime-aft. θ1θ2 (¬θ1 S θ2) ∨ H(¬θ1) G(θ1 → Fθ2)
sometime-bef. θ1θ2 H(θ1 → Y(O(θ2)) θ2 R¬θ1
at-most-once θ H(θ→(θS(H(¬θ)∨start))) G(θ→(θU(G(¬θ)∨end)))

hold-during n1 n2 θ
∨

0≤i≤n1
(θ ∧ Yi(start))∨∧

n1<i≤n2
H(θ∨WYi(Ytrue))

∨
0≤i≤n1

Xi(θ ∧ end)∨∧
n1<i≤n2

WXi(θ)

* hold-after n θ
∨

0≤i≤n(θ ∧ Yi(start))∨
O(θ ∧ Yn+1(O(start)))

∨
0≤i≤n X

i(θ ∧ end)∨
Xn+1(F(θ))

Table 1: PDDL3 operators, their equivalent PPLTL and LTLf

formulas. Superscripts abbreviate nested temporal operators.
θ is a propositional formula on planning fluents; X,WX,F,U
and G are the next, weak next, eventually, until and always
operators of LTLf ; ϕ1 Rϕ2 ≡ ¬(¬ϕ1 U¬ϕ2), and end is
the end of the trace in LTLf (De Giacomo and Vardi 2013).
* tags an operator with the corrected LTLf translation.

Definition 1. A planning problem with PPLTL goals is a tu-
ple Γ = ⟨D, s0, φ⟩, where D = ⟨2F , A, α, tr⟩ is a domain
model, s0 is the initial state, i.e., an initial assignment to all
fluents in F , and φ is a PPLTL formula over F .

A sequence of actions from A is a solution for the plan-
ning problem Γ = ⟨D, s0, φ⟩ if the induced sequence of
states τ = s0, . . . , sn satisfies φ. Here, temporally extended
goals specify a requirement over the entire induced trajec-
tory of states. To solve Γ for PPLTL goals, we can build the
deterministic automaton (DFA) for the domain and the non-
deterministic automaton (NFA) for the goal formula1, com-
pute their product, and check non-emptiness on the resulting
automaton returning a plan if any (De Giacomo and Vardi
2013; De Giacomo and Rubin 2018). Hence, classical plan-
ning for PPLTL goals is PSPACE-complete in the domain
and in the goal formula (De Giacomo et al. 2020).

Several properties are natural to express using PPLTL. For
instance, some common PPLTL patterns have been employed
in the context of MDP rewards in (Bacchus, Boutilier, and
Grove 1996) or as norms in multi-agent systems (Fisher
and Wooldridge 2005; Knobbout, Dastani, and Meyer 2016;
Alechina, Logan, and Dastani 2018). Further examples ap-
pear in (De Giacomo et al. 2020). Here, we provide the
translation to equivalent PPLTL formulas of PDDL3 pat-
terns (Table 1) (Gerevini et al. 2009) and DECLARE tem-
plates (Table 2), the de-facto standard modeling language for
Business Processes (van der Aalst, Pesic, and Schonenberg
2009). Notably, a systematic translation between LTLf and
PPLTL (and vice versa) does exist, but it is impractical (De
Giacomo et al. 2020) as it is not simply based on an induc-
tion on the structure of the formula. We formally check the
correctness of translations for both tables and formulas in
the experiments by checking equivalence in terms of lan-
guages, i.e., by translating them to DFA and solving graph
isomorphism.

1In fact, for PPLTL, the automaton is directly a DFA (De Gia-
como et al. 2020).

DECLARE Template Equiv. PPLTL Formula Equiv. LTLf Formula

init(a) O(a ∧ ¬Y(true)) a
existence(a) O(a) F(a)
absence(a) ¬O(a) ¬F(a)
absence2(a) H(a→WYH(¬a)) ¬(Fa ∧ XF(a))
choice(a, b) O(a) ∨ O(b) F(a) ∨ F(b)

exclusive-choice(a, b) (O(a) ∨ O(b))∧
¬(O(a) ∧ O(b))

(F(a) ∨ F(b))∧
¬(F(a) ∧ F(b))

co-existence(a, b) H(¬a)↔ H(¬b) F(a)↔ F(b)
responded-existence(a, b) O(a)→ O(b) F(a)→ F(b)
response(a, b) (¬a S b) ∨ H(¬a) G(a→ F(b))
precedence(a, b) H(b→ O(a)) (¬bU a) ∨ G(¬b)
succession(a, b) response(a, b) ∧ precedence(a, b)

chain-response(a, b) H(Y(a)→ b) ∧ ¬a G(a→ X(b))
chain-precedence(a, b) H(b→ Y(a)) G(X(b)→ a) ∧ ¬b
chain-succession(a, b) (H(Y(a)→ b) ∧ ¬a)∧

H(Y(¬a)→ ¬b) G(a↔ X(b))

not-co-existence(a, b) O(a)→ ¬O(b) F(a)→ ¬F(b)
not-succession(a, b) H(b→ ¬O(a)) G(a→ ¬F(b))
not-chain-succession(a, b) H(b→ ¬Y(a)) G(a→ ¬X(b))

Table 2: DECLARE templates, their equivalent PPLTL and
LTLf formulas. a, b are atomic propositions.

Handling PPLTL Goals
In this section, we develop the bases for our technique. First,
we observe that any sequence of actions produces a trace on
which PPLTL formulas can be evaluated. Therefore, while
the planning process goes on, sequences of actions are pro-
duced, traces are generated, and over them PPLTL goals can
be evaluated. The difficulty is that evaluating PPLTL formu-
las requires a trace, and searching through traces is quite
demanding. Instead, our technique does not consider traces
at all. In particular, it exploits the following observations: (i)
to evaluate the PPLTL goal formula we only need the truth
value of its subformulas; (ii) every PPLTL formula can be
put in a form where its evaluation depends only on the cur-
rent propositional evaluation and the evaluation of a key set
of PPLTL subformulas at the previous instant; (iii) one can
recursively compute and keep the value of such a small set
of formulas as additional propositional variables in the state
of the planning domain. Next, we detail these observations.

Temporal operators in LTL and LTLf can be decomposed
into present and future components, giving a fixpoint char-
acterization of the until operator (U) – we remind the reader
that other temporal operators as eventually (F) and always
(G) are abbreviations of formulas involving U:

ϕ1 Uϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ X(ϕ1 Uϕ2)).
Analogously, PPLTL formulas can be decomposed into
present and past components, given the fixpoint character-
ization of the since operator:

ϕ1 Sϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ Y(ϕ1 Sϕ2)).

Exploiting this equivalence, the formula decomposition can
be computed by recursively applying the following transfor-
mation function pnf(·):
• pnf(p) = p;
• pnf(Yϕ) = Yϕ;
• pnf(ϕ1 Sϕ2) = pnf(ϕ2) ∨ (pnf(ϕ1) ∧ Y(ϕ1 Sϕ2));

• pnf(ϕ1 ∧ ϕ2) = pnf(ϕ1) ∧ pnf(ϕ2);
• pnf(¬ϕ) = ¬pnf(ϕ).

For convenience, we add pnf(Oϕ) = pnf(ϕ) ∨ Y(Oϕ).
A formula resulting from the application of pnf(·) is in

Previous Normal Form (PNF). Note that formulas in PNF
have proper temporal subformulas (i.e., subformulas whose
main construct is a temporal operator) appearing only in the
scope of the Y operator. Also, observe that the formulas of
the form Yϕ in pnf(φ) are such that ϕ ∈ sub(φ). It is easy
to see that the following holds:
Proposition 1. Every PPLTL formula φ can be converted to
its PNF form pnf(φ) in linear-time in the size of the formula
(i.e., |sub(φ)|). Moreover, pnf(φ) is equivalent to φ.

Proof. Immediate from the definition of pnf(·) and the se-
mantics of PPLTL formulas.

Now, we show that to evaluate a PPLTL formula φ, we
only need to keep track of the truth values of some key sub-
formulas of φ. To do so, we introduce Σφ as the set of propo-
sitions of the form “Yϕ” containing:
• “Yϕ” for each subformula of φ of the form Yϕ;
• “Y(ϕ1 Sϕ2)” for each subformula of φ of the form
ϕ1 Sϕ2.

To keep track of the truth of each proposition in Σφ, we
define a specific interpretation σ:

σ : Σφ → {⊤,⊥}
Intuitively, given an instant i, σi tells us which propositions
in Σφ are true at instant i. By suitably maintaining the value
of propositions in Σφ in σi, we can evaluate a PPLTL formula
just by using the propositional interpretation in the current
instant i and the truth value assigned by σi to propositions
related to the previous instant.
Definition 2. Let si be a propositional interpretation over
P , σi a propositional interpretation over Σφ, and ϕ a PPLTL
subformula in sub(φ), we define the predicate val(ϕ, σi, si),
recursively as follows:

• val(p, σi, si) iff si |= p;
• val(Yϕ′, σi, si) iff σi |= “Yϕ′”;
• val(ϕ1 Sϕ2, σi, si) iff val(ϕ2, σi, si)∨(val(ϕ1, σi, si)∧
σi |= “Y(ϕ1 Sϕ2)”);

• val(ϕ1 ∧ ϕ2, σi, si) iff val(ϕ1, σi, si) ∧ val(ϕ2, σi, si);
• val(¬ϕ′, σi, si) iff ¬val(ϕ′, σi, si).

Intuitively, the val(ϕ, σi, si) predicate allows us to deter-
mine what is the truth value of any PPLTL formula ϕ ∈
sub(φ) by reading a propositional interpretation si from
trace τ and keeping track of the truth value of propositions
in Σφ by means of σi. Observe that rules in Definition 2
basically follow the PNF transformation rules where subfor-
mulas within the Y-scope are interpreted as propositions.

Now, given a trace τ = s0 · · · sn over P , we compute a
corresponding trace τ [φ] = σ0 · · ·σn over Σφ, where:
• σ0(“Yϕ”)

.
= ⊥ for each “Yϕ” ∈ Σφ;

• σi(“Yϕ”)
.
= val(ϕ, σi−1, si−1), for all i with 0 < i ≤ n.

First, the following result for traces of length 1 holds.

Lemma 1. Let φ be PPLTL formula over P , ϕ ∈ sub(φ) a
subformula of φ, and τ = s0 a trace over P of length 1.
Then, s0 |= ϕ iff val(ϕ, σ0, s0).

Proof. By structural induction on the formula ϕ.

• ϕ = p. By definition of val(·), val(p, σ0, s0) iff s0 |= p.
• ϕ = Yϕ′. By definition of σ0, σ0(“Yϕ′”) = ⊥, and by

the semantics, s0 ̸|= Yϕ′. Therefore, the thesis holds.
• ϕ = ϕ1 Sϕ2. val(ϕ1 Sϕ2, σi, si) iff val(ϕ2, σi, si) ∨
(val(ϕ1, σi, si) ∧ σi |= “Y(ϕ1 Sϕ2)”). By definition of
σ0, σ0(“Y(ϕ1 Sϕ2”)) = ⊥, hence the formula above
simplifies to val(ϕ2, σi, si). On the other hand, by the
semantics, s0 |= ϕ1 Sϕ2 iff s0 |= ϕ2. Hence, by in-
duction the thesis holds.

• ϕ = ϕ1 ∧ ϕ2 or ϕ = ¬ϕ′. The thesis holds by structural
induction.

Next, we extend the previous result to traces of any length.
Theorem 1. Let φ be a PPLTL formula over P , ϕ ∈ sub(φ)
a subformula of φ, τ a trace over P , and τ [φ] the corre-
sponding trace over Σφ. Then,

τ |= ϕ iff val(ϕ, last(τ [φ]), last(τ)).

Proof. We prove the thesis by double induction on the
length of the trace τ and on the structure of the formula ϕ.

• Base case: τ = s0. By Lemma 1, the thesis holds.
• Inductive step: Let τ = τn−1·sn. By inductive hypothe-

sis, the thesis holds for the trace τn−1 of length n− 1:

τn−1 |= ϕ iff val(ϕ, last(τ
[φ]
n−1), last(τn−1))

Now, we prove that the thesis holds also for τn−1·sn:

τn−1·sn |= ϕ iff val(ϕ, last((τn−1·sn)[φ]), last(τn−1·sn))

To prove the claim, we now proceed by structural induc-
tion on the formula, knowing that last((τn−1·sn)[φ]) =
σn and last(τn−1·sn) = sn:
– ϕ = p. We have that τn−1·sn |= p iff sn |=
p. For the val(·) predicate we have that sn |=
p iff val(p, σn, sn). Therefore, the thesis holds.

– ϕ = Yϕ′. We have that τn−1·sn |=
Yϕ′ iff τn−1 |= ϕ′. By inductive hypothesis,
τn−1 |= ϕ′ iff val(ϕ′, last(τ

[φ]
n−1), last(τn−1)). For

the val(·) predicate val(Yϕ′, σn, sn) iff σn |= “Yϕ′”,
which corresponds to val(ϕ′, last(τ

[φ]
n−1), last(τn−1)).

Hence, the thesis holds.
– ϕ = ϕ1 Sϕ2. In this case it suffices to remem-

ber that τn−1·sn |= ϕ1 Sϕ2 iff τn−1·sn |=
ϕ2 ∨ (ϕ1 ∧ Y(ϕ1 Sϕ2)). On the other hand,
val(ϕ1 Sϕ2, σn, sn) iff val(ϕ2, σn, sn) ∨
(val(ϕ1, σn, sn) ∧ σn |= “Y(ϕ1 Sϕ2)”). By
structural induction we have that τn−1·sn |=
ϕ1 iff val(ϕ1, σn, sn), and τn−1·sn |=
ϕ2 iff val(ϕ2, σn, sn). Moreover, τn−1·sn |=
Y(ϕ1 Sϕ2) iff τn−1 |= ϕ1 Sϕ2, and σn |=

“Y(ϕ1 Sϕ2)” iff val(ϕ1 Sϕ2, last(τ
[φ]
n−1), last(τn−1)).

Finally, we have that τn−1 |=
ϕ1 Sϕ2 iff val(ϕ1 Sϕ2, last(τ

[φ]
n−1), last(τn−1))

holds by induction on the length of the trace.
– ϕ = ϕ1∧ϕ2 or ϕ = ¬ϕ′. The thesis holds by structural

induction.

Theorem 1 gives us the bases of our technique as it guar-
antees that by keeping a suitably updated trace σ, we can
evaluate our PPLTL goal only using the propositional inter-
pretation in the current instant and the truth value of the
“Yϕ” formulas in σ, without considering the entire trace.

Encoding PPLTL Goals in Planning
We devise a new encoding for planning for PPLTL goals ex-
ploiting Theorem 1. The key idea behind our approach is
that, given a PPLTL formula and a planning domain we keep
track of values of formulas in σ as actions are applied.

Similarly to other encoding-based approaches dealing
with temporally extended goals, e.g., (Baier and McIlraith
2006; Torres and Baier 2015), we address planning for tem-
porally extended goals in three steps. First, compile the orig-
inal planning problem Γ with the temporally extended goal
into a planning problem Γ′ with a reachability goal. Sec-
ond, invoke any off-the-shelf sound and complete planner to
compute a plan solving the compiled problem Γ′. Third, re-
work the computed plan to get the solution for the original
problem Γ. In our approach, we exploit Theorem 1 to do the
encoding in the first step, and since no extra control actions
are introduced step three trivializes.

Given a planning problem Γ = ⟨D, s0, φ⟩, where D =
⟨2F , A, α, tr⟩ is a planning domain, s0 the initial state and
φ a PPLTL goal, the compiled planning problem is Γ′ =

⟨D′, s′0, G
′⟩, where D′ = ⟨2F ′

, A, α′, tr′⟩ is the compiled
planning domain, s′0 the new initial state and G′ is the new
reachability goal. Next, we describe the encoding from Γ to
Γ′ using their compact representations. In particular, α′ and
tr′ will be induced by the introduction of axioms and a re-
formulation of the actions’ preconditions and effects.

Fluents. F ′ contains the fluents of F , as well as one fluent
for each proposition “Yϕ” in Σφ to keep track of proposi-
tional interpretations σi, and the set of predicates Pder de-
fined below. Formally, F ′ = F ∪ Σφ ∪ Pder.

Axioms. We employ axioms (Thiébaux, Hoffmann, and
Nebel 2005), which have the form d← ψ, where d ∈ Pder is
a positive literal called derived predicate, and ψ is a propo-
sitional formula over a set of predicates. Let s be a state,
axiom d ← ψ determines that the derived predicate d holds
true in s if and only if s |= ψ.

Here, we include an axiom valϕ ← ψ for every subfor-
mula ϕ ∈ sub(φ), and Pder is defined as the set of all de-
rived predicates valϕ, i.e., Pder = {valϕ | ϕ ∈ sub(φ)}.
These axioms are intended to be such that the current state
(σi, si) |= valϕ iff val(ϕ, σi, si). By mimicking rules in
Definition 2, we get the following axioms:

• valp ← p;
• valYϕ ← “Yϕ”;
• valϕ1 Sϕ2

← (valϕ2
∨ (valϕ1

∧ “Y(ϕ1 Sϕ2)”));
• valϕ1∧ϕ2 ← (valϕ1 ∧ valϕ2);
• val¬ϕ ← ¬valϕ.

Clearly, we have that (σi, si) |= valϕ iff val(ϕ, σi, si).
Hence, to define Γ′, we build a set of axioms for every
subformula ϕ in sub(φ), i.e., {valϕ ← ϕ | ϕ ∈ sub(φ)}.
Axioms allow us to elegantly model the mathematics of the
previous section (i.e., the val(ϕ, σi, si)) and are often conve-
nient when dealing with more sophisticated forms of plan-
ning (e.g., (Borgwardt et al. 2022)). They also simplify the
action schema and goal descriptions without adding con-
trol predicates among fluents, thus simplifying the search,
as shown in (Thiébaux, Hoffmann, and Nebel 2005).

Initial State. The initial state is the same as the original
problem Γ for the original fluents in F , whereas the new
fluents “Yϕ” ∈ Σφ are assigned to the truth value given by
σ0. That is s′0 = (σ0, s0).

Domain Actions. Every domain’s action in A is modified
on its effects by adding a way to update the assignments of
propositions in Σφ. For each “Yϕ” ∈ Σφ, we model assign-
ments updates by a set of conditional effects of the form:

valϕ ▷ “Yϕ”

¬valϕ ▷ ¬“Yϕ”

These effects are exactly the same for every action a ∈ A.
Also, since σi maintains values of “Yϕ” in Σφ they are in-
dependent of the effect of the action on the original fluents,
which, instead, is maintained in the propositional interpreta-
tion si. This means that we can compute the next value of
σ without knowing either which action has been executed or
which effect such action has had on the original fluents.

Formally, let Valφ = {valϕ ▷ “Yϕ”,¬valϕ ▷ ¬“Yϕ” |
“Yϕ” ∈ Σφ}. The set of actions A in Γ′ remains the same,
as in the original problem Γ. For all a ∈ A, we have that the
preconditions in Γ′ are Pre ′a = Prea and the effects in Γ′ are
Eff ′

a = Eff a ∪ Valφ. Observe that, the auxiliary part Valφ
in Eff ′

a deterministically updates subformulas values in Σφ,
without affecting any fluent f ∈ F of the original domain
model. This is crucial for the encoding’s correctness.

Goal. The goal in Γ′ is encoded as G′ = {valφ}. That is,
val(φ, σn, sn), associated to the original PPLTL goal formula
φ, has to hold true in the last instant, as per Theorem 1.

It is easy to see that our encoding is polynomially related
to the original problem.
Theorem 2. The size of the encoded planning problem Γ′ is
polynomial in the size of the original problem Γ. In particu-
lar, the additional fluents introduced are linear in the size of
the temporally extended PPLTL goal φ of Γ.

Proof. Immediate, by analyzing the construction.

Next, we turn to correctness. Let Γ = ⟨D, s0, φ⟩ be
a planning problem, where D is a domain, s0 is the ini-
tial state, and φ is a PPLTL goal formula, and let Γ′ =

⟨D′, s′0, G
′⟩ be the corresponding compiled planning prob-

lem as previously defined. Any trace τ ′ = s′0, . . . , s
′
n on D′

can be seen as τ ′ = zip(τ [φ], τ), with τ [φ] = σ0, . . . , σn ∈
(2Σφ)+ and τ = s0, . . . , sn ∈ (2F)+, where each element
of τ ′ is of the form s′i = (σi, si) for all i ≥ 0. Here, we
use the zip(·, ·) function to represent the aggregation of the
two traces τ [φ] and τ . Given a trace τ ′ = s′0, . . . , s

′
n on

the encoded planning domain D′, there exists a single trace
τ ′ |F= τ = s0, . . . , sn on the original planning domain
D. Conversely, given a trace τ = s0, . . . , sn on the origi-
nal planning domain D, there exists a unique corresponding
trace τ [φ], and hence a single τ ′ = zip(τ [φ], τ) on the en-
coded domain D′. Finally, we observe that every executable
action sequence a0, . . . , an−1 in the planning problem Γ
with PPLTL goal φ is also executable in the encoded plan-
ning problem Γ′ (and vice versa) since the encoding does not
have auxiliary actions, actions preconditions do not change,
and additional conditional effects on the original actions are
deterministic.

Theorem 3 (Correctness). Let Γ be a planning problem
with a PPLTL goal φ, and Γ′ be the corresponding en-
coded planning problem with a reachability goal. Then, ev-
ery action sequence π = a0, . . . , an−1 is a plan for Γ iff
π = a0, . . . , an−1 is a plan for Γ′.

Proof. Every executable action sequence a0, . . . , an−1 in
the planning problem Γ with PPLTL goal φ is also executable
in the encoded planning problem Γ′ (and vice versa) since,
by definition, the encoding does not have auxiliary actions,
actions preconditions do not change, and additional condi-
tional effects on the original actions are deterministic.

The action sequence π is a plan if its induced state trace τ
is such that τ |= φ. By Theorem 1, we have that τ |= φ
iff val(φ, last(τ [φ]), last(τ)). However, by construction of
the encoding for Γ′, we have that val(φ, last(τ [φ]), last(τ))
holds iff valφ holds in the last state of the induced state
trace for Γ′, i.e., in τ ′ = zip(τ [φ], τ). In other words,
val(φ, last(τ [φ]), last(τ)) iff last(τ ′) |= valφ. Hence, the
thesis holds.

A direct consequence of Theorem 3 is that every sound
and complete planner returns a plan π for the encoded plan-
ning problem Γ′ if a plan π for the original planning problem
Γ with PPLTL goal exists. If no solution exists for Γ′, then
no solution exists for Γ.

Experiments
We implemented the approach of the previous section in a
tool called Plan4Past2 (P4P). P4P takes as input a PDDL
description and a PPLTL formula, and gives as output a new
PDDL description, which can be processed by any classical
planner supporting axioms and conditional effects. We also
tested an alternative version of P4P where all axioms are
compiled into conditional effects, two for each sub-formula
ϕ encoding the truth value of ϕ after each action. However,

2Source code, benchmarks and supplementary material are pub-
licly available at https://github.com/whitemech/Plan4Past.

the resulting compilation proved much less effective than
that using axioms, so we do not consider it in our analysis.

Our analysis sheds some light on the effectiveness of tem-
porally extended goals formulated in PPLTL and handled by
P4P, and semantically equivalent temporally extended goals
formulated in LTLf and handled by either Exp (Baier and
McIlraith 2006) or Poly (Torres and Baier 2015).

To our knowledge, Exp and Poly are the best approaches
for planning for LTLf goals. In particular, Baier and McIl-
raith (2006) build an NFA for the LTLf formula and compute
the Cartesian product with the planning domain (cf. (De Gia-
como and Rubin 2018)), incurring in a worst-case exponen-
tial increase in the number of states of the NFA. Similarly,
Torres and Baier (2015) implicitly construct the NFA for the
goal formula. While the approach in (Torres and Baier 2015)
is optimal with respect to the computational complexity, it
significantly increases the plan length. Indeed, working with
NFAs during planning requires choosing not only the next ac-
tions in the plan but also the right nondeterministic transition
of the NFA. This translates into extra dummy (synchroniza-
tion) actions to insert into the plan, making the overall search
harder for the planner. Dealing with spurious actions has al-
ready been studied in (Nebel 2000) theoretically and prac-
tically from a heuristic perspective in, e.g., (Haslum 2013).
Therefore the theoretical advantage of P4P is clear: under
an automata-theoretic view, P4P exploits the fact that goals
are expressed in PPLTL to implicitly and incrementally build
a DFA (vs. an NFA) for the temporal formula while doing
planning, keeping optimality with respect to computational
complexity and preserving the plan length.

Next, we want to determine whether this theoretical ad-
vantage manifests itself in actual planning performance from
a practical perspective. To this end, we tested the three con-
sidered systems over a set of benchmarks and analyzed the
number of problems solved (Coverage), the time spent to
find a solution (compilation plus search time), the number
of expanded nodes, and the plan length. As a classical plan-
ner, we considered LAMA (Richter and Westphal 2010), a
planner built on top of FastDownward (Helmert 2006), and
FFX (Thiébaux, Hoffmann, and Nebel 2005). LAMA is a
satisficing planner based on a sophisticated search mecha-
nism that runs (in the first iteration) Lazy Greedy Best-First
Search driven by the hff (Hoffmann and Nebel 2001) and the
landmarks counting heuristics. LAMA yields solution plans
of decreasing plan cost incrementally; for our analysis, we
take the first generated plan. FFX is yet another satisficing
planner based on heuristic search and enforced hill climb-
ing, and is the one originally used with Poly and Exp. Both
systems handle the compiled problems, but in the rest of this
section, we will focus on LAMA as it was the system with
the highest overall coverage for all compilations. All experi-
ments were run on an Intel Xeon Gold 6140M 2.3 GHz, with
runtime and memory limits of 1800s and 8GB, respectively.

Benchmark Domains
Our benchmark suite includes BLOCKSWORLD, ELEVA-
TOR, ROVERS, and OPENSTACKS domains. These domains
were introduced in past International Planning Competi-
tions, and all but ELEVATOR have also been used by Tor-

res and Baier (2015). For BLOCKSWORLD, ROVERS, and
OPENSTACKS we have a set of instances with the same tem-
porally extended goals defined by Torres and Baier (2015)
(hereinafter referred to as TB) and a second set of instances
with temporally extended goals defined by us (hereinafter
referred to as BF). For ELEVATOR, we only have BF. TB
were originally specified in LTLf , and for P4P we manually
translated them to PPLTL. We did so for all but one type of
temporally extended goal used in (Torres and Baier 2015),
namely that of type “h : αUβ” where α or β have n nested
U operators, for which we did not find an easy translation
into PPLTL. For each LTLf formula that we translated in
PPLTL, we formally and automatically proved their seman-
tic equivalence by verifying that the two formulations yield
the same minimal DFA. BF were designed in PPLTL directly,
and analogously to what was done for TB, we formulated an
equivalent formulation in LTLf . TB are based on predefined
families of formulas that are independent from the domain.
Instead, BF are specific for each domain, and were designed
to stress all compilations and understand the planner’s scal-
ability over non-trivial and large instances. Indeed, all in-
stances with TB proved trivial for Plan4Past. For TB, we
have 15 instances for BLOCKSWORLD, 7 for ROVERS, and
10 for OPENSTACKS. Their definition is provided by Torres
and Baier (2015). BF are instead described below.

BLOCKSWORLD. BF were formulated to study the reach
of all compilations with complex temporally extended goals.
Here, BF specify two intertwined goals, both requiring
the existence in the state trajectory of the plan of a par-
ticular sequence of states. Consider a problem with n
blocks, and let oni,j be the predicate modeling block i
being on block j. The first goal in PPLTL is O(on1,2 ∧
Y(O(on2,3 ∧ Y(O(... ∧ Y(O(onn−1,n))))))). Its transla-
tion in LTLf is F(onn−1,n ∧ X(F(onn−2,n−1 ∧ X(F(... ∧
X(F(on1,2))))))). The second goal (for an even number of
blocks) in PPLTL is

∧
j∈{6,8,...,n} O(onj,j−1 ∧ Y(ϕ)) and ϕ

is formula O(on4,3 ∧ Y(O(on3,2 ∧ Y(O(on2,1))))) encod-
ing the construction of a bigger stack. The same constraint
formulated in LTLf is F(on2,1 ∧ X(F(on3,2 ∧ X(F(on4,3 ∧∧

j∈{6,8,...,n} X(F(onj,j−1))))))). The formulation for an
odd number of blocks is analogous. We generate a tempo-
rally extended goal for each instance of the domain, starting
from that with 10 up to 30 blocks.

OPENSTACKS. Here, BF require that a valid plan ships
all specified requests following a specific production or-
der. The PPLTL formula H(madep3 → Y(O(madep2))) ∧
H(madep2 → Y(O(madep1))) encodes that p1 is made
strictly before p2, that in turn must be made before p3.
The equivalent LTLf formula is (madep2

)R (¬madep3
) ∧

(madep1
)R (¬madep2

). Every order must be shipped, and
this is encoded with O(shippedorder) in PPLTL, and with
F(shippedorder) in LTLf .

ROVERS. The goal of this domain is to gather and
communicate data about soil, rock and images to the
Earth using a set of rovers. BF enforce a total or-
der over the communications of the data. This tem-
porally extended goal implicitly requires the data to

be eventually communicated, and is encoded in PPLTL
as O(datasoil ∧ WY(H(¬datarock))) ∧ O(datarock ∧
WY(H(¬dataimage))) ∧ O(dataimage), and in LTLf as
(¬datarock)U (datasoil) ∧ (¬dataimage)U (datarock) ∧
F(dataimage). Also, when the rover reaches the lander, that
rover must re-calibrate all cameras (e.g., if the lander is
at waypoint wl and the rover r has 2 cameras, c1 and c2,
we have, in PPLTL, the formula ((¬atr,wl

S calibratedc1) ∧
(¬atr,wl

S calibratedc2)) ∨ H(¬atr,wl
), and, in LTLf ,

G(atr,wl
→ (F(calibratedc1) ∧ F(calibratedc2)))).

ELEVATOR. This domain models the problem of schedul-
ing passengers in the use of an elevator. In BF, we split the
passengers into half VIP and half regular passengers, where
VIP passengers must be served before every regular one.
For instance, we enforce this in PPLTL with O(servedp2

∧
servedp3

)∧O(servedp0
∧servedp1

∧WY(H(¬servedp2
∧

¬servedp3
))), and in LTLf with F(servedp2

∧ servedp3
)∧

(¬servedp2
∧ ¬servedp3

)U (servedp0
∧ servedp1

). Also,
we model that no passenger may share the elevator with
another passenger, and do so in PPLTL (resp. LTLf) with
H(boardedp0

→ (¬boardedp1
∧ ¬boardedp2

)) (resp.
G(boardedp0

→ (¬boardedp1
∧ ¬boardedp2

))).

Experimental Results
Table 3 reports on the overall performance of all compi-
lations across all domains. Coverage-wise, P4P performs
equally to or better than both Poly and Exp over most in-
stances. For the TB instances, P4P achieves the same cov-
erage as Poly (the best LTLf -based compilation) but is much
faster in terms of average runtime: P4P is roughly one order
of magnitude faster than Poly; this seems to be justified by a
great reduction in the number of expanded nodes (up to two
orders of magnitude in OPENSTACKS). This is somehow
expected. Indeed, for each planning action taken, Poly in-
terleaves quite a complex automaton synchronization phase,
from the initial state all the way to the goal. On average, in
TB instances, 94.3% of actions in plans obtained with Poly
come from the automaton’s synchronization phases.

The situation is different if we look at the BF instances.
Here, the best performing LTLf compilation is Exp, which is
superior to Poly over all instances. BF are of increasing di-
mensions and have been constructed to be computationally
more challenging. For example, in BLOCKSWORLD, the
hardest instance in TB requires a 22 actions plan, while BF
instances require up to 652 actions. In the case of Poly, the
planner has to cope with too many synchronization phases
and struggles to find solutions. If we compare P4P and Exp,
we observe that P4P is again the system performing gener-
ally better. The only exception is for one instance of OPEN-
STACKS. Exp solves this instance in roughly 739s while
P4P times out. By looking at the average number of ex-
panded nodes, LAMA’s search turned out to be slightly less
informed with P4P in this domain, which leads to timing
out in that particular instance. For BLOCKSWORLD, P4P
is instead much more effective than Exp, which manages to
compile only 7 instances. The compilation time seems to be
an issue for both LTLf compilations.

Indeed, if we look at Figure 1 (right), P4P compiles

Domain I Coverage Avg RT Avg EN Avg PL
P4P Poly Exp P4P Poly Exp P4P Poly Exp P4P Poly Exp

ROVERS
TB 7 7 7 6 1.43 21.11 1.98 12.67 616.83 12.67 5.33 5.67 (74.50) 5.33
BF 40 33 6 22 35.36 – 24.24 7665.36 – 7826.32 43.68 – 43.50

BLOCKSWORLD
TB 15 15 15 8 1.41 20.43 13.13 22.12 821.62 21.75 7.50 7.88 (132.88) 7.25
BF 21 21 1 1 – – – – – – – – –

OPENSTACKS
TB 10 10 10 6 6.11 31.66 8.75 52.67 3863.33 52.83 22.00 21.67 (349.00) 22.00
BF 30 7 5 8 11.88 68.86 19.50 99.80 1207764.80 72.40 24.00 24.00 (841.00) 24.00

ELEVATOR BF 29 29 4 29 231.83 – 228.09 1712076.48 – 1712090.79 75.48 – 75.48
Total 122 48 80

Table 3: Coverage, average Run-Time (Avg RT), Expanded Nodes (Avg EN) and Plan Length (Avg PL) achieved by P4P, Poly
and Exp. For Poly, we report in parenthesis the average PL considering the actions added by the compilation. Averages are only
among instances solved by those systems that obtain at least half of the coverage of the best performer. Column I is the number
of instances in a domain. “–” indicates when a system is excluded by the comparison. Bolds are for best performers.

Figure 1: Number of solved instances (left) and compiled
instances (right) versus computation time.

94.7% of the instances within 10s, while both Poly and
Exp converge much more slowly. Figure 1 (left) displays the
number of benchmark instances solved with a given timeout.
All systems achieve their maximum coverage quite quickly,
with P4P leaving the others well behind right after the start.

Figure 2 reports on a pairwise comparison P4P vs Exp
and P4P vs Poly over the number of expanded nodes and
runtime, instance by instance. P4P is generally faster than
Exp, apart from 15 instances. The number of expanded
nodes between these two systems is surprisingly similar.
Looking at our raw data, we observe that, for most of the
instances, Exp spends much more time than P4P in com-
pilation and slightly more time in evaluating a node of the
search. The comparison P4P vs Poly confirms our expecta-
tion on the number of expanded nodes. P4P expands nodes
more slowly than Poly, and therefore the runtime advantage
of P4P is related to the fact that P4P leads LAMA to do
much less search than Poly.

Regarding plan quality, we observed that all compilations
yield solution plans to the original problem of similar length,
making their overall performance the same in these terms.

Conclusion
In this paper, we studied classical planning for PPLTL goals.
PPLTL is a compelling formalism to express sophisticated
planning goals and, compared to LTLf -based approaches, al-
lows for a polynomial-time encoding that is optimal with
respect to the computational complexity and does not in-

(a) Exp vs P4P (RT) (b) Poly vs P4P (RT)

(c) Exp vs P4P (EN) (d) Poly vs P4P (EN)

Figure 2: Pairwise comparison between P4P and Exp (left
plots) and between P4P and Poly (right plots) in terms of
Run-Time (above) and Expanded Nodes (below).

crease the plan length. Moreover, handling PPLTL goals is
remarkably simple and elegant, given the direct mapping
between the theoretical formulation and the encoding com-
pilation without sacrificing efficiency. We devised an en-
coding of planning for PPLTL goals into classical planning
for reachability goals and demonstrated its practical effec-
tiveness through extensive experiments. Here, we focused
only on PPLTL. However, in principle, our approach can be
extended to goals expressed in Pure-Past Linear Dynamic
Logic (PPLDL) (De Giacomo et al. 2020), a strictly more ex-
pressive variant of PPLTL involving regular expressions. In-
deed, also PPLDL has a fixpoint characterization of the tem-
poral operators. This extension remains for future work. Fi-
nally, although our focus is on classical planning for PPLTL
goals, the theoretical and practical advantages observed in
this paper suggest that PPLTL could become a promising
candidate for expressing temporally extended properties in
other forms of planning, such as nondeterministic planning.

Acknowledgments
This work has been partially supported by the EU H2020
project AIPlan4EU (No. 101016442), the ERC-ADG White-
Mech (No. 834228), the EU ICT-48 2020 project TAILOR
(No. 952215), the PRIN project RIPER (No. 20203FFYLK),
and the PNRR MUR project FAIR (No. PE0000013).

References
Alechina, N.; Logan, B.; and Dastani, M. 2018. Modeling
Norm Specification and Verification in Multiagent Systems.
FLAP, 5(2): 457–490.
Bacchus, F.; Boutilier, C.; and Grove, A. 1996. Rewarding
behaviors. In AAAI, 1160–1167.
Bacchus, F.; Boutilier, C.; and Grove, A. 1997. Structured
solution methods for non-Markovian decision processes. In
AAAI, 112–117.
Bacchus, F.; and Kabanza, F. 1996. Planning for Temporally
Extended Goals. In AAAI, 1215–1222. AAAI Press.
Bacchus, F.; and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. AIJ, 116(1-
2): 123–191.
Baier, C.; Katoen, J.-P.; and Guldstrand Larsen, K. 2008.
Principles of Model Checking. MIT.
Baier, J. A.; Fritz, C.; Bienvenu, M.; and McIlraith, S. A.
2008. Beyond Classical Planning: Procedural Control
Knowledge and Preferences in State-of-the-Art Planners. In
AAAI, 1509–1512. AAAI.
Baier, J. A.; and McIlraith, S. A. 2006. Planning with First-
Order Temporally Extended Goals using Heuristic Search.
In AAAI, 788–795. AAAI.
Barringer, H.; Fisher, M.; Gabbay, D. M.; Gough, G.; and
Owens, R. 1989. METATEM: A Framework for Program-
ming in Temporal Logic. In REX Workshop, volume 430 of
LNCS, 94–129. Springer.
Borgwardt, S.; Hoffmann, J.; Kovtunova, A.; Krötzsch, M.;
Nebel, B.; and Steinmetz, M. 2022. Expressivity of Planning
with Horn Description Logic Ontologies. In AAAI, 5503–
5511. AAAI Press.
Cimatti, A.; Geatti, L.; Gigante, N.; Montanari, A.; and
Tonetta, S. 2020. Reactive Synthesis from Extended
Bounded Response LTL Specifications. In FMCAD, 83–92.
IEEE.
Cimatti, A.; Giunchiglia, F.; Giunchiglia, E.; and Traverso,
P. 1997. Planning via Model Checking: A Decision Proce-
dure for AR. In ECP, 130–142. Springer.
De Giacomo, G.; Di Stasio, A.; Fuggitti, F.; and Rubin, S.
2020. Pure-Past Linear Temporal and Dynamic Logic on
Finite Traces. In IJCAI, 4959–4965. ijcai.org.
De Giacomo, G.; and Rubin, S. 2018. Automata-Theoretic
Foundations of FOND Planning for LTLf and LDLf Goals.
In IJCAI, 4729–4735.
De Giacomo, G.; and Vardi, M. Y. 1999. Automata-
Theoretic Approach to Planning for Temporally Extended
Goals. In ECP, 226–238. Springer.

De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In IJCAI,
854–860. IJCAI/AAAI.
Emerson, E. A. 1990. Temporal and Modal Logic. In Hand-
book of Theoretical Computer Science, Chapter 16.
Fisher, M.; and Wooldridge, M. 2005. Temporal Reasoning
in Agent-based Systems. In FAI, 469–495. Elsevier.
Gabbay, D. M.; Pnueli, A.; Shelah, S.; and Stavi, J. 1980.
On the Temporal Analysis of Fairness. In POPL, 163–173.
ACM Press.
Geffner, H.; and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool Publishers.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. AIJ, 173(5-6): 619–668.
Giunchiglia, F.; and Traverso, P. 1999. Planning as Model
Checking. In ECP, 1–20. Springer.
Haslum, P. 2013. Optimal Delete-Relaxed (and Semi-
Relaxed) Planning with Conditional Effects. In IJCAI,
2291–2297. IJCAI.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26(1): 191–246.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. JAIR, 14:
253–302.
Knobbout, M.; Dastani, M.; and Meyer, J. C. 2016. A Dy-
namic Logic of Norm Change. In ECAI, 886–894.
Lichtenstein, O.; Pnueli, A.; and Zuck, L. D. 1985. The
Glory of the Past. In Logic of Programs, 196–218. Springer.
Manna, Z. 1982. Verification of Sequential Programs: Tem-
poral Axiomatization, 53–102. Springer Netherlands.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL –
the planning domain definition language. Technical report,
ICAPS.
Nebel, B. 2000. On the Compilability and Expressive Power
of Propositional Planning Formalisms. JAIR, 12: 271–315.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
JAIR, 39: 127–177.
Röger, G.; Pommerening, F.; and Helmert, M. 2014. Op-
timal Planning in the Presence of Conditional Effects: Ex-
tending LM-Cut with Context Splitting. In ECAI, 765–770.
Sohrabi, S.; Baier, J.; and McIlraith, S. 2011. Preferred ex-
planations: Theory and generation via planning. In AAAI,
volume 25, 261–267.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. AIJ, 168(1-2): 38–69.
Torres, J.; and Baier, J. A. 2015. Polynomial-Time Reformu-
lations of LTL Temporally Extended Goals into Final-State
Goals. In IJCAI, 1696–1703. AAAI Press.
van der Aalst, W.; Pesic, M.; and Schonenberg, H. 2009.
Declarative Workflows: Balancing Between Flexibility and
Support. Computer Science - R&D, 23(2): 99–113.

