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Abstract

Adaptive optimization technology is a key ingredient in modern runtime
systems. This technology aims at improving performance by making
optimization decisions on the basis of a program’s observed behavior.
Application virtual machines indeed face different and perhaps more
compelling issues compared to traditional static optimizers, as dynamic
language features can force the deferral of most effective optimizations
until run time.

In this thesis we present novel ideas to improve adaptive optimiza-
tion, focusing on two main problems: collecting fine-grained program
profiles with low overhead to guide feedback-directed optimization, and
supporting continuous optimization and deoptimization by diverting
execution across dynamically generated code versions.

We present two profiling techniques: the first works at interproce-
dural level to collect calling context information for hot code portions,
while the second captures cyclic-path profiles within the boundaries
of a single function. Both techniques rely on efficient and elegant data
structures, advancing the state of the art of the theory and practice of
the performance profiling literature.

We then focus our attention on supporting continuous optimization
through on-stack replacement (OSR) mechanisms. We devise a new
OSR framework encoded entirely at intermediate-representation level,
which extends the best OSR practices with the ability to perform OSR at
nearly any program location. Our techniques pave the road to aggressive
optimizations and debugging techniques that were not supported by
previous approaches. The main technical challenge is how to automati-
cally generate compensation code to fix the program’s state across an
OSR transition between different code versions. We present a concep-



xii New Techniques for Adaptive Program Optimization

tual framework for OSR, distilling its essence to a core calculus with an
operational semantics. Using bisimulation techniques, we describe how
OSR can be correctly supported in the presence of common compiler
optimizations, providing the first soundness results in this context.

We implement our ideas in production systems such as Jikes RVM
and the LLVM compiler toolchain, and evaluate their performance
against a variety of prominent benchmarks. We investigate the end-
to-end utility of our techniques in a series of case studies: we illustrate
two possible applications of multi-iteration path profiling, and show
how our OSR techniques advance the state of the art for MATLAB code
optimization and for source-level debugging of optimized code.

Part of the results of this thesis has been published in PLDI, OOPSLA,
CGO, and Software Practice and Experience [52, 49, 53, 50, 51].



1. Introduction

Translating programming languages into a form that can efficiently exe-
cute on a target platform is a very challenging problem for computer
scientists. Historically, there are two approaches to translation: inter-
pretation and compilation. An interpreter reads the source code of a
program, stepping through its expressions to determine which operation
to perform next. A compiler instead translates a program into a form
that is more amenable to execution, analyzing its source code only once
and generating code that would give the same effects as interpreting it.

The two approaches have different benefits in terms of execution
speed, portability, footprint, and optimization opportunities. Compiled
programs typically execute faster, as a compiler can devote an arbi-
trary amount of time to static (i.e., prior to run-time) code analysis and
optimization. On the other hand, an interpreter can access run-time
information such as taken control-flow, input parameter values, and vari-
able types, thus enabling optimizations that static compilation would
miss. Indeed, this information may be subject to changes across different
runs, or may not be obtainable in general solely through source code
inspection.

Additionally, the evolution of programming languages over the years
has provided software developers with a plethora of useful features
such as dynamic typing and class loading, reflection, and closures that
may hinder efficient code generation in a static compiler. In response,
industry and academia have significantly invested in adaptive optimization
technology, which consists in observing the run-time behavior of a
program in order to drive optimization decisions.
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1.1. Context and Motivations
The past two decades have witnessed the widespread adoption of

programming languages designed to run on application virtual machines
(VMs). Compared to statically compiled software, these execution en-
vironments provide several advantages from a software engineering
perspective, including portability, automatic memory and concurrency
management, safety, and ease of implementation for dynamic features of
a programming language such as adding new code, extending object
definitions, and modifying the type system.

Application virtualization technology has been brought to the main-
stream market by the Java programming language and later by the Com-
mon Language Runtime for the execution of .NET programs. Virtual
machines are nowadays available for many popular languages, including
JavaScript, MATLAB, Python, R, and Ruby.

Modern virtual machines typically implement a mixed-mode execu-
tion environment, in which an interpreter is used for executing portions
of a program until it becomes profitable to compile them through just-
in-time (JIT) compilation and continue the execution in native code. For
efficiency reasons, source code is usually translated into an intermediate
representation (IR)—also known as bytecode—that is easier to analyze and
process. Multiple levels of JIT compilation are possible, each with a
different trade-off between compilation time and expected code quality.

Adaptive optimization technology is a central element for the perfor-
mance of runtime systems. JIT compilation indeed does not come for
free: a virtual machine should be able to exploit run-time information
to tailor optimized code generation to the current workload, so that the
expected performance gains can counterbalance the overhead coming
from collecting the profile and performing the optimizations.

Analyzing the run-time behavior of a program is useful also in the
context of statically compiled code. Profile-guided optimization (PGO) tech-
niques adopt a dual-compilation model in which a program is compiled
and executed on representative input sets during an initial training stage,
and is eventually recompiled using feedback information to generate
the final optimized version.

1.2. Addressed Problems
Collecting accurate profiling information with a minimal impact on a

running program is a key factor for an effective deployment of adaptive
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optimization techniques. In principle, developers and VM builders
may leverage hardware performance counters provided by modern
processors to collect low-level profiling information with no impact
on the performance of a running program. However, the difficulty in
mapping low-level counter data to high-level constructs such as classes
and objects discourages their use for implementing complex analyses in
runtime systems.

In the past three decades many sophisticated software-based tech-
niques have been proposed for collecting fine-grained information re-
garding individual statements, objects, or control-flow paths. These
techniques are typically based on program instrumentation, sampling,
or a combination of both. For some problems, however, the size of the
domain can be particularly large and extant techniques do not scale
well or may even run out of space when analyzing real-world programs.
In this thesis we investigate how data structure-based techniques from
the algorithmic community can be used to devise efficient performance
profiling tools.

Another key ingredient for adaptive optimization is the ability of a
runtime to divert the execution to the newly generated optimized code
while the original function is executing. In fact, in the presence of long-
running methods it is not sustainable for a VM to wait for the original
function to complete and let only subsequent invocations run the opti-
mized version. The problem of handling transitions between different
compiled versions is formally known as On-Stack Replacement (OSR).
Modern VMs implement OSR techniques to dynamically replace code
with more optimized one, and also to invalidate aggressive, speculative
optimizations and continue in a safe code version when an assumption
made at compile time no longer holds.

Supporting OSR in a runtime system raises a number of fundamental
questions. What is the set of program points at which OSR can safely
occur, and how is it affected by compiler optimizations? Can we guar-
antee the soundness of an OSR transition? What is the impact of OSR
machinery on running code?

1.3. Contributions of the Thesis
The contributions of this thesis aim at covering both methodological

and practical aspects of the adaptive optimization cycle, ranging from
performance profiling to continuous program optimization through
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online code generation. Methodological contributions of this thesis
include:

• an interprocedural analysis to identify the most frequently encoun-
tered calling context across function invocations, based on data
streaming algorithms that enable a reduction of space usage by
orders of magnitude without sacrificing accuracy or performance;

• an intraprocedural analysis to identify cyclic paths taken across the
control flow graph of a function, overcoming the limitations of
previous approaches and enabling the profiling of very long cyclic
paths using efficient data structures;

• a new abstraction for on-stack replacement based on compensation
code, to enable OSR at places that previous approaches do not
support as they expect a new function to resume execution from
the very same program state;

• a first step towards a provably sound methodological framework
for OSR, identifying sufficient conditions to determine the set of
points where OSR can safely occur and devising an algorithm
to automatically generate compensation code in the presence of
certain classes of compiler optimizations.

We evaluate the practicability of all our techniques through extensive
experimental studies on both industrial-strength benchmark and real-
world applications. We also present three case studies that explore the
end-to-end utility of the presented ideas.

All our techniques have been implemented as libraries for main-
stream systems, including the gcc compiler, Jikes RVM, and the LLVM
compiler infrastructure, and their source code is publicly available. To
back our results and to empower other researchers to build upon the
contributions of our work, we submitted two software artifacts that have
been reviewed and endorsed by the scientific community.

We believe that some techniques presented in this thesis might have
some technology transfer potential in VM construction; private con-
versations we had with developers from major ICT players about our
OSR library for LLVM have been quite encouraging in this sense. We
are aware that our tools are currently being used in a joint academic-
industrial research project for the optimization of the runtime for the R
language [139].
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1.4. Structure of the Thesis
The remainder of this thesis is structured as follows. Chapter 2 re-

views the state of the art for adaptive program optimization technology.
Chapter 3 presents our intra- and inter-procedural techniques for per-
formance profiling, while Chapter 4 tackles the on-stack replacement
problem to support better continuous program optimizations. Chapter 5
illustrates the results of our experimental studies. Chapter 6 presents
examples of applications of our techniques in program optimization
and debugging. Conclusions and possible directions for future work
are discussed in Chapter 7.

Declaration. This thesis is a presentation of original work of its author.
The work was done under the guidance of Prof. Camil Demetrescu, in
conjunction with Prof. Irene Finocchi in the early stage of the doctoral
program, at Sapienza University of Rome.

Prof. Steve Blackburn (Australian National University) and Dr. David
Grove (IBM Watson Research Center) served as external reviewers for
the thesis committee. The thesis was then defended on June 27, 2016
in front of a national evaluation commission, represented on that day
by Prof. Enrico Pagello (chairman, University of Padua; ), Prof. Giulio
Iannello (Campus Bio-Medico University of Rome), and Prof. Tullio
Salmon Cinotti (University of Bologna).

The ideas and the results presented in this work have appeared
in conference proceedings and scientific journals [52, 49, 53, 50]. The
contents of Sections 4.2, 5.4 and 6.3 were yet unpublished when the
thesis was defended and appeared later in [51].





2. State of the Art

To address performance challenges faced by modern runtime systems,
vendors have invested considerable resources in adaptive optimization
technology. Today, mainstream virtual machines come with sophis-
ticated infrastructure for online profiling, run-time compilation, and
feedback-directed optimization [7]. This chapter aims at providing an
overview of the most commonly used techniques in adaptive optimiza-
tions systems. We will provide more detailed comparisons with the
state of the art in the technical chapters of this dissertation.

2.1. Profiling Techniques
Motivated by the observation that most programs spend the majority

of time in a small fraction of their code, virtual machines typically adopt
selective optimization policies in order to focus their efforts on hot code
portions only. Indeed, optimization comes at a cost, and the expected
performance gains from it should compensate for the overhead from col-
lecting and processing profiling information and performing associated
transformations.

2.1.1. Mechanisms for Collecting Profiles
A key technical challenge for an adaptive optimization system is to

collect accurate profile data while keeping the overhead low.
In order to collect coarse-grained information, such as the set of most

frequently executed methods, two profiling mechanisms have emerged.
Counter-based mechanisms associate counters with methods, and each
counter is updated when the associated method is entered. A similar
strategy can be adopted also to count how many times each loop back
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edge is traversed. Sampling-based mechanisms instead periodically
interrupt the program to inspect its state, for instance by walking the
call stack, and they can incur a lower overhead than counter-based ones
when sampling is triggered by an external clock.

However, the most effective feedback-directed optimizations typically
require finer-grained profiles, regarding, e.g., individual statements,
objects, or paths taken in the control flow graph of a function. Collecting
such profiles with low overhead is a major challenge, especially for use
in online optimization. Program instrumentation consists in injecting
additional code in a running program and enables the collection of a
wide range of profiling data. Exhaustive instrumentation can be very
expensive, and is typically combined with sampling techniques in order
to affect only a limited percentage of the execution events. Several works
have explored the trade-off between accuracy and performance in this
scenario. In particular, Arnold and Ryder [8] described a technique that
allows the system to turn instrumentation on and off at a fine granularity.
A similar mechanism is used in [152] to implement context-sensitive
profiling in a JVM.

Indeed, the primary mechanism to reduce instrumentation overhead
is to limit the time during which instrumented code executes [7]. Several
VMs apply instrumentation to unoptimized code only, turning it off
when a method is recompiled. This approach has several advantages,
but its main drawback is that it fails to capture changes in the dominant
behavior that happens after the early phases. Whaley [143] proposed a
three-stage model that inserts instrumentation for fine-grained profiling
in the second stage only. Multi-tier compilation systems, such as the
one implemented in WebKit’s JavaScript engine [113], may also insert
instrumentation in later stages (i.e., in more optimized code as well).

The work on vertical profiling by Hauswirth et al. [72] sheds light
on the need to perform profiling at all levels of the execution stack -
including services provided by the runtime - for performance under-
standing. Indeed, techniques such as dynamic compilation and garbage
collection influence program behavior in a way that makes correlation
of performance with source code challenging.

Hardware performance monitors provided by specialized hardware
in mainstream processors are an additional source of information that
an adaptive optimizer may use. What makes them challenging to use in
practice is the difficulty in mapping low-level collected data to high-level
program constructs. Schneider et al. explored how to track them back to
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individual bytecode instructions in Jikes RVM [121].

2.1.2. Granularity of Profiling
Program analysis and optimization techniques can be divided in two

categories: intra-procedural techniques apply to one function at a time,
while inter-procedural ones operate across function boundaries.

Examples of intra-procedural profiles are those collected by vertex,
edge, and path profilers. A vertex profile counts the number of execu-
tions of each vertex (basic block) in a control flow graph, while an edge
profile counts the number of times each control-flow edge executes [14].
A vertex profile can be used to guide a compiler in basic-block place-
ment. An edge profile always determines a vertex profile, and can be
used to enable more powerful optimizations: for instance, Bond and
McKinley [28] investigated the impact of using continuous edge profiles
to drive optimization in Jikes RVM, with benefits in terms of, e.g., code
reordering and register allocation. Path profiles provide finer-grained
information, as they can capture acyclic paths taken in the control flow
graph of a routine. The seminal work by Ball and Larus [15] has spawned
much research interest over the last 15 years in the design of novel tech-
niques for collecting longer path profiles, as they can be used to guide
several optimizations.

Inter-procedural profiles aim at capturing the interactions between
functions in a program. For instance, context-sensitive profiles associate
a metric with a sequence of procedures (a calling context) that are active
during intervals of a program’s execution [5]. In the context of statically
compiled languages, expensive inter-procedural analyses can be used to
attempt to prove invariants; in a managed environment, a profile can be
used to speculate that invariants hold without proving them correct for
all possible inputs. A virtual machine can thus apply many transforma-
tions speculatively, relying on ad-hoc invalidation mechanisms when
execution diverges from the assumptions made during compilation.

2.2. Code Optimizers
Mainstream runtime systems can resort to a large variety of tech-

niques to generate executable code. A modern virtual machine typically
relies on an interpreter (or a very fast baseline compiler) to execute a
function the first time it is encountered, and then resorts to a just-in-time
(JIT) compilation system, usually equipped with multiple optimization
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levels, to generate efficient code for a program’s hot portions.

2.2.1. Interpretation
Traditionally, an interpreter can be implemented using a switch-

based dispatcher that examines each instruction—typically after the
source-level representation has been translated to a bytecode form—
and processes it. Threading [18] has been historically used in many
implementations for efficient dispatching. Nonetheless, matching the
performance of optimized compiled code remains an impossible goal.

Implementing a JIT is typically a large effort, as it affects a significant
part of the existing language interpretation, and may not always be sus-
tainable. Several researchers tried to come up with solutions to improve
the interpretation process dynamically. Wurthinger et al. [146] proposed
self-optimizing abstract syntax tree (AST) interpreters, which modify
the AST representation of a program to incorporate type feedback in dy-
namic programming languages. Kalibera et al. adopted this idea in [81],
where they describe and evaluate a simple AST-based implementation
of the R language running on an optimizing JVM that is competitive
with—and usually faster than—other R implementations. Sullivan et
al. in [128] showed that the DynamoRIO dynamic binary optimizer [13]
can be used to remove much of the interpreted overhead from language
implementations.

2.2.2. JIT Compilation
JIT compilation is used by modern runtimes to gain the benefits of

both static compilation (e.g., generation of efficient code) and interpre-
tation (e.g., access to run-time information). In his famous survey [11],
Aycock dated the earliest published works on JIT compilation back to the
’60s, while the seminal work on the Smalltalk-80 implementation [55]
epitomized the distinctive features of a modern JIT system.

Multi-Level JIT. Sophisticated JIT compilers such as HotSpot Server
[108] can generate very high-quality code, but the time spent in the com-
pilation process ought to be compensated by the expected performance
gains. Many modern runtimes implement multiple levels of JIT compi-
lation, so that only the “hottest” portions of the code get compiled at the
highest optimization level, while the number of optimizations applied
to “warm” portions is typically smaller. For instance, Jikes RVM [4] does
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not have an interpreter and uses a cost-benefit model fed by call-stack
samples to select between multiple levels of optimization.

OSR Transitions. Ideally, an adaptive optimization system should be
able to generate a more optimized version of a function as soon as that
becomes profitable, and let the program run it. In the presence of long-
running functions, however, it is not affordable for a runtime to wait for
a less optimized function to complete, and thus redirecting only future
invocations of it to the more optimized code. On-Stack Replacement (OSR)
can be used to replace a function while it executes, resuming execution in
a different code version. OSR is a staple of modern runtimes, as it is used
in optimization cycles to switch to faster code versions as soon as they
become available, and to perform deoptimization when a speculative
assumption made for the running function at compilation time does not
hold anymore.

Trace-based JIT. Trace-based JIT compilation has been proposed in [66]
to deal with the absence of concrete type information when compil-
ing code for dynamic languages. Tracing JIT compilers can identify
frequently executed sequences of instructions inside loops, and then
generate specialized code for the dynamic types observed on each path
through the loop. They then insert guards in the optimized code to
verify that types do not change across subsequent iterations: when this
happens, execution leaves the trace through a side exit. Trace stitching
can be used to concatenate sequences of optimized code at frequently
taken side exits.

Partial Evaluation. Futamura in [65] proposed partial evaluation to
derive compiled code from an interpreter and a program’s source code,
and it has then extensively been studied for functional languages. Partial
evaluation is also used in Truffle/Graal [145] to perform aggressive
optimizations assuming that the values of some variables do not change.
For the interested reader, we refer to [100] for a detailed discussion of
the pros and cons of tracing JIT vs. partial evaluation.

Basic Block Versioning. Basic Block Versioning (BBV) [36] is a JIT com-
pilation technique that generates type-specialized code for basic blocks
lazily, interleaving execution and compilation as new type combinations
are observed. BBV is simple to implement, can remove redundant type
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checks from critical code paths, and has recently been extended with
simple but effective inter-procedural optimizations [37]. It might be thus
an option for VM builders to implement a baseline JIT compiler.

2.3. Feedback-Directed Optimization
In an adaptive runtime a fully automatic online Feedback-Directed

Optimization (FDO) system is the key for continuous optimization. As
highlighted in [7], FDO has several advantages: for instance, it can over-
come limitations of static optimizers by exploiting run-time information
that cannot be statically inferred, and it allows the runtime to change a
decision if and when conditions change.

The universe of FDO techniques is rather large. For this reason, in the
remainder of this section, we will present in more detail those techniques
to which the ideas presented in this thesis are more applicable, and
briefly mention the others.

Inlining. Replacing a call site with the code of the function it invokes
is one of the most widely employed optimization techniques. Inlining
can be particularly effective in the context of object-oriented languages,
but performing it too aggressively would place a burden on compilation
time and code bloat. The implementations of the SELF language [76, 77]
introduced progressively sophisticated techniques for effective dynamic
inlining: in particular, they augmented inlining with type feedback
based on types profiled for the receivers.

Lessons learned from the devirtualization of function calls in stat-
ically compiled object oriented languages (e.g., [12, 48]) have been
precious for inlining implementations in the presence of dynamic class
loading. For instance, HotSpot performs guarded inlining when class
hierarchy analysis suggests a likely monomorphic call site.

Multiversioning and Specialization. A compiler may decide to gen-
erate multiple implementations of a code sequence, and let the program
choose the best one at run time. In a dynamic setting, versions can be
generated using run-time profiling information: the guarded inlining
example discussed above is indeed a form of multiversioning. To divert
execution to a safe code version, a compiler can either add a slow path
in the code—possibly separated from the fast path to avoid polluting
the results of data-flow analyses—or trigger an OSR when a guard fails.
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The latter approach has been used for instance in SELF-91 to support
deferred compilation [33]; HotSpot and Jikes RVM implement it in a
similar manner.

Specialization is a form of multiversioning that speculates on run-
time facts, and is thus closely related to partial evaluation. When a type
inference engine cannot infer precise information for a function, type-
based JIT specialization can be used to generate specialized copies of the
function body [41] by speculating on each argument’s type. Value-based
JIT specialization [119] creates specialized function bodies based on the
run-time values for a subset of the arguments, and can be effective for
functions that are either called only once, or repeatedly invoked with
the same parameters.

Instruction Scheduling. Instruction scheduling techniques attempt
to maximize the flow of instructions through a processor’s pipeline by
reordering them on the basis of observed profiles. Extensively studied
in static code generation for superscalar processors, these techniques
have been explored for JIT compilers as well [7, 136].

Other Relevant Techniques. Unless otherwise stated, we refer the
reader to [7] for the techniques mentioned here. Polymorphic Inline
Caches (PICs) can be used to perform dynamic dispatching of methods
based on previously seen cases. PICs are also used by modern JavaScript
engines to optimize object property access [37].

Escape analysis [39] permits stack placement of an object: it is typi-
cally enabled by other transformations, such as speculative inlining of
currently monomorphic call sites, and paves the way to further opti-
mization such as the promotion of an object’s fields from memory to
registers.

Code positioning techniques can be used to improve branch pre-
diction and maximize instruction-cache locality by rearranging the in-
structions in the code. Production VMs can also dynamically adjust
the size of their heap depending on the memory allocation requests
of the running application. Garbage collection is typically triggered at
safepoints, at which all threads are suspended and also other tasks such
as deoptimization and code cache flushing can be performed.





3. Performance Profiling Techniques

In this chapter we present two run-time analyses for collecting fine-
grained profiling information based on efficient and elegant algorithmic
techniques. The first analysis is interprocedural and focuses on identify-
ing the calling contexts of function invocations that are most frequently
encountered during the execution of a program. The second analysis
works at intraprocedural level and identifies cyclic paths that are taken
in the control flow graph of a procedure, thus spanning multiple loop
iterations. Both techniques can provide valuable information for pro-
gram understanding and performance analysis, as they can be used to
direct optimizations to portions of the code where most resources are
consumed.

3.1. Mining Hot Calling Contexts in Small Space
The first contribution we present in this thesis is an interprocedural

technique for mining the most frequently encountered calling contexts
for function invocations at run time. We show that the traditional ap-
proach of constructing a Calling Context Tree (CCT) might not be sustain-
able for real-world applications, as their CCTs often consist of tens of
millions of nodes, making them difficult to analyze and also hurting
execution time because of poor access locality. We thus introduce a novel
data structure, the Hot Calling Context Tree (HCCT), in the spectrum of
representations for interprocedural control flow. The HCCT is defined
as the subtree of the CCT containing only its most frequently visited
nodes, which we call hot, and their ancestors. We show how to construct
it independently of the CCT using fast, space-efficient algorithms for
mining frequent items in data stream.
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3.1.1. Motivation and Contributions
The dynamic calling context of a routine invocation is defined as the

sequence of functions that are concurrently active on the run-time stack
at the time of the call. A calling context leads to an exact program
location: in fact, it corresponds to the sequence of un-returned calls
from a program’s root function to the routine invocation of interest.

Context-sensitive profiling provides valuable information for pro-
gram understanding, performance analysis, and run-time optimiza-
tion. Many works have demonstrated its effectiveness for tasks such
as residual testing [110, 137], function inlining [34], statistical bug iso-
lation [59, 94], performance bug detection [107], object allocation anal-
ysis [106], event logging [151], and anomaly-based intrusion detec-
tion [30]. Calling-context information has also been employed in re-
verse engineering of protocol formats [95], unit test generation [138],
and testing of sensor network applications [87].

Calling context trees (CCTs) offer a compact representation for context-
sensitive information. A CCT yields a more accurate profile than a call
graph—which can sometimes lead to misleading conclusions [115, 125]—
in a space that is typically several orders of magnitude smaller than the
one required to maintain a call tree. Also, many techniques have been
proposed over the years to reduce the overhead for its construction.

However, even CCTs may be very large and difficult to analyze in
several applications [30, 152]; their sheer size might also hurt execution
time, because of poor access locality during construction and query.
As an example, we report in Table 3.1 figures collected for short usage
sessions of off-the-shelf Linux applications and for benchmarks from
popular suites. Under the optimistic assumption that each CCT node
requires 20 bytes for its representation on a 32-bit architecture1, nearly 1
GB of memory is needed just to maintain OpenOffice Calc’s 48-million-
node CCT.

In a performance profiling scenario only the most frequently encoun-
tered contexts are of interest, as they represent the hot spots to which
optimizations must be directed. As observed in [152]: “Accurately col-
lecting information about hot edges may be more useful than accurately
constructing an entire CCT that includes rarely called paths”.

1 From maintaining routine ID, call site, and a performance metric as int fields, along
with two pointers for a first-child, next-sibling tree representation. Previous works [5,
125] use larger nodes.
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Application |Call graph| Call sites |CCT| |Call tree|
amarok 13 754 113 362 13 794 470 991 112 563
ark 9 933 76 547 8 171 612 216 881 324
audacity 6 895 79 656 13 131 115 924 534 168
bluefish 5 211 64 239 7 274 132 248 162 281
dolphin 10 744 84 152 11 667 974 390 134 028
firefox 6 756 145 883 30 294 063 625 133 218
gedit 5 063 57 774 4 183 946 407 906 721
ghex2 3 816 39 714 1 868 555 80 988 952
gimp 5 146 93 372 26 107 261 805 947 134
gwenview 11 436 86 609 9 987 922 494 753 038
inkscape 6 454 89 590 13 896 175 675 915 815
oocalc 30 807 394 913 48 310 585 551 472 065
ooimpress 16 980 256 848 43 068 214 730 115 446
oowriter 17 012 253 713 41 395 182 563 763 684
pidgin 7 195 80 028 10 743 073 404 787 763
quanta 13 263 113 850 27 426 654 602 409 403
sudoku 5 340 49 885 2 794 177 325 944 813
vlc 5 692 47 481 3 295 907 125 436 877
botan 3 388 27 114 308 550 26 272 804 980
cairo-perf-trace 1 408 3 696 137 920 15 976 619 734
crafty 107 516 36 434 095 10 403 074 070
fhourstones 18 32 OOM 39 272 563 944
gobmk 1 133 4 049 OOM 21 909 088 291
ice-labyrinth 2 335 8 050 2 160 052 1 637 076 406
mount-herring 2 318 8 269 3 733 120 3 311 257 932
overworld 14 173 50 394 3 774 937 4 112 679 880
scotland 13 932 51 206 1 813 368 5 982 612 379
sjeng 57 221 OOM 28 370 207 811

Tab. 3.1. Number of nodes of call graph, call tree, calling context tree, and number of
distinct call sites for different applications. OOM stands for Out Of Memory (i.e., the CCT
is too large to be constructed in main memory on a 32-bit architecture). We provide a
detailed description of the applications and their workloads in Section 5.1.2.

In Figure 3.1 we report the cumulative distribution of calling contexts
for different applications, using frequency counts as metric. We observe
that for all the applications only a small fraction of contexts are hot:
in conformance with the Pareto principle, nearly 90% of routine calls
take place in only 10% of contexts. The skewness of the distribution
suggests that space could be greatly reduced by keeping information
about hot contexts only and discarding on the fly likely cold (i.e., having
low frequency) contexts.

Contributions. In this thesis we introduce a novel run-time data struc-
ture, called Hot Calling Context Tree (HCCT), that compactly represents
all the hot calling contexts encountered during a program’s execution,
offering an additional intermediate point in the spectrum of data struc-
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Fig. 3.1. Skewness of calling contexts distribution on a representative subset of applica-
tions. For instance, in oocalc 10% of the hottest calling contexts account for more than
86% of all routine calls.

tures for representing interprocedural control flow. The HCCT is a
subtree of the CCT that includes only hot nodes and their ancestors, also
maintaining estimates of performance metrics (e.g., frequency counts)
for hot calling contexts. We cast the problem of identifying the most
frequent contexts into a data streaming setting: we show that the HCCT
can be computed without storing the exact frequency of all calling con-
texts, by using fast and space-efficient algorithms for mining frequent
items in data streams. These algorithms allow us to distinguish between
hot and cold contexts on the fly, and typically provide tight guarantees
on the accuracy of returned frequency estimates.

3.1.2. Approach
Background. A calling context tree (CCT) can be used to compactly
represent all the calling contexts encountered during the execution of a
program. In fact, calling contexts can be straightforwardly mapped to
paths in a tree: nodes represent un-returned function calls, and each path
from the root to a node v encodes the calling context of the call associated
with v. As in a tree the path from the root to any other node is always
unique, we can also say that each calling context is uniquely represented
by a node, which aggregates metrics for identical contexts recurring
in the execution. Note that a routine with multiple calling contexts
will instead appear more than once in the tree. Slightly extended CCT
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Fig. 3.2. (a) CCT annotated with calling-context frequency counts; (b) HCCT; and (c)
(φ, ε)-HCCT. Hot nodes are black. In this example N = 581, φ = 1/10, and ε = 1/30: the
approximate HCCT includes all contexts with frequency ≥ �φN� = 58 and no context
with frequency ≤ �(φ − ε)N� = 38.

definitions can be given to bound its depth in the presence of direct
recursion, and to distinguish calls that take place at different call sites of
the same calling procedure [5].

Introducing the HCCT. In order to introduce the hot calling context
tree, we have first to define when a context can be called hot. Let N be the
number of calling contexts encountered during a program’s execution:
N equals the number of nodes of the call tree, the sum of the frequency
counts of CCT nodes, as well as the number of routine invocations in
the execution trace.

Definition 3.1. A calling context is hot with respect to a frequency thresh-
old φ ∈ [0, 1] if and only if the frequency count of its corresponding
CCT node is ≥ �φN�.

Any calling context that is not hot is said to be cold.

Definition 3.2. The Hot Calling Context Tree (HCCT) is the (unique) sub-
tree of the CCT obtained by pruning all cold nodes that are not ancestors
of a hot node.

In graph theory, the HCCT corresponds to the Steiner tree of the
CCT with hot nodes and the root used as terminals, i.e., to the minimal
connected subtree of the CCT spanning hot nodes and the root. The
HCCT includes all the hot nodes, and all its leaves are necessarily hot.
An example of HCCT is given in Figure 3.2(b).



20 New Techniques for Adaptive Program Optimization

A Data Streaming Problem
The execution trace of routine invocations and terminations can be

naturally regarded as a stream of items. Each item is a triple containing
routine name, call site, and event type (i.e., routine invocation or termi-
nation). Figures reported in Table 3.1 indicate that, even for complex
applications, the number of distinct routines (i.e., the number of nodes of
the call graph) is small compared to the stream length (i.e., the number
of nodes of the call tree). Hence, non-contextual profilers such as vertex
profilers can easily collect performance metrics for all the routines using
a hash table. This may not be sustainable for contextual profilers when
the number of distinct calling contexts (i.e., the number of CCT nodes)
is too large, and hashing would be inefficient. Motivated by the fact that
execution traces are typically very long and their items (calling contexts)
are taken from a large universe, we cast the problem of identifying the
most frequent contexts into a data streaming setting.

In the data streaming computational model, algorithms should be
able to perform near-real time analyses on massive data streams, where
input data come at a very high rate and cannot be stored entirely due
to their huge, possibly unbounded size [54, 103]. This line of research
has been mainly motivated by networking and database applications:
for instance, a relevant IP traffic analysis task consists in monitoring the
packet log over a given link in order to estimate how many distinct IP
addresses used that link in a given period of time.

Space-efficient data streaming algorithms can maintain a compact
data structure that is dynamically updated upon arrival of new input
data, supporting a variety of application-dependent queries. Approx-
imate answers are allowed when it is impossible to obtain an exact
solution using only limited space. Streaming algorithms are therefore
designed to optimize space usage and update/query time while guar-
anteeing high solution quality [103].

We remark that the practical requirements for the design of effective
dynamic analysis tools—which have to collect and process large amounts
of data in nearly real time and with a minimal impact on the running
program—make it natural to look for the connections between these two
research areas.

Finding Frequent Items in a Stream. The problem of computing the
HCCT online can be reduced to the frequent items (a.k.a. heavy hitters)
problem, which has been extensively studied in the data streaming
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model. Given a frequency threshold φ ∈ [0, 1] and a stream of length N,
the problem (in its simplest formulation) is to find all items that appear
in the stream at least �φN� times, i.e., having frequency ≥ �φN�. For
instance, for φ = 0.1 the problem seeks all items that appear in the stream
at least 10% of the time. Notice that at most 1/φ items can have frequency
larger than �φN�. It can be proved that any algorithm that outputs an
exact solution requires Ω(N) bits, even using randomization [103]. Note
that this lower bound result extends to the problem of computing the
HCCT, which cannot be calculated exactly in a space asymptotically
smaller than the entire CCT. Hence, researchers have focused on solving
an approximate version of the heavy hitters problem [103]:

Definition 3.3. (φ, ε)-heavy hitters problem. Given two parameters φ, ε

∈ [0, 1] with ε < φ, an algorithm has to return all items with frequency
≥ �φN� and no item with frequency ≤ �(φ − ε)N�.

In the approximate solution, false negatives are not allowed, i.e., all
frequent items must be returned. Instead, some false positives can exist,
but their actual frequency is guaranteed to be at most εN–far from the
threshold �φN�. For the HCCT construction, we focus on a variant of
the problem where, besides returning the heavy hitters, it is necessary
to estimate their true frequencies accurately, the stream length N is not
known in advance, and all the items in the stream have equal weight.

Counter-based streaming algorithms solve this problem by tracking
a subset of items from the input and monitoring counts associated with
them. For each new arrival, the algorithms decide whether to store the
item or not, and, if so, what count to associate with it. Update times
are typically dominated by a small (constant) number of dictionary or
heap operations. These algorithms, according to extensive experimen-
tal studies [44, 98], have superior performance with respect to space,
running time, and accuracy compared to other classes of algorithms for
(φ, ε)-heavy hitters that have been proposed in the literature over last 15
years.

Approximating the HCCT
Streaming algorithms for mining frequent items can be used to solve

a relaxed version of the HCCT construction problem. We thus rely on
them to compute an Approximate Hot Calling Context Tree that we denote
by (φ, ε)-HCCT, where ε < φ controls the degree of approximation:
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Definition 3.4. Given a set A of (φ, ε)-heavy hitters, the (φ, ε)-HCCT is
the minimal connected subtree of the CCT spanning all the nodes in A
and their ancestors.

A (φ, ε)-HCCT contains all hot nodes (true positives), but may possibly
contain some cold nodes without hot descendants (false positives). The
true frequency of these false positives, however, is guaranteed to be
at least �(φ − ε)N�. Unlike the HCCT, a (φ, ε)-HCCT is not uniquely
defined, since the set of (φ, ε)-heavy hitters is not unique: nodes with
frequencies smaller than �φN� and larger than �(φ − ε)N� may be in
such a set or not depending on the streaming algorithm’s decisions. On
the other hand, the HCCT is always a subtree of any (φ, ε)-HCCT, as the
latter always contains all the hot nodes and their cold ancestors up to
the CCT root.

3.1.3. Algorithms
Computing a (φ, ε)-HCCT online requires extending the canonical

CCT construction algorithm with an online pruning strategy, driven
by an underlying streaming routine. Constructing a CCT on the fly
during the execution of a program is rather simple. Let v be a cursor
pointer that points to the current context, i.e., to the node corresponding
to the calling context of the currently active routine (v is initialized to
the CCT root node). At each routine invocation, the algorithm checks
whether v has a child associated with the called routine. If this is the
case, the existing child is used and its metrics are updated, if needed.
Otherwise, a new child of v is added to the CCT. In both cases, the
cursor is moved to the callee. Upon routine termination, the cursor
is moved back to the parent node in the CCT. This approach can be
implemented by either instrumenting every routine call and return, or
performing stack walking when sampling is used to inhibit redundant
profiling [9, 142, 152].

In order to compute the set A of (φ, ε)-heavy hitters, counter-based
streaming algorithms need to monitor a slightly larger set M⊇A of
elements. Nodes in M \A can be either ancestors of nodes in A and
thus already in the (φ, ε)-HCCT, or nodes not in the (φ, ε)-HCCT; for the
latter category, we have to retain information about their ancestors as
well, which might not be in the (φ, ε)-HCCT. We denote as MCCT the
minimal subtree of the CCT spanning all the nodes in M and the CCT
root. Figure 3.3 graphically illustrates the relationships among all our
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Fig. 3.3. Tree data structures and calling contexts classification. We use the graphical
notation S ↑ T to indicate that T is the minimal subtree of the CCT spanning all nodes in S
and their ancestors.

data structures.

Our (φ, ε)-HCCT construction algorithm dynamically maintains the
MCCT while the underlying streaming routine processes the execution
trace and updates M. At query time, the streaming algorithm analyzes
M to discard all the elements in M \A: the MCCT is thus pruned appro-
priately and the (φ, ε)-HCCT⊆MCCT is returned.

Example 3.1. To understand why the heavy hitters and the approximate
HCCT are not maintained directly, but derived by pruning M and MCCT,
respectively, we discuss a scenario where M is larger than the number
of heavy hitters. Consider the following example: the execution trace
contains the initial invocation of the main function, which in turn invokes
once a routine p, and N − 2 times a different routine q. Hence, we have
three distinct calling contexts: main, main→p, and, main→q. Assume
that N ≥ 8, ε = 1/4, φ = 1/2, and that the counter-based streaming
subroutine can maintain three counters, one for each calling context.
Then, only context main→q has frequency larger than �(φ − ε)N� and
is a (φ, ε)-heavy hitter, but—as we assumed there is room in M for all
contexts—a streaming algorithm can maintain the exact frequencies of
both main→p and main→q. Since main→p has frequency 1, it would be
an error returning it as a heavy hitter. For this reason, M needs to be
post-processed in order to eliminate low-frequency items that may be
included when there are more available counters than heavy hitters.
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Data Structure Operations
At each function call, the set M of monitored contexts is updated by

a counter-based streaming algorithm. When M is changed, the subtree
MCCT spanning nodes in M needs to be brought up to date as well. To
describe how this happens, we assume that the interface of the streaming
algorithm provides two main functions:

update(x,M)→ V Given a calling context x, update M to reflect the new
occurrence of x in the stream (e.g., if x was already monitored in M,
its frequency count may be increased by one). This function might
return a set V of victim contexts that were previously monitored in
M and are evicted in the update (as a special case, x itself may be
considered as a victim if the algorithm chooses not to monitor it).

query(M)→ A Remove low-frequency items from M and return the sub-
set A of (φ, ε)-heavy hitters (see Figure 3.3).

As with the CCT, during the construction of the MCCT we maintain
a cursor pointer that points to the current calling context, creating a
new node if the current context x is not already represented in the
tree. Additionally, we prune the MCCT according to the victim contexts
returned by the streaming update operation (these contexts are no longer
monitored in M). The pseudocode of the pruning algorithm is given
in Algorithm 1. Since the tree must remain connected, victims can be
removed from the MCCT only if they are leaves. Moreover, removing
a victim might expose a path of unmonitored ancestors that no longer
have descendants in M: these nodes are pruned as well. The node for the
current context x is never removed from the MCCT, even if the context
is not necessarily monitored in M. This guarantees that no node in the
path from the tree root to x will be removed: these nodes have at least x
as a descendant and the leaf test (line 3 in Algorithm 1) will always fail.

A similar pruning strategy can be used to compute the (φ, ε)-HCCT
from the MCCT. The streaming query operation is first invoked on
M, returning the support A of the (φ, ε)-HCCT. All MCCT nodes that
have no descendant in A are then removed, following bottom-up path
traversals as in the prune operation.

Choosing a Streaming Algorithm
Space-Saving [102] is a deterministic, counter-based algorithm for

finding the heavy hitters and the top-k elements [35] in data streams.
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Input: M; MCCT; node x to be pruned.
Output: Pruned MCCT.

1 V ← update(x, M);
2 foreach context v ∈ V \{x} do
3 while (v is a leaf in MCCT) ∧ (v �∈ M) do
4 remove v from MCCT
5 v ← parent(v)
6 end
7 end

Algorithm 1: Online pruning algorithm for MCCT construction.

The algorithm is memory-efficient, as its space requirements are within a
constant factor of the lower bound for counter-based algorithms solving
the (φ, ε)-heavy hitters problem. Additionally, Space-Saving provides
tight error guarantees on maintained frequency estimates. In an earlier
work [52], we presented a thorough experimental evaluation of the Lossy
Counting [99] algorithm, resulting in similar accuracy but higher run-
ning time and memory usage compared to Space-Saving. Experimental
studies [44, 98] also show that Space-Saving outperforms other counter-
based algorithms across a wide range of data sets and parameters. For
all these reasons, in the remainder of this thesis we will focus on the
Space-Saving algorithm only.

Space-Saving monitors a set of 1/ε = |M| pairs of the form (item,
count), initialized by the first 1/ε distinct items and their exact counts.
After the init phase, when a context c is observed in the stream the
update operation works as follows:

1. if c is monitored, the corresponding counter is incremented;

2. if c is not monitored, the (item, count) pair with the smallest count
is chosen as a victim and has its item replaced with c and its count
incremented.

It can be shown that the minimum counter value min among moni-
tored items is never greater than εN, and that the count maintained for
an item is an overestimation of its true frequency by at most min. This
overestimation derives from the initial assignment to count from the
evicted pair. Observe that items that are stored early in the stream and
never removed will have very accurate frequency estimates.

The update time is bounded by the dictionary operation of checking
whether an item is monitored, and by the operations of finding and
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Input: M, min, and min-idx.
Output: Min value in the lazy priority queue.

1 while (M[min-idx] �= min ) ∧ ( min-idx ≤ M) do
2 min-idx ← min-idx +1
3 end
4 if min-idx > M then
5 min ← minimum in M
6 min-idx ← smallest index j s.t. M[j] = min
7 end
8 return min

Algorithm 2: find-min operation used in lazy Space Saving.

maintaining the item with minimum count. In our setting, we can avoid
the dictionary operation by maintaining a flag for each tree node, which
can directly be accessed for the current context using the cursor pointer
to the MCCT.

Space-Saving answers query operations by simply returning entries
in M such that count ≥ �φN�; associated frequency estimates are guar-
anteed to be at most εN–far from actual frequencies.

Engineering Space-Saving. In [102] the authors present an implemen-
tation of Space-Saving based on the Stream-Summary data structure,
which is essentially an ordered bucket list where each bucket points to a
list of items with the same count, and buckets are ordered by increasing
count values.

We devise a more efficient variant based on a lazy priority queue
that uses an unordered array M of size 1/ε, where each entry points
to an MCCT node. The queue supports two operations, find-min and
increment, which return the item with minimum count and increment
a counter, respectively.

We (lazily) maintain the value min of the minimum counter and the
smallest index min-idx of an array entry that points to a monitored node
with counter equal to min. The increment operation does not change M,
since counters can be stored directly inside MCCT nodes. However, min
and min-idx may become temporarily out of date after an increment:
this is why we call the approach lazy. The find-min operation described
in Algorithm 2 restores the invariant property on min and min-idx: it
finds the next index in M with counter equal to min. If such an index
does not exist, it completely rescans M in order to find a new min value
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and its corresponding min-idx.
By proving that find-min requires constant amortized time, we show

that an update operation can be performed in constant time during the
MCCT construction:

Theorem 3.1. After a find-min query, the lazy priority queue correctly re-
turns the minimum counter value in O(1) amortized time.

Proof. Counters are never decremented. Hence, at any time, if a moni-
tored item with counter equal to min exists, it must be found in a position
larger than or equal to min-idx. This yields correctness.

To analyze the running time, let ∆ be the value of min after k find-min
and increment operations. Since there are |M| counters ≥ ∆, counters
are initialized to 0, and each increment operation adds 1 to the value of
a single counter, it must be k ≥ |M| · ∆. For each distinct value assumed
by min, the array is scanned twice. We therefore have at most 2 · ∆
array scans each of length |M|, and the total cost of find-min operations
throughout the whole sequence of operations is upper bounded by
2 · |M| · ∆. It follows that the amortized cost is (2 · |M| · ∆)/k ≤ 2.

Using a simple amortized analysis argument, it can be shown that
the running time of Algorithm 1 for tree pruning is constant as well.

3.1.4. Discussion
Compared to the standard approach of maintaining the entire CCT,

our solution requires storing the heavy hitters data structure M and the
subtree MCCT spanning nodes in M. The space required by M depends
on the specific streaming algorithm that is used as a subroutine and
on the value chosen for the error threshold ε. For Space-Saving this
space is proportional to 1/ε and can be customized by appropriately
choosing ε, e.g., according to the desired accuracy or to the amount of
memory available for profiling. Such a choice appears to be crucial for
the effectiveness of our approach: smaller values of ε guarantee more
accurate results (i.e., fewer false positives and more precise counters), but
imply a larger memory footprint. In Section 5.1 we will see that the high
skewness of context-frequency distribution guarantees the existence of
very convenient trade-offs between accuracy and space in the analysis
of real-world programs.

The MCCT consists of nodes corresponding to contexts monitored in
M and all their ancestors, which may be cold contexts without a corre-
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sponding entry in M. Hence, the space required by the MCCT dominates
the space required by M. The number of cold ancestors is difficult to
analyze theoretically: it depends on properties of the execution trace and
on the structure of the CCT. In Section 5.1.5 we will see that in practice
this amount is negligible compared to the size of M.

Updates of the MCCT can be performed very quickly. We propose
an engineered implementation of Space-Saving that hinges upon very
simple and cache-efficient data structures, and might be of independent
interest.

Unlike previous approaches such as, e.g., adaptive bursting [152], the
MCCT adapts automatically to the case where the hot calling contexts
vary over time, and new calling patterns are not likely to be lost. Contexts
that are growing more popular are added to the tree as they become
more frequent, while contexts that lose their popularity are gradually
replaced by hotter contexts and eventually discarded. This guarantees
that heavy hitters queries can be issued at any point in time, and will
always be able to return the set of hot contexts up to that time.

3.1.5. Comparison with Related Work
CCTs have been introduced in [5] as a practical data structure to as-

sociate performance metrics with paths through a program’s call graph:
Ammons, Ball, and Larus suggested to build a CCT by instrumenting
procedure code and to compute metrics by exploiting hardware counters
available in modern processors. It has been later observed, however,
that exhaustive instrumentation can incur large slowdowns.

Reducing Overhead. To reduce the overhead from instrumentation,
in [19] the authors generate path profiles including only methods of in-
terest, while statistical profilers [9, 63, 71, 142] attribute metrics to calling
contexts through periodic sampling of the call stack. For call-intensive
programs, sample-driven stack walking can be orders of magnitude
faster than exhaustive instrumentation, but may incur significant loss of
accuracy with respect to the complete CCT: sampling guarantees neither
high coverage [30] nor accuracy of performance metrics [152], and its
results may be highly inconsistent among different executions.

A variety of works explore the combination of sampling with burst-
ing [8, 75, 152]. Most recently, Zhuang et al. suggested to perform stack
walking followed by a burst during which the profiler traces every rou-
tine call and return [152]: experiments show that adaptive bursting can



3. Performance Profiling Techniques 29

yield very accurate results. In [122] the profiler infrequently collects
small call traces that are merged afterwards to build large calling context
trees: ambiguities might emerge during this process, and the lack of
information about where the partial CCTs should be merged does not
permit a univocal reconstruction of the entire CCT.

The main goal of all these works is to reduce profiling overhead with-
out incurring significant loss of accuracy. Our approach is orthogonal
to this line of research and regards space efficiency as an additional
resource optimization criterion besides profile accuracy and time effi-
ciency. When the purpose of profiling is to identify hot contexts, exhaus-
tive instrumentation, sampling, and bursting might all be combined
with our approach and benefit from our space reduction technique.
In Section 5.1.1 we present an integration of our technique with static
bursting [152] that results in faster running times without substantially
affecting accuracy.

Reducing Space. A few previous works have addressed techniques to
reduce profile data (or at least the amount of data presented to the user)
in context-sensitive profiling. Incremental call-path profiling lets the
user choose a subset of routines to be analyzed [19]. Call path refinement
helps users focus the attention on performance bottlenecks by limiting
and aggregating the information revealed to them [70]. These works are
quite different in spirit from our approach, where only hot contexts are
profiled and identified automatically during program’s execution.

Probabilistic calling contexts have been introduced as an extremely
compact representation (just a 32-bit value per context), especially useful
for tasks such as residual testing, statistical bug isolation, and anomaly-
based intrusion detection [30]. Bond and McKinley target applications
where coverage of both hot and cold contexts is necessary, but their
inspection is unnecessary. This is not the case in performance analysis,
where identifying and understanding a few hot contexts is typically
sufficient to guide code optimization. Hence, although sharing with [30]
the common goal of space reduction, our approach targets a rather
different application context.

Somner et al. proposed a technique called Precise Calling Context
Encoding (PCCE) that encodes acyclic paths in the call graph of a pro-
gram into one number, while recursive call paths are divided into acyclic
subsequences and encoded independently [129, 130]. Different calling
contexts are guaranteed to have different IDs that can be faithfully de-
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coded, and experiments on a prototype implementation for C programs
show negligible overhead. However, PCCE would not work in the pres-
ence of virtual methods and dynamic class loading in object-oriented
languages, and the encoding scheme shows scalability problems when
handling large-scale software [27, 150]. These limitations, which are
absent from our solution, have been recently addressed in [150], and
it would be interesting to investigate whether their approach can be
extended to collect performance metrics and in turn filter the collected
data on the fly using a data streaming approach as we did in this thesis.

3.2. Multi-iteration Path Profiling
Path profiling is a powerful intraprocedural methodology for identi-

fying performance bottlenecks in a program, and has received con-
siderable attention in the last 15 years for its practical relevance. The
well-known Ball-Larus numbering algorithm [15] can efficiently encode
acyclic paths that are taken across the control flow graph of a function.
Previous attempts to extend it to cyclic paths—thus spanning multiple
loop iterations—to capture more optimization opportunities are based
on rather complex algorithms that incur severe performance overheads
even for short cyclic paths. In this thesis we present a new, data-structure
based approach to multi-iteration path profiling built on top of the origi-
nal Ball-Larus numbering technique. Starting from the observation that
a cyclic path can be described as a concatenation of Ball-Larus acyclic
paths, we show how to accurately profile all executed paths obtained as
a concatenation of up to k Ball-Larus paths, where k is a user-defined
parameter.

3.2.1. Motivation and Contributions
Path profiling associates performance metrics, usually frequency

counters, to paths taken in the control flow graph of a routine. Identi-
fying the hottest paths can direct optimizations to portions of the code
where most resources are consumed, often yielding significant speedups.
For instance, trace scheduling can be used to increase instruction-level
parallelism along frequently executed paths [61, 147]. Basic-block and
edge profiles, albeit inexpensive and widely available, may not correctly
predict frequencies of overlapping paths, and are thus inadequate for
such optimizations.

A seminal paper by Ball and Larus [15] introduced a simple and
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elegant path profiling technique. The main idea was to implicitly number
all possible acyclic paths in the control flow graph so that each path
is associated with a unique compact path identifier (ID). The authors
showed that path IDs can be efficiently generated at run time and can be
used to update a table2 of frequency counters. Although in general the
number of acyclic paths may grow exponentially with the graph size, in
typical control flow graphs this number is usually small enough to fit
in current machine word sizes, making this approach very effective in
practice.

While the original Ball-Larus approach is restricted to acyclic paths
obtained by cutting paths at loop back edges, profiling paths that span
consecutive loop iterations is a desirable, yet difficult, task that can
yield better optimization opportunities. Consider, for instance, the prob-
lem of eliminating redundant executions of instructions, such as loads
and stores [25], conditional jumps [23], expressions [24, 26], and array
bounds checks [22]. A typical situation is that the same instruction
is redundantly executed at each loop iteration, which is particularly
common for arithmetic expressions and load operations [26, 25]. To
identify such redundancies, paths that extend across loop back edges
need to be profiled. Another application is trace scheduling [147]: if
a frequently executed cyclic path is found, compilers may unroll the
loop and perform trace scheduling on the unrolled portion of code. The
benefits of multi-iteration path profiling are discussed in depth in [132].

Different authors have proposed techniques to profile cyclic paths by
modifying the original Ball-Larus path numbering scheme in order to
identify paths that extend across multiple loop iterations [132, 118, 93].
Unfortunately, all known solutions require rather complex algorithms
that incur severe performance overheads even for short cyclic paths, leav-
ing the interesting open question of finding simpler and more efficient
alternative methods.

Contributions. In this thesis we present a novel, data structure-based
approach to multi-iteration path profiling. Our method stems from the
observation that any cyclic path in the control flow graph of a routine
can be described as a concatenation of Ball-Larus acyclic paths (BL

2 Large routines can have too many potential paths to use an array of counters. In this
case a slower (but more space-efficient) hash table is used to record only paths that
actually execute [15].
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paths). In particular, we show how to accurately profile all executed paths
obtained as a concatenation of up to k BL paths, where k is a user-defined
parameter. We reduce multi-iteration path profiling to the problem of
counting n-grams, i.e., contiguous sequences of n items from a given
sequence. To compactly represent collected profiles, we organize them
in a forest of prefix trees (or tries) [62] of depth up to k, where each node
is labeled with a BL path, and paths in a tree represent concatenations of
BL paths that were actually executed by the program, along with their
frequencies. We also present an efficient construction algorithm based
on a variant of the k-SF data structure presented in [10].

3.2.2. Approach
Differently from previous techniques [132, 118, 93], which rely on

modifying the Ball-Larus path numbering to cope with cycles, our
method does not require any modification of the original numbering
technique described in [15].
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Fig. 3.4. Overview of our approach: Ball-
Larus profiling versus k-iteration path pro-
filing, cast in a common framework.

The main idea behind our ap-
proach is to fully decouple the
task of tracing Ball-Larus acyclic
paths at run time from the task of
concatenating and storing them
in a data structure to keep track
of multiple iterations.

Figure 3.4 illustrates from a
high-level point of view our two-
stage process:

1. instrumentation and execu-
tion of the program to be
profiled (top);

2. profiling of paths (bottom).

We let the Ball-Larus profiling algorithm issue a stream of BL path
IDs, where each ID is generated when a back edge in the control flow
graph is traversed or the current procedure is abandoned. As a conse-
quence of this modular approach, our method can be implemented on
top of existing BL path profilers, making it simpler to code and maintain.

The first phase is almost identical to the original approach described
in [15]. The target program is statically analyzed and a control flow
graph (CFG) is constructed for each routine of interest. The CFG is used
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to instrument the original program by inserting probes, which allow
paths to be traced at run time. When the program is executed, each taken
acyclic path is identified using the inserted probes. The main difference
with the Ball-Larus approach is that, instead of directly updating a table
of frequency counters here, we emit a stream of path IDs that is passed
along to the next stage of the process. This allows us to decouple the
task of tracing taken paths from the task of profiling them.

The profiling phase can be either the original hash table-based method
of [15] used to maintain BL path frequencies (bottom-left of Figure 3.4),
or other approaches such as the one we propose, i.e., profiling concate-
nations of BL paths in a forest-based data structure (bottom-right of
Figure 3.4). Different profiling methods can be therefore cast into a
common framework, increasing flexibility and helping us make more
accurate comparisons.

We start the description of our approach with a brief overview of the
Ball-Larus path tracing technique that we use as the first stage of our
profiling technique.

Ball-Larus Path Tracing Algorithm
The Ball-Larus path profiling (BLPP) technique [15] identifies each

acyclic path that is executed in a routine. Paths start on the method
entry and terminate on the method exit. Since loops make the CFG
cyclic, loop back edges are substituted by a pair of dummy edges: the
first edge goes from the method entry to the target of the loop back edge,
and the second one from the source of the loop back edge to the method
exit. After this transformation—which preserves the number of acyclic
paths and is reversible—the CFG of a method becomes a directed acyclic
graph (DAG), and acyclic paths can be easily enumerated.

The Ball-Larus path numbering algorithm (Algorithm 3) assigns a
value val(e) to each edge e of the CFG such that, given N acyclic paths,
the sum of the edge values along any entry-to-exit path is a unique
numeric ID in [0, N-1]. A CFG example and the corresponding path IDs
are shown in Figure 3.5: notice that there are eight distinct acyclic paths,
numbered from 0 to 7, starting either at the method’s entry A, or at loop
header B (target of back edge (E, B)).

BLPP places instrumentation on edges to compute a unique path
number for each possible path that is taken at run time. In particular, it
maintains a variable r, called probe or path register, to compute the path
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procedure bl_path_numbering():
1 foreach basic block v in reverse topological order do
2 if v is the exit block then
3 numPaths(v) ← 1
4 else
5 numPaths(v) ← 0
6 foreach outgoing edge e = (v, w) do
7 val(e) = numPaths(v)
8 numPaths(v) += numPaths(w)
9 end

10 end
11 end

Algorithm 3: The Ball-Larus path numbering algorithm.
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Fig. 3.5. Control flow graph (CFG) with Ball-Larus instrumentation modified to emit
acyclic path IDs to an output stream and running example of our approach that shows a
4-iteration path forest (4-IPF) for a possible small execution trace. Loop back edges in the
CFG have been restored after the path numbering phase.

number. Variable r is first initialized to zero upon method entry and
is then updated as edges are traversed. When an edge that reaches the
method exit is executed or a back edge is traversed, variable r represents
the unique ID of the taken path. As observed, instead of using the path
ID r to increase the associated path frequency counter (count[r]++),
we defer the profiling stage by emitting the path ID to an output stream
(emit r). To support profiling over multiple invocations of the same
routine, we annotate the stream with the special marker ∗ to denote
a routine entry event. Instrumentation code for our CFG example is
shown on the left of Figure 3.5.
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k-iteration Path Profiling
The second stage of our profiling technique takes as input the stream

of BL path IDs generated by the first stage and uses it to build a data
structure that keeps track of the frequencies of each and every distinct taken
path consisting of the concatenation of up to k BL paths, where k is a user-
defined parameter. This problem is equivalent to counting all n-grams,
i.e., contiguous sequences of n items from a given sequence of items, for
each n ≤ k. Our solution is based on the notion of prefix forest, which
compactly encodes a list of sequences by representing repetitions and
common prefixes only once. A prefix forest can be defined as follows:

Definition 3.5 (Prefix Forest). Let L = 〈x1, x2, . . . , xq〉 be any list of
finite-length sequences over an alphabet H. The prefix forest F (L) of L
is the smallest labeled forest such that, ∀ sequence x = 〈a1, a2, . . . , an〉
in L there is a path π = 〈ν1, ν2, . . . , νn〉 in F (L) where ν1 is a root and
∀j ∈ [1, n]:

1. νj is labeled with aj, i.e., �(νj) = aj ∈ H;

2. νj has an associated counter c(νj) that counts the number of times
sequence 〈a1, a2, . . . , aj〉 occurs in L.

By Definition 3.5, each sequence in L is represented as a path in
the forest, and node labels in the path are exactly the symbols of the
sequence, in the same order. The notion of minimality implies that, by
removing even one single node, there would be at least one sequence of
L not counted in the forest. Note that there is a distinct root in the forest
for each distinct symbol that occurs as first symbol of a sequence.

The output of the second stage of our profiling technique is a pre-
fix forest, which we call k-Iteration Path Forest (k-IPF), that compactly
represents all observed contiguous sequences of up to k BL path IDs:

Definition 3.6 (k-Iteration Path Forest). Given an input stream Σ rep-
resenting a sequence of BL path IDs and ∗ markers, the k-Iteration Path
Forest (k-IPF) of Σ is defined as k-IPF = F (L), where L = { list of all
n-grams of Σ that do not contain ∗, with n ≤ k }.

By Definition 3.6, the k-IPF is the prefix forest of all consecutive
subsequences of up to k BL path IDs in Σ. Each path 〈ν1, ν2, ..., νq〉 in
the forest, with q ≤ k, corresponds to a consecutive sequence of items
〈�(ν1), �(ν2), ..., �(νq)〉 that occurs in Σ.
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Example 3.2. Figure 3.5 provides an example showing the 4-IPF con-
structed for a small sample execution trace consisting of a sequence of
44 basic blocks encountered during one invocation of the routine de-
scribed by the control flow graph on the left. Notice that the full (cyclic)
execution path starts at the entry basic block A and terminates on the
exit basic block F. The first stage of our profiler issues a stream Σ of BL
path IDs obtained by emitting the value of the probe register r each time
a back edge is traversed, or the exit basic block is executed. Observe that
the sequence of emitted path IDs induces a partition of the execution
path into Ball-Larus acyclic paths. Hence, the sequence of executed basic
blocks can be fully reconstructed from the sequence Σ of path IDs.

The 4-IPF built in the second stage contains exactly one tree for each
of the 4 distinct BL path IDs (0, 2, 3, 6) that occur in the stream. We
observe that path frequencies in the first level of the 4-IPF are exactly
those that traditional Ball-Larus profiling would collect. The second
level contains the frequencies of taken paths obtained by concatenating
2 BL paths, etc. Notice that the path labeled with 〈2, 0, 0, 2〉 in the 4-IPF,
which corresponds to the path 〈B, C, E, B, D, E, B, D, E, B, C, E〉 in the
control flow graph, is a 4-gram that occurs 3 times in Σ and is one of
the most frequent paths among those that span from 2 up to 4 loop
iterations.

Properties. A k-IPF has some relevant properties:

1. ∀ nodes α ∈ k-IPF, k > 0:

c(α) ≥ ∑
βi : edge (α,βi)∈ k-IPF

c(βi);

2. ∀k > 0, k-IPF ⊆ (k + 1)-IPF.

By Property 1, since path counters are non-negative, they are mono-
tonically non-increasing as we walk down a tree in the k-IPF. The in-
equality ≥ in Property 1 may be strict (>) if the execution trace of a
routine invocation does not end at the exit basic block; this may be the
case when a subroutine call is performed at an internal node of the CFG.

Property 2 implies that, for each tree T1 in the k-IPF there is a tree T2

in the (k + 1)-IPF such that T2 is equal to T1 after removing the leaves
at level k + 1. Notice also that a 1-IPF includes acyclic paths only, and
yields exactly the same counters as a canonical Ball-Larus path profiler.
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3.2.3. Algorithms
We observe that building explicitly a k-IPF concurrently with a pro-

gram’s execution would require updating up to k nodes for each traced
BL path: indeed, this may considerably slow down the program even for
small values of k. In this section we show that, given a stream of BL path
IDs, a k-IPF profile can be constructed by maintaining an intermediate
data structure that can be updated quickly, and then converting it into a
k-IPF when the stream is over. As intermediate data structure, we use a
variant of the k-slab forest (k-SF) introduced in [10].

Main idea. The variant of the k-SF we present in this thesis is tailored
to keep track of all the n-grams from a sequence of symbols, for all n ≤ k.
The organization of our data structure stems from the following simple
observation: if we partition a sequence into chunks of length k − 1, then
any subsequence of length up to k will be entirely contained within
two consecutive chunks of the partition. The main idea is therefore
to consider all the subsequences that start at the beginning of a chunk
and terminate at the end of the next chunk, and join them in a prefix
forest. Such a forest will contain information for all the subsequences of
length up to k starting in an arbitrary position of the stream, and also
for subsequences of length up to 2k − 2 starting at the beginning of a
chunk. Moreover, this forest will contain a distinct tree for each distinct
symbol that appears at the beginning of any chunk.

The partition of the sequence into chunks induces a division of the
forest into upper and lower regions (slabs) of height up to k − 1. As we
will see later on in this section, this organization implies that the k-SF
can be constructed online as stream items are revealed to the profiler by
adding or updating up to two nodes of the forest at a time, instead of k
nodes as we would do if we incremented explicitly the frequencies of
n-grams as soon as they are encountered in the stream.

Example 3.3. Let us consider again the example given in Figure 3.5.
For k = 4, we can partition the stream into maximal chunks of up to
k − 1 = 3 consecutive BL path IDs as follows:

Σ = 〈∗, 6, 2, 0
︸ ︷︷ ︸

c1

, 0, 2, 2
︸ ︷︷ ︸

c2

, 0, 0, 2
︸ ︷︷ ︸

c3

, 2, 0, 0
︸ ︷︷ ︸

c4

, 2, 3
︸ ︷︷ ︸

c5

〉.

The 4-SF of Σ, defined in terms of chunks c1, . . . , c5, is shown in Figure 3.6.
Notice for instance that 2-gram 〈0, 0〉 occurs three times in Σ and five
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Fig. 3.6. 4-SF resulting from the execution trace of Figure 3.5.

times in the 4-SF. However, only three of them end in the bottom slab
and hence are counted in the frequency counters.

To obtain a k-IPF starting from the k-SF, for each BL path ID that
appears in the stream we eventually construct the set of nodes in the k-SF
associated with it and join the subsequences of length up to k starting
from those nodes into a prefix forest.

Definition 3.7 (k-slab Forest). Let k ≥ 2 and let c1, c2, c3, . . . , cm be the
chunks of Σ obtained by: (1) splitting Σ at ∗ markers, (2) removing
the markers, and (3) cutting the remaining subsequences every k − 1
consecutive items. The k-slab forest (k-SF) of Σ is defined as k-SF = F (L),
where L = {list of all prefixes of c1 · c2 and all prefixes of length ≥ k of
ci · ci+1, ∀i ∈ [2, m − 1]} and ci · ci+1 denotes the concatenation of ci and
ci+1.

By Definition 3.7, since each chunk ci has length up to k − 1, then
a k-SF has at most 2k − 2 levels and depth 2k − 3. As observed above,
the correctness of the k-SF representation stems from the fact that, since
each occurrence of an n-gram with n ≤ k appears in ci · ci+1 for some i,
there is then a tree in the k-SF representing it.

Example 3.4. In accordance with Definition 3.7, the forest of Figure 3.6
for the stream of Example 3.3 isF (L), where L = 〈 〈6〉, 〈6, 2〉, 〈6, 2, 0〉, 〈6,
2, 0, 0〉, 〈6, 2, 0, 0, 2〉, 〈6, 2, 0, 0, 2, 2〉, 〈0, 2, 2, 0〉, 〈0, 2, 2, 0, 0〉, 〈0, 2, 2, 0, 0, 2〉,
〈0, 0, 2, 2〉, 〈0, 0, 2, 2, 0〉, 〈0, 0, 2, 2, 0, 0〉, 〈2, 0, 0, 2〉, 〈2, 0, 0, 2, 3〉〉.

k-SF construction algorithm. Given a stream Σ formed by BL path
IDs and ∗ markers, which we remind the reader denote routine en-
try events, the k-SF of Σ can be constructed by calling the procedure
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process_bl_path_id(r) shown in Algorithm 4 on each item r of Σ. The
stream processing algorithm, which is a variant of the k-SF construc-
tion algorithm given in [10] for the different setting of bounded-length
calling contexts, keeps the following information:

• a hash table R, initially empty, containing pointers to the roots of
the trees in the k-SF, hashed by node labels; since no two roots
have the same label, the lookup operation find(R, r) returns the
pointer to the root containing label r, or null if no such root exists;

• a variable n that counts the number of BL path IDs processed since
the last ∗ marker;

• a variable τ (top) that points either to null or to the current k-SF
node in the upper part of the forest (levels 0 through k − 2);

• a variable β (bottom) that points either to null or to the current
k-SF node in the lower part of the forest (levels k − 1 through
2k − 3).

The main idea of the algorithm is to progressively add new paths to
an initially empty k-SF. The path formed by the first k − 1 items since the
last ∗ marker is added to one tree in the upper part of the forest. Each
later item r is added at up to two different locations of the k-SF: one in
the upper part of the forest (lines 13–17) as a child of node τ (if no child
of τ labeled with r already exists), and the other one in the lower part of
the forest (lines 21–25) as a child of node β (if no child of β labeled with
r already exists). Counters of processed nodes already containing r are
incremented by one (either at line 27 or line 29).

Both τ and β are updated to point to the child labeled with r (lines 18
and 26, respectively). The running time of the algorithm is dominated by
lines 8 and 10 (hash table accesses), and by lines 13 and 21 (node children
scan). Assuming that operations on the hash table R require constant
time, the per-item processing time is O(δ), where δ is the maximum
degree of a node in the k-SF. An experimental investigation revealed
that δ is typically a small constant value on average.

As an informal proof that each subsequence of length up to k is
counted exactly once in the k-SF, we first observe that, if the subsequence
extends across two consecutive chunks, then it appears exactly once in
the forest (connecting a node in the upper slab to a node in the lower slab).
In contrast, if the subsequence is entirely contained in a chunk, then it
appears twice: once in the upper slab of the tree rooted at the beginning
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procedure process_bl_path_id(r):
1 if r = ∗ then
2 n ← 0
3 τ ← null
4 return
5 end
6 if n mod (k − 1) = 0 then
7 β ← τ
8 τ ← find(R, r)
9 if τ = null then

10 add root τ with �(τ) = r and c(τ) = 0 to k-SF and R
11 end
12 else
13 find child ω of node τ with label �(ω) = r
14 if ω = null then
15 add node ω with �(ω) = r and c(ω) = 0 to k-SF
16 add arc (τ, ω) to k-SF
17 end
18 τ ← ω

19 end
20 if β �= null then
21 find child υ of node β with label �(υ) = r
22 if υ = null then
23 add node υ with �(υ) = r and c(υ) = 0 to k-SF
24 add arc (β, υ) to k-SF
25 end
26 β ← υ
27 c(β) ← c(β) + 1
28 else
29 c(τ) ← c(τ) + 1
30 end
31 n ← n + 1

Algorithm 4: Stream processing algorithm for k-SF construction.

of the chunk, and once in the lower slab rooted in at the beginning of the
preceding chunk. However, in this case only the counter in the lower
part of the forest is updated (line 27): for this reason, the sum of all
counters in the k-SF is equal to the length of the stream.

k-SF to k-IPF conversion. Once the profiling phase has terminated, we
convert the k-SF into a k-IPF using the procedure shown in Algorithm 5.
The key intuition behind the correctness of the conversion algorithm is
that for each sequence in the stream of length up to k, there is a tree in
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procedure make_k_ipf():
1 I ← ∅
2 foreach node ρ ∈ k-SF do
3 if �(ρ) �∈ I then
4 add �(ρ) to I and let s(�(ρ)) ← ∅
5 end
6 add ρ to s(�(ρ))
7 end
8 let the k-IPF be formed by a dummy root φ
9 foreach r ∈ I do

10 foreach ρ ∈ s(r) do
11 join_subtree(ρ, φ, k)
12 end
13 end
14 remove dummy root φ from the k-IPF

Algorithm 5: Algorithm for converting a k-SF into a k-IPF.

the k-SF containing it.
The algorithm creates a set I of all distinct path IDs that occur in the

k-SF and for each r in I builds a set s(r) containing all nodes ρ of the
k-SF labeled with r (lines 2–7). To build the k-IPF, the algorithm lists
each distinct path ID r and joins to the k-IPF all subtrees of depth up to
k − 1 rooted at a node in s(r) in the k-SF, as children of a dummy root,
which is added for the sake of convenience and then removed. The join
operation is specified by procedure join_subtree (Algorithm 6), which
performs a traversal of a subtree of the k-SF of depth less than k and
adds nodes to k-IPF so that all labeled paths in the subtree appear in the
k-IPF as well, but only once. Path counters in the k-SF are accumulated
in the corresponding nodes of the k-IPF to keep track of the number of
times each distinct path consisting of the concatenation of up to k BL
paths was taken by the profiled program.

3.2.4. Discussion
Our multi-iteration path profiling technique introduces a technical

shift based on a smooth blend of the path numbering methods used
in intraprocedural path profiling with data structure-based techniques
typically adopted in interprocedural profiling, such as calling-context
profiling. Our solution combines the original Ball-Larus path numbering
technique with a prefix tree data structure to keep track of concatenations
of acyclic paths across multiple loop iterations.
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procedure join_subtree(ρ, γ, d):
1 δ ← child of γ in the k-IPF s.t. �(δ) = �(ρ)
2 if δ = null then
3 add new node δ as a child of γ in the k-IPF
4 �(δ) ← �(ρ) and c(δ) ← c(ρ)
5 else
6 c(δ) ← c(δ) + c(ρ)
7 end
8 if d > 1 then
9 foreach child σ of ρ in the k-SF do

10 join_subtree(σ, δ, d − 1)
11 end
12 end

Algorithm 6: Subroutine for joining trees during k-SF conversion.

Maintaining a prefix forest during a program’s execution would be
too costly: we thus devise an intermediate data structure that supports
updates in nearly constant time (i.e., proportional to the degree of the
node, which is typically small in practice). As a k-SF captures informa-
tion on all distinct paths of bounded length taken at run time, its space
requirements mainly depend on intrinsic structural properties of ana-
lyzed programs. To capture even longer paths, our technique might be
extended with heuristics aiming at reducing space usage, for instance by
periodically pruning branches of the k-SF with small frequency counters.
Also, it might be integrated with sophisticated sampling techniques for
reducing time overhead used in intraprocedural (e.g., [28]) and inter-
procedural (e.g, [152] and Section 5.1.1) profilers.

As we will see in Section 5.2.3, the key to efficiency in our approach is
to replace costly hash table accesses with substantially faster operations
on trees. This allows us to profile paths that extend across many loop
iterations, while previous techniques do not scale well even for short
cyclic paths. Profiling longer paths can reveal interesting optimization
opportunities that “short” profiles would miss [49]. In Section 6.1.1 we
present an optimization case study on masked convolution filters for
image processing: using a k-IPF profile collected for k = 10, we devise a
selective loop unrolling optimization resulting in two-digit speedups in
our experiments.
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3.2.5. Comparison with Related Work
The seminal work of Ball and Larus [15] has spawned much research

interest in the development of new path profiling techniques over the
last 15 years. In particular, several works focus on profiling acyclic paths
with a lower overhead by using sampling techniques [28, 29] or choosing
a subset of interesting paths [6, 80, 137]. On the other hand, only a few
works have dealt with cyclic-path profiling.

Tallam et al. [132] extended the Ball-Larus path numbering algorithm
to record slightly longer paths across loop back edges and procedure
boundaries. The extended Ball-Larus paths overlap and, in particular,
are shorter than two iterations for paths that cross loop boundaries.
These overlapping paths enable very precise estimation of frequencies of
potentially much longer paths, with an average imprecision in estimated
total flow of those paths ranging from −4% to +8%. However, experi-
mental results reveal that the average cost of collecting frequencies of
overlapping paths is about 4.2 times that of canonical BLPP.

Roy and Srikant [118] generalized the Ball-Larus algorithm for profil-
ing k-iteration paths, showing that it is possible to number these paths
efficiently using an inference phase to record executed back edges in
order to differentiate cyclic paths. One problem with this approach is
that, since the number of possible k-iteration paths grows exponentially
with k, path IDs may overflow in practice even for small values of k.
Furthermore, very large hash tables may be required. In particular, their
profiling procedure aborts if the number of static paths exceeds 60, 000,
while this threshold is reached on several small benchmarks already
for k = 3 [93]. The technique incurs a larger overhead than BLPP: in
particular, the slowdown may grow to several times the BLPP-associated
overhead as k increases.

Li et al. [93] proposed a new path encoding that does not rely on an
inference phase to explicitly assign identifiers to all possible paths before
the execution, yet ensuring that any finite-length acyclic or cyclic path has
a unique ID. The path numbering algorithm needs multiple variables
to record probe values, which are computed by using addition and
multiplication operations. Overflowing is handled by using breakpoints
to store probe values: as a consequence, instead of a unique ID for each
path, a unique series of breakpoints is assigned to each path. At the
end of program’s execution, a back walking algorithm reconstructs the
executed paths starting from breakpoints. The technique was integrated
with BLPP to reduce the execution overhead, resulting in a slowdown
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of about 2 times on average with respect to BLPP, but also showing
significant performance loss (up to a 5.6 times growth) on tight loops3.
However, the experiments reported in [93] were performed on single
methods of small Java programs, leaving further experiments on larger
industrial-strength benchmarks to future work.

The common trait of all these works is to extend the Ball-Larus en-
coding algorithm to capture longer paths. These techniques typically
maintain more than one probe value, and incur higher average costs
compared to BLPP. Our approach builds instead on top of the original
Ball-Larus algorithm: a single probe value is used to track acyclic paths
taken at run time, and each BL path ID in the output stream can be
processed in nearly constant time. Experimental results presented in
Section 5.2.3 reveal that our approach incurs an overhead competitive
with BLPP.

Of a different flavor is the technique introduced by Young [148] for
profiling general paths, i.e., fixed-length sequences of taken branches that
might span multiple loop iterations. Unfortunately, the technique scales
poorly for increasing path lengths l both in terms of space usage and
running time. In particular, the running time is proportional not only
to the length of the stream of taken branches, but also to the number of
possible sequences of length l, that is likely to be exponential in l. In
order to reduce the per-taken-branch update time, the algorithm uses
also additional space with respect to that required for storing the path
counters and identifiers; such space is proportional to the number of
possible sequences of length l as well.

3.3. Conclusions
Low-overhead profiling mechanisms are a key ingredient for effective

adaptive optimization in a runtime system. For some classes of profiling
information, the sheer size of the domain might require an analysis
routine to maintain a large amount of data in main memory, resulting in a
performance penalty from poor access locality or even in the exhaustion
of available resources. This is the case of context-sensitive profiling, for
which we have introduced a new data structure, the HCCT, that can be
constructed online in small space with strong guarantees in terms of
accuracy and recall. We present and evaluate an implementation of a

3 A tight loop contains a small number of instructions and iterates many times.
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HCCT profiler in Section 5.1.
Another example is cyclic-path profiling, for which extant techniques

fail to scale as enumerating paths explicitly results into an explosion of
the number of possible sequences already for a few loop iterations. We
have presented an encoding scheme based on a prefix forest, the k-IPF,
obtainable on demand from an intermediate data structure, the k-SF,
that can be constructed online efficiently. We describe and evaluate an
implementation of this technique in Jikes RVM in Section 5.2.





4. Continuous Program Optimization Techniques

In this chapter we focus on a fundamental aspect for deploying adaptive
optimization techniques in runtime systems: the On-Stack Replacement
(OSR) problem. OSR consists in dynamically transferring execution
between different versions of a function at run time.

Modern virtual machines implement OSR to continuously optimize
a program as it executes, for instance by interrupting a long-running
function and recompiling it at a higher optimization level, or by replacing
a function version with another when a speculative assumption made
during its compilation no longer holds.

In the first part of the chapter we present a platform-independent
framework for OSR that introduces novel ideas and combines features
of existing techniques that no previous solution provided simultane-
ously. In particular, we introduce a compensation code abstraction that
increases the flexibility of OSR mechanisms, and we present an OSR im-
plementation for the LLVM MCJIT compiler that allows OSR to happen
at arbitrary locations in a function.

In the second part we make a first step towards a provably sound
methodological framework for OSR. We formalize the concept of multi-
version program, and we identify sufficient conditions for the correctness
of an OSR transition. We also devise an algorithm for automatically
generating compensation code possibly required to realign program
state in the presence of several common compiler optimizations.

4.1. A Flexible On-Stack Replacement Framework
Modern language runtimes dynamically adapt the execution to the

actual workload, maintaining different versions of the code generated
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with different, often speculative, optimizations. For this reason, they
typically implement on-stack replacement mechanisms to dynamically
transfer execution between them while a version of the method to opti-
mize is still running.

Pioneered in the SELF language runtime in the early ’90s [76], OSR
mechanisms have drawn considerable attention from the community of
VM builders as the Java language became popular. OSR is nowadays
used in a significant number of virtual machines to implement optimiza-
tion techniques such as profile-driven and deferred compilation, and
can also be employed to support debugging of optimized code.

OSR can be a very powerful tool for implementing dynamic lan-
guages, for which the most effective optimization decisions can typically
be made only at run time, when critical information such as type and
shape of objects becomes available. In this scenario OSR becomes useful
also to perform deoptimization, i.e., when the running code has been
speculatively optimized and one of the assumptions does not hold any-
more, the optimized function is interrupted and the execution continues
in a safe version of the code.

Contributions. In this thesis we propose a general-purpose, target-
independent framework for OSR. Specific goals of our solution include:

• The ability for a function reached via OSR to fire an OSR itself, so
to allow switching from a base function f to an optimized function
f ′, and later on to a further optimized version f ′′, and so on.

• Supporting deoptimization, i.e., transitions from an optimized
function to a less optimized function from which it was derived.

• Supporting transitions at arbitrary program points, including
those that would require adjusting the transferred program state
to resume the execution in the OSR target function.

• Supporting OSR targets either generated at run time (e.g., using
profiling information) or already known at compilation time.

• Hiding from the front-end that generates the different function ver-
sions all the implementation details for handling OSR transitions
between them.

We show the feasibility of our approach by implementing OSRKit, a
prototype OSR library for the MCJIT just-in-time compiler of the LLVM
compiler infrastructure.
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OSR

T f(param){
   A
L:
   B
}    

base variant

T f'(param){
   A'
L':
   B'
}    

Fig. 4.1. On-stack replacement dynamics: control is transferred via OSR from a point L of
a base function f to a point L’ in a variant f’ of f.

4.1.1. Approach
The key to generality and platform-independence in our approach

is to express the OSR machinery entirely at intermediate representa-
tion (IR) level, without resorting to native-code manipulation or special
compiler intrinsics.

Consider the generic OSR scenario shown in Figure 4.1. A base
function f is executed and it can either terminate normally (dashed lines),
or an OSR event may transfer control to a variant f’, which resumes the
execution. The decision of whether an OSR should be fired at a given
point L of f is based on an OSR condition.

A typical example in JIT-based virtual machines is a profile counter
reaching a certain hotness threshold, which indicates that f has been
executing for some time and is worth optimizing. Another example is
a guard testing whether f has become unsafe and execution needs to
fall back to a safe version f’. This scenario includes deoptimization of
functions generated with aggressive speculative optimizations.

Several OSR implementations adjust the stack so that execution can
continue in f’ with the current frame [33, 32, 76, 127]. This requires
manipulating the program state at machine-code level and is highly
ABI and compiler-dependent. A simpler approach, which we follow in
this thesis, consists in creating a new frame every time an OSR is fired,
essentially regarding an OSR transition as a function call [60, 88, 113].
Our solution targets two general scenarios:

1. resolved OSR: f’ is known before executing f, as in the deoptimiza-
tion example discussed above;

2. open OSR: f’ is generated when the OSR is fired, supporting for
instance deferred and profile-guided compilation strategies.

In both cases, f is instrumented before its execution to incorporate
the OSR machinery. We call such OSR-instrumented version ffrom.
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T ffrom(param){
    A
    if (osr_cond)
        return f'to(live vars@L)
    B
}

T f'to(live vars@L){
    comp_code 
    goto L'
    A'
L':
    B'
}

base, OSR-instrumented variant, OSR-instrum.

L: O
S
R

Fig. 4.2. Resolved OSR scenario.

In the resolved OSR scenario (Figure 4.2) instrumentation consists
in adding a check of the OSR condition and, if it is satisfied, a tail call
that fires the OSR. The called function is an instrumented version of f’,
which we call f’to. We refer to f’to as the continuation function for an OSR
transition. The assumption is that f’to produces the same side-effects
and return value that one would obtain from f if no OSR was performed.
Differently from f’, f’to takes as input all live variables of f at L, executes
an optional compensation code to fix the computation state (comp_code),
and then jumps to a point L’ from which execution can continue.

Compensation code adds flexibility to our framework, as it extends
the range of points where OSR transitions can be fired. In fact, the OSR
practice often makes the conservative assumption that execution can
always continue with the very same program state as the base function.
This assumption can however be restrictive, as it may reduce the number
of program locations eligible for OSR (i.e., one has to wait to a point
where the states would realign). Our solution provides a front-end
with means to encode a glue code, tailored to the specific optimizations
involved between two function versions, to adjust the program state
and perform an OSR transition. This code can be used, for instance, to
modify the heap, or to reconstruct values for variables that are live at L’
but not at L.

The open OSR scenario is similar, with one main difference (Fig-
ure 4.3): instead of calling f’to directly, ffrom calls a stub function fstub
that first creates f’to and then calls it. Function f’to is generated by a
function gen that takes the base function f and the OSR point L as in-
put. The reason for having a stub in the open OSR scenario, instead
of instrumenting f directly with the code generation machinery, is to
minimize the extra code injected into f. Indeed, instrumentation may
interfere with optimizations, e.g., by increasing register pressure and
altering code layout and instruction cache behavior.
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T ffrom(param){
    A
    if (osr_cond)
        return fstub(live vars@L)
    B
}

T f'to(live vars@L){
    comp_code 
    goto L'
    A'
L':
    B'
}

base, OSR-instrumented variant, OSR-instrum.

L:

T fstub(live vars@L){
    f'to=gen(f, L) 
    return f'to(live vars@L)
}

code generation stub

O
S
R

Fig. 4.3. Open OSR scenario.

4.1.2. LLVM Implementation
The LLVM compiler infrastructure [90] provides a just-in-time com-

piler called MCJIT that is currently being used for generating optimized
code at run time in virtual machines for dynamic languages. MCJIT is
employed in both industrial and research projects, including WebKit’s
JavaScript engine, the open-source Python implementation Pyston, the
Rubinius project for Ruby, the Julia language for high-performance tech-
nical computing, McVM for MATLAB, CXXR/Rho for the R language,
Terra for Lua, and the Pure functional programming language. The
MCJIT compiler shares the same optimization pipeline with LLVM front-
ends for static languages such as clang, and it provides dynamic features
such as native code loading and linking, as well as a customizable mem-
ory manager for code and data sections.

Currently VM builders using MCJIT are required to have a deep
knowledge of the internals of LLVM in order to mimic an OSR mecha-
nism. In particular, they can rely on two experimental intrinsics, Stackmap
and Patchpoint, to inspect the details of the compiled code generated
by the back-end and to patch it manually with a sequence of assembly
instructions. A Stackmap is used to record the run-time location (i.e.,
register, stack offset, or constant) for a set of variables (e.g., the set of live
variables) at a given IR instruction. The intrinsic generates no code in
place1, as the back-end emits its data in a designated section in the object
code. A Stackmap allows the runtime to disruptively patch the original
code in response to an event triggered from outside, thus executing a
new code sequence when the location for the original IR instruction is
reached. A Patchpoint instead creates a function call to a target typically
not known at compile time, and implies a StackMap generation to track

1 Although a front-end can ask LLVM to pad the function with a number of nop instruc-
tions to prevent overwriting program text or data outside its boundaries during the
run-time patching.
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int isord(long* v, long n, int (*c)(void*,void*)) {
   for (long i=1; i<n; i++) 
       if (c(v+i-1,v+i)>0) return 0;
   return 1;
}

Fig. 4.4. Example for OSR instrumentation in LLVM.

the run-time location for the set of variables given as argument. A Patch-
point reserves space for injecting new code (e.g., to update the target
of the call), so that the other instructions in the function are preserved.
An example application of the Patchpoint intrinsic is the implementa-
tion [113] of an inline caching mechanism [55] for polymorphic method
dispatch in WebKit’s JavaScript engine. Both intrinsics are currently
marked as experimental in LLVM, and are treated along the optimization
pipeline as instructions that can potentially read and write all memory2.

We prototyped our idea of flexible OSR infrastructure working en-
tirely at the IR level in a library for MCJIT called OSRKit. OSRKit pro-
vides several useful abstractions that include: open and resolved OSR
instrumentation of IR base functions preserving their SSA (Static Single
Assignment) form [47], liveness analysis, generation of OSR continua-
tion functions, and mapping of LLVM values between different function
versions along with an interface for compensation code generation.

We also implemented a proof-of-concept VM called TinyVM that
provides an interactive environment for LLVM IR manipulation, JIT
compilation, and benchmarking. All of our code is publicly available
and has been endorsed by the joint Artifact Evaluation process of CGO-
PPoPP 2016.

A Running Example
We present our OSR embodiment for LLVM through a simple run-

ning example that illustrates a profile-driven optimization scenario. We
start from a base function (isord) that checks whether an array of num-
bers is ordered according to some criterion specified by a comparator
(Figure 4.4). Our goal is to instrument isord so that, whenever the num-
ber of loop iterations exceeds a certain threshold, control is dynamically
diverted to a faster version generated on the fly by inlining the compara-
tor. The IR code shown in this section was generated with clang and

2 A store instruction cannot be moved across a Stackmap, but also a load must be
handled conservatively (i.e., cannot be hoisted above it) as it might trigger an exception.
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define i32 @isordfrom( 
  i64* %v, i64 %n, i32 (i8*, i8*)* nocapture %c) {
entry:
  %t0 = icmp sgt i64 %n, 1
  br i1 %t0, label %loop.body, label %exit

loop.header:
  %t1 = icmp slt i64 %i1, %n
  br i1 %t1, label %loop.body, label %exit

loop.body:
  %i = phi i64 [%i1, %loop.header], [1,%entry]
  %p.osr = phi i64 [%p.osr1, %loop.header], 
                   [1000, %entry]
  %p.osr1 = add nsw i64 %p.osr, -1
  %osr.cond = icmp eq i64 %p.osr, 0
  br i1 %osr.cond, label %osr, 
                   label %loop.body.cont
loop.body.cont:
  %t2 = getelementptr inbounds i64* %v, i64 %i
  %t3 = add nsw i64 %i, -1
  %t4 = getelementptr inbounds i64* %v, i64 %t3
  %t5 = bitcast i64* %t4 to i8*
  %t6 = bitcast i64* %t2 to i8*
  %t7 = tail call i32 %c(i8* %t5, i8* %t6)
  %t8 = icmp sgt i32 %t7, 0
  %i1 = add nuw nsw i64 %i, 1
  br i1 %t8, label %exit, label %loop.header

exit: 
  %res = phi i32 [1, %entry], [1, %loop.header] 
                 [0, %loop.body.cont], 
  ret i32 %res

osr:
  %val = bitcast i32 (i8*, i8*)* %c to i8*
  %osr.res = call i32 @isordstub(i8* %val,
      i64* %v, i64 %n, i32 (i8*, i8*)* %c, i64 %i)
  ret i32 %osr.res
}

Fig. 4.5. LLVM IR version of base function isord (Figure 4.4) instrumented for open
OSR. Additions resulting from the instrumentation are in grey. The OSR is fired at the
beginning of the loop body after 1000 iterations, i.e., when the counter reaches 0.

later instrumented with OSRKit inside TinyVM. Virtual register names
and basic block labels have been refactored for the sake of readability.

IR Instrumentation. To defer the compilation of the continuation func-
tion until the comparator is known at run time, we used OSRKit to in-
strument isord with an open OSR point at the beginning of the loop
body, as shown in Figure 4.5. Portions added to the original code by
OSR instrumentation are highlighted in grey.

New instructions are placed at the beginning of the loop body to
decrement a hotness counter p.osr and jump to an OSR-firing block if
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define i32 @isordstub(
  i8* %val, i64* %v_osr, i64 %n_osr, 
  i32 (i8*, i8*)* nocapture %c_osr, i64 %i_osr) {
entry:
 %cont.func = call
    ; generator returns ptr to isordto
    i32 (i64*, i64, i32 (i8*, i8*)*, i64)* 
     (i8*, i8*, i8*, i8*)* inttoptr 

    ; generator function address is 4357824
    (i64 4357824 to 
          i32 (i64*, i64, i32 (i8*, i8*)*, i64)* 
              (i8*, i8*, i8*, i8*)*)

    ; hard-coded parameters passed to generator:
    ;  46993664 = addr of isord IR function
    ;  46995056 = addr of basic block at loop.body
    ;  47005408 = addr of code generation env
    (i8* inttoptr (i64 46993664 to i8*),
     i8* inttoptr (i64 46995056 to i8*), 
    i8* inttoptr (i64 47005408 to i8*), i8* %val) 

 %osr.res = call i32 %cont.func(i64* %v_osr, 
   i64 %n_osr, i32 (i8*, i8*)* %c_osr, i64 %i_osr)
 ret i32 %osr.res
}

Fig. 4.6. IR stub that generates the continuation function when an open OSR is fired by
isordfrom (Figure 4.5).

the counter reaches zero (after 1000 iterations in this example). The OSR
block contains a tail call to the target generation stub, which receives as
parameters the four live variables at the OSR point (v, n, c, i). OSRKit
allows the stub to receive the run-time value val of an IR object that
can be used to produce the continuation function—in our example, the
pointer to the comparator function to be inlined. The stub (shown in
Figure 4.6) calls a code generator that:

1. builds an optimized version of isord by inlining the comparator,
and

2. uses it to create the continuation function isordto (Figure 4.7).

The stub passes to the code generator four parameters:

1. a pointer to the isord IR code;
2. a pointer to the basic block in isord from which the OSR is fired;
3. a pointer to a user-defined object to back code generation in MCJIT;
4. the stub’s val parameter.

The first three parameters are provided by the front-end and hard-
wired by OSRKit. In particular, the third parameter is a handle to the
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define i32 @isordto(
  i64* nocapture readonly %v_osr, 
  i64 %n_osr, i32 (i8*, i8*)* %c_osr, i64 %i_osr) {

osr.entry: ; no compensation code needed...
  br label %loop.body

entry:
  %t1 = icmp sgt i64 %n_osr, 1
  br i1 %t1, label %loop.body, label %exit

loop.header:
  %t2 = icmp slt i64 %i1, %n_osr
  br i1 %t2, label %loop.body, label %exit

loop.body:
  %i = phi i64 [ %i1, %loop.header ], 
               [ 1, %entry ], 
               [ %i_osr, %osr.entry ]
  %t3 = add nsw i64 %i, -1
  %t4 = getelementptr inbounds i64* %v_osr, i64 %t3
  %t5 = load i64* %t4, align 8, !tbaa !1
  %t6 = getelementptr inbounds i64* %v_osr, i64 %i
  %t7 = load i64* %t6, align 8, !tbaa !1
  %t8 = icmp sgt i64 %t5, %t7
  %i1 = add nuw nsw i64 %i, 1
  br i1 %t8, label %exit, label %loop.header

exit:
  %res = phi i32 [ 1, %entry ], 
                 [ 0, %loop.body ], 
                 [ 1, %loop.header ]
  ret i32 %res
}

Fig. 4.7. Faster variant of isord (Figure 4.4) in LLVM IR with comparator inlining, instru-
mented as OSR continuation function. Instrumentation additions are in grey. The original
function entry block is unreachable after instrumentation and is eliminated (struck-through
code fragments).

environment for code generation (e.g., in our dynamic inliner the object
contains pointers to the MCJIT engine and to a map between addresses
of compiled functions and their IR counterparts). The stub terminates
with a tail call to isordto.

To generate the continuation function (shown in Figure 4.7) from the
optimized version created by the inliner, OSRKit replaces the function
entry point, removes dead code, replaces live variables with the function
parameters, and fixes SSA φ-nodes accordingly. As the OSR transition
does not require modifications to the program state, the new entry point
does not contain any compensation code. Preserving the SSA form
while constructing the continuation function is a challenging task, as
it might require inserting new φ-nodes in the control flow graph in
addition to simply updating some of the existing ones as in this example.
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isordfrom: 
   pushq %r15
  pushq %r14
  pushq %r12
  pushq %rbx
  pushq %rax
  movq %rdx, %r14 #c
  movq %rsi, %r15 #n
  movq %rdi, %rbx #v
  movl $1, %r12d  #i
  cmpq $1, %r15
  jle .LBB0_1

.LBB0_4: # %loop.body
  cmpq $1001, %r12
  je .LBB0_7
  movq %rbx, %rdi
  leaq 8(%rbx), %rbx
  movq %rbx, %rsi
  callq *%r14
  movl %eax, %ecx
  xorl %eax, %eax
  testl %ecx, %ecx
  jg .LBB0_6
  incq %r12
  cmpq %r15, %r12
  jl .LBB0_4
  movl $1, %eax
  jmp .LBB0_6

.LBB0_1:
  movl $1, %eax

.LBB0_6: # %exit
   addq $8, %rsp
   popq %rbx

isordto:
  movl $1, %edx
  cmpq $1, %rsi
  jle .LBB0_1

.LBB0_4: # %loop.body
  movq -8(%rdi,%rdx,8),%rcx
  xorl %eax, %eax
  cmpq (%rdi,%rdx,8),%rcx
  jg .LBB0_5
  incq %rdx
  cmpq %rsi, %rdx
  jl .LBB0_4

.LBB0_1:
  movl $1, %eax

.LBB0_5: # %exit
  retq

  popq %r12
  popq %r14
  popq %r15
  retq

.LBB0_7: # %osr
  movq %r14, %rdi # c
  movq %rbx, %rsi # v
  movq %r15, %rdx # n
  movq %r14, %rcx # c
  movq %r12, %r8  # i
  addq $8, %rsp
  popq %rbx

   popq %r12
   popq %r14
   popq %r15
   jmp isordstub

Fig. 4.8. OSR-instrumented functions isordfrom (base) and isordto (faster continuation)
after IR-to-x86-64 lowering in LLVM. Additions resulting from the IR instrumentation are
in grey, while removals are struck-through.

When generating a continuation function, we use a modified version
of LLVM’s SSAUpdater component to account for the available values—
transferred as parameters or reconstructed in the OSR entry point—of
all the variables that are live at the OSR landing pad.

IR Lowering to x86-64. Figure 4.8 shows the x86-64 code generated
by the LLVM back-end for isordfrom and isordto. For the sake of
comparison with the native code that would be generated for the original
non-OSR versions, additions resulting from the IR instrumentation are
in grey, while removals are struck-through.

Notice that the OSR intrusiveness in isordfrom is minimal, con-
sisting of just two assembly instructions with register and immediate
operands. As a result of induction variable canonicalization in the LLVM
back-end, loop index i and hotness counter p.osr are fused in register
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%r12. We also note that tail call optimization is applied in the OSR-firing
block, resulting in no stack growth during an OSR.

The continuation function isordto is identical to the specialized
version of isord with inlined comparator, except that the loop index is
passed as a parameter in %rdx and no preamble is needed since OSR
jumps directly in the loop body.

4.1.3. Discussion
Instrumenting functions for OSR at a higher level than machine code

yields several benefits:

1. Platform independence: the OSR instrumentation code is lowered to
native code by the compiler back-end, which handles the details
of the target ABI.

2. Global optimizations: lowering OSR instrumentation code along
with application code can generate faster code than local binary
instrumentation. For instance, dead code elimination can sup-
press from f’to portions of code that would no longer be needed
when jumping to the landing pad L’, producing smaller code and
enabling better register allocation and instruction scheduling.

3. Debugging and Profiling: preserving ABI conventions in the native
code versions of ffrom, fstub, and f’to helps debuggers and profilers
to more precisely locate the current execution context and collect
more informative data.

4. Abstraction: being entirely encoded using high-level language con-
structs (assignments, conditionals, function calls), the approach is
amenable to a clean instrumentation API that abstracts the OSR
implementation details, allowing a front-end to focus on where to
insert OSR points independently of the final target architecture.

A natural question is whether encoding OSR at a higher level of ab-
straction can result in poorer performance than binary-code approaches.
Our solution relies on the compiler’s compilation pipeline to generate
the most efficient native code for ffrom and f’to. We provide performance
numbers in Section 5.3 by measuring the overhead of OSRKit on classic
benchmarks.

To the best of our knowledge, our framework is the first to support
OSR point insertion at arbitrary locations in the code. There was consid-
erable implementation and experimentation effort to show its feasibility.
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In order to enable OSR at any program point, two engineering aspects
are involved: manipulating the code of an optimized function to gener-
ate a continuation function—a rather delicate task as the SSA form must
be preserved—and providing a front-end with a clean interface to spec-
ify glue code that might be required to perform a transition. Encoding
compensation code with our API is currently delegated to the front-end.
In Section 4.2.3.1 we will provide an algorithm to automatically build it
for a number of common compiler optimizations.

A possible scenario in which supporting OSR at arbitrary locations
can be particularly useful is the implementation a flexible deoptimization
mechanism in the presence of aggressive speculative optimizations. In
general, it might be necessary to have a deoptimization point in the
middle of a heavily optimized code fragment. Our framework provides
VM builders with means to perform deoptimization without requiring
a fallback to an interpreter. Also, by supporting both open and resolved
OSR points we allow them to explore the trade-off between the latency
from creating continuation functions on the fly and the code bloat from
doing it ahead-of-time.

In the case study presented Section 6.2 we explore the end-to-end
utility of OSRKit by tackling performance problems deriving from the
use of a higher-order construct in the MATLAB language. The ability of
OSRKit to insert OSR points at arbitrary locations allows us to capture
uses of this construct and to trigger an OSR transition to a much more
type-specialized version of the code.

4.1.4. Comparison with Related Work
Early Approaches. OSR has been pioneered in the SELF programming
language implementations [76] to enable source-level debugging of op-
timized code, which requires deoptimizing the code back to the original
version. To reconstruct the source-level state, the compiler generates
scope descriptors recording locations or values of arguments and local
variables. Execution can be interrupted only at certain interrupt points
where its state is guaranteed to be consistent (i.e., method prologues and
backward branches in loops), allowing optimizations between interrupt
points. SELF also implements a deferred compilation mechanism [33]
for branches that are unlikely to occur at run time: the system generates
a stub that invokes the compiler to generate a code object that can reuse
the stack frame of the original code. Open OSR points proposed in this
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thesis can be used to implement deferred compilation at any basic block
in a similar manner.

Java Virtual Machines. The success of the Java language has drawn
more attention to the design and implementation of OSR techniques,
as bytecode interpreters began to work along with JIT compilers. In
the high-performance HotSpot Server JVM [108] performance-critical
methods are identified using method-entry and backward-branches
counters; when the OSR threshold is reached, the runtime transfers
the execution from the interpreter frame to an OSR frame and thus
to compiled code. Deoptimization is performed when class loading
invalidates inlining or other optimization decisions: execution is rolled
forward to a safe point, where the native frame is eventually converted
into an interpreter frame.

The OSR mechanism for Jikes RVM described in [60] extracts a scope
descriptor from a thread suspended at a method’s entry point or back-
ward branch, creates specialized code—very similar to our continuation
function—to set up the stack frame for the optimized compiled code,
and resumes the execution at the desired program counter. OSR is then
used as part of an automatic, online, profile-driven deferred compilation
mechanism.

OSR is more generally employed in Jikes RVM to recover from spec-
ulative inlining decisions. When a guard for a call instruction fails, an
OSR stub can divert the execution to a newly generated compiled version
of the function, which could be itself either optimized or unoptimized.
The optimizing compiler can emit an OSRBarrier during the lowering
of a bytecode instruction to capture the JVM state before it is actually
executed [68].

A more general OSR approach for Jikes RVM has been proposed
in [123], with the OSR implementation decoupled from program code
to ease more aggressive specializations triggered by events external to
the executing code (e.g., class loading, exception conditions). Execution
state information is maintained in a variable map—a per-method list
of thread-switch points and associated live bytecode variables—that is
incrementally updated across a number of basic compiler optimizations.

In the Graal VM, which is a modified version of HotSpot centered
on the principle of speculative optimizations, execution falls back to the
interpreter during deoptimization, while a runtime function restores
the stack frames in the interpreter using the metadata associated with
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the deoptimization point [57, 145, 56].

Prospect. Prospect [131] is an LLVM-based framework for paralleliz-
ing a sequential application. The IR is instrumented through two LLVM
passes to enable switching at run time between a slow and a fast variant
of the code, which are both compiled statically. Helper methods are
used to save and eventually restore registers, while stack-local variables
are put on a separate alloca stack rather than on the stack frame so that
the two variants result into similar and thus interchangeable stack lay-
outs. Switching operations are performed by Prospect at user-specified
checkpoints in the original code. Although both Prospect and OSRKit
support switching execution between two variants of a function, they
target different applications.

McOSR. McOSR [88] is a library for inserting open OSR points de-
signed specifically for the legacy LLVM JIT and encodes the OSR machin-
ery entirely in IR as OSRKit does. When an OSR is fired, live variables
are stored into a pool of globals allocated by the library. McOSR then
invokes a user-defined method to transform f into f’ and calls f with
empty parameters. The new entry point inserted by McOSR in f checks
a global flag to discriminate if the function is being invoked in an OSR
transition or as a regular call: in the first case, the state is restored from
the pool of global variables before jumping to the OSR landing pad.

OSRKit improves upon McOSR in a number of respects. The presence
of a new entry point has the potential to disrupt many optimizations:
McOSR tries to mitigate this issue by promptly recompiling f again once
the execution is resumed and f has returned, but only future invocations
of f would benefit from it. In contrast, OSRKit generates an optimized,
dedicated OSR continuation function to resume the execution: lessons
from the Jikes RVM literature [60] suggest that our approach is likely to
yield better performance. Also, we transfer live variables as arguments
to the continuation function—possibly using registers—which is likely
to be more efficient than spilling them to a pool of global variables.
Due to the complexity in preserving the SSA form when updating the
IR, McOSR allows the insertion of OSR points only at loop headers (in
particular, those with exactly two predecessor blocks), while OSRKit can
encode them at arbitrary program locations.

Notice also that OSRKit introduces a number of features that are
absent from McOSR, including: support for compensation code and
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resolved OSR points; compatibility with MCJIT’s design; support for
maintaining multiple versions of the same function, which can be very
useful in the presence of speculative optimizations and deoptimization.

V8. The V8 JavaScript engine implements a multi-tier compilation sys-
tem (a baseline compiler, Full CodeGen, and two optimizing compilers,
CrankShaft and TurboFan), with the recent addition of the experimental
Ignition interpreter. To capture modifications to the program state, the
IR graph is processed in an abstract interpretation fashion, tracking
changes incrementally performed by single instructions: this informa-
tion is then materialized as deoptimization data during the lowering
phase only when needed.

CrankShaft performs OSR at loop headers: loops in the IR have a
single entry point, and a smart naming mechanism is adopted for SSA
variables involved in an OSR transition. The only limitation with this
approach is that the presence of the original entry point acts as a barrier
to code motion. TurboFan performs more sophisticated optimizations on
the IR and supports OSR at loop headers as well, performing loop peel-
ing when required and generating a continuation function specialized
to the actual values at the loop entry [135].

Other Related Work. Dynamic Software Updating (DSU) is a method-
ology for permitting programs to be updated while they run, and is thus
useful for systems that cannot afford to halt service. DSU techniques
(e.g., [104, 97]) are required to update all functions active on the call
stack at the same time, so their code should be instrumented and data
types wrapped to support future extensions. Albeit both DSU and OSR
manipulate the stack to replace running functions, the applications they
target and the performance constraints they are subject to are different.

In tracing JIT compilers deoptimization techniques are used to safely
leave an optimized trace when a guard fails. SPUR [17] is a trace-based
JIT compiler for the Microsoft Common Intermediate Language (CIL)
with three levels of JIT-ting, plus a transfer-tail JIT used to bridge the
execution from an instruction in a block generated at the second or third
level to a safe point for deoptimization to the first JIT level. Deoptimiza-
tion can thus happen without falling back to an interpreter; similarly,
our approach enables VM builders to perform OSR transitions working
at native-code level only.
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In RPython guards are implemented as a conditional jump to a tram-
poline that analyzes resume information for the guard and executes
compensation code to leave the trace; resume data is compactly encoded
by sharing parts of the data structure between subsequent guards [120].
A similar approach is used in LuaJIT, where sparse snapshots are taken
to enable state restoration when leaving a trace [109]. For deoptimiza-
tion purposes it would be interesting to investigate whether, given a
sequence of source instructions, a single continuation function could
be created, by adding a dispatcher in its entry block to perform state
compensation differently depending on the current source for the OSR.

4.2. Towards a Provably Sound On-Stack Replacement
We have seen that OSR is employed in modern adaptive compilation

systems to dynamically switch between different versions of a function
depending on the program’s run-time state. Traditionally, code opti-
mizers are responsible for marking the points where such transitions
can take place, and generating required meta-data or ad-hoc code to
get the program state to a correct resumption point. OSR is usually
at the core of large and complex JIT compilers employed by popular
production virtual machines. The engineering effort to implement OSR
in a language runtime can be daunting, thus making it hardly accessible
to the research community.

Contributions. In this thesis we investigate how to provide VM builders
with a rich “menu” of possible program points where OSR can safely
occur, relieving code optimizers from the burden of generating the ma-
chinery required to realign the program state during an OSR transition.

To capture OSR in its full generality, we define a notion of multi-
program, which is a collection of different versions of a program along
with support to dynamically transfer execution between them. Execution
in a multi-program starts from a designated base version. At any time, an
oracle decides whether execution should continue in the current version,
or an OSR transition should divert it to a different version, modeling
any conceivable OSR-firing strategy.

One of the goals of our work is to characterize sufficient conditions for
a multi-program to be deterministic, yielding the same result regardless of
the oracle’s decisions. This captures the intuitive idea that any sequence
of OSR transitions is correct if it does not alter the intended semantics of
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a program: this is the case when the different versions are generated by
applying different compiler transformations.

In our formalization, we distill the essence of OSR to an abstract
program morphing problem over a simple imperative calculus with an
operational semantics. Using program bisimulation, we prove that an
OSR can correctly divert execution from one program version to the
other if they are live-variable bisimilar, i.e., the live variables they have in
common at any corresponding execution states are equal. As prominent
examples of how bisimulation can be used to prove this property, we
consider classic optimizations that eliminate or move code around, such
as dead code elimination, constant propagation, and code hoisting.

We show how to construct OSR machinery by devising an algorithm
that automatically generates compensation code to reconstruct the values
of the variables that are live at the OSR target, but not at the source.
We make single transformations OSR-aware in isolation, and flexibly
combine them by exploiting the composability of compensation code.
Finally, we discuss an implementation of these ideas in LLVM.

4.2.1. Language Syntax and Semantics
Our discussion is based on a minimal imperative language whose

syntax is reported in Figure 4.9. In this section we introduce some
basic definitions used in our representation of programs, and provide a
big-step semantics for the language.

Definition 4.1 (Program). A program is a sequence of instructions the
form:

π = 〈I1, I2, . . . , In〉 ∈ Prog =
∞⋃

i=2

Instri

where:

• Ii ∈ Instr is the i-th instruction of the program, indexed by pro-
gram point i ∈ [1, n]

• I1 = in · · · is the initial instruction
• ∀i ∈ [2, n − 1] : Ii �= in · · · ∧ Ii �= out · · ·
• In = out · · · is the final instruction

Instruction in, which must appear at the beginning of a program,
specifies the variables that must be defined prior to entering the program.
Similarly, out occurs at the end and specifies the variables that are
returned as output.
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Instr ::= Var := Expr
| if ( Expr ) goto Num
| goto Num
| skip
| abort
| in Var · · ·Var
| out Var · · ·Var

Expr ::= Num | Var | Expr + Expr | . . .
Var ::= X | Y | Z | . . .

Num ::= . . . | -2 | -1 | 0 | 1 | 2 | . . .

Fig. 4.9. Program Syntax

By e[x] we indicate that x is a variable of expression e∈ Expr. We
also denote by vars(e) the set of variables that occur in expression e. By
|π| = n we indicate the number of instructions in π = 〈I1, I2, . . . , In〉.

Definition 4.2 (Memory Store). A memory store is a total function σ :
Var → Z ∪ {⊥} that associates integer values to defined variables, and
⊥ to undefined variables. We denote by Σ the set of all possible memory
stores.

By σ[x ← v] we denote the same function as σ, except that x takes
value v. Furthermore, for any A ⊆ Var, σ|A denotes σ restricted to the
variables in A, i.e., σ|A(x) = σ(x) if x ∈ A and σ|A(x) = ⊥ if x �∈ A.

Definition 4.3 (Program State). The state of a program π = 〈I1, I2, . . . , In〉
is described by a pair (σ, l), where σ is a memory store and l ∈ [1, n] is
the program point of the next instruction to be executed. We denote by
State = Σ × N the set of all possible program states.

We provide a big-step semantics using the transition relation ⇒π ⊆
State × State, which specifies how a single instruction of a program π

affects its state. Our description relies on the relation⇓⊆ (Σ×Expr)×Z

to describe how expressions are evaluated in a given memory store.

Definition 4.4 (Big-Step Transitions). For any program π, we define
relation ⇒π ⊆ State × State as follows, with meta-variables x, y ∈ Var,
e ∈ Expr, and m ∈ Num:

Il = x:=e ∧ (σ, e) ⇓ v
(σ, l) ⇒π (σ[x ← v], l + 1)

(4.1)

Il = if (e) goto m ∧ (σ, e) ⇓ 0
(σ, l) ⇒π (σ, l + 1)

(4.2)
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Il = if (e) goto m ∧ (σ, e) ⇓ v ∧ v �= 0
(σ, l) ⇒π (σ, m)

(4.3)

Il = goto m
(σ, l) ⇒π (σ, m)

(4.4)

Il = skip
(σ, l) ⇒π (σ, l + 1)

(4.5)

I1 = in x y · · · ∧ σ(x) �= ⊥ ∧ σ(y) �= ⊥ ∧ · · ·
(σ, 1) ⇒π (σ, 2)

(4.6)

In = out x y · · · ∧ σ(x) �= ⊥ ∧ σ(y) �= ⊥ ∧ · · ·
(σ, n) ⇒π (σ|{x,y,··· }, n + 1)

(4.7)

For a transition to apply, we implicitly assume that Il is defined, i.e.,
l ∈ [1, n].

Definition 4.5 (Program Semantic Function). We define the semantic
function [[π]] : Σ → Σ of a program π as:

∀σ ∈ Σ : [[π]](σ) = σ′ ⇐⇒ (σ, 1) ⇒∗
π (σ′, |π|+ 1)

where ⇒∗
π is the transitive closure of ⇒π .

Note that a program has undefined semantics if its execution on a
given store does not reach the final out instruction. This accounts for
infinite loops, abort instructions, exceptions, and ill-defined programs
or input stores.

We define the notion of program semantic equivalence as follows:

Definition 4.6 (Program Equivalence). Two programs π1 and π2 are
semantically equivalent iff [[π1]] = [[π2]].

A notion that will be useful in proving correctness in our framework
is that of a trace of a transition system:

Definition 4.7 (Traces). A trace in a transition system (S, R ⊆ S2) starting
from s ∈ S is a sequence τ = 〈s0, s1, . . . , si, . . .〉 such that s0 = s and
∀i ≥ 0 : si ∈ τ ∧ si R si+1 ⇐⇒ si+1 ∈ τ. By TR,s we denote the system
of all traces of (S, R ⊆ S2) starting from s. By τ[i] we denote the i-th
state of τ, i.e., τ[i] = si. Furthermore, if trace τ is finite then |τ| denotes
the index of its final state, i.e., τ = 〈s0, s1, . . . , s|τ|〉, otherwise |τ| = ∞.
Finally, dom(τ) = {i : si ∈ τ} denotes the set of indexes of states in τ.
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Notice that since ⇒π is deterministic in our language, then for any
initial store σ, the system of traces T⇒π ,(σ,1) of the execution transition
system (Store,⇒π) contains a single trace, which we denote by τπσ.

Finally, we provide a formal definition of a control flow graph, which
will be useful in defining computation tree logic operators for reasoning
on program properties:

Definition 4.8 (Control Flow Graph). The control flow graph G for a
program π = 〈I1, I2, . . . , In〉 is described by a pair (V, E ⊆ V × V)

where:

V = {I1, I2, . . . , In}
E = {(Ii, Ii+1) | Ii �= abort ∧ Ii �= goto m, m ∈ Num} ∪

{(Ii, Im) | Ii = goto m ∨ Ii = if (e) goto m, m ∈ Num, e ∈ Expr}

4.2.2. Program Properties and Transformations
In this section we present a formalism based on computation tree

logic (CTL) to reason about program properties and describe program
transformations through rewrite rules with side conditions [40, 86, 82].

Reasoning about Program Properties
To analyze properties of a program, we use Boolean formulas with

free meta-variables that combine facts that must hold globally or at
certain points of a program. Formulas can be checked against concrete
programs by a model checker. For any program π and formula φ, the
checker verifies whether there exists a substitution θ that binds free
meta-variables with program objects so that θ(φ) is satisfied in π. In this
thesis, by A |= ≺ we mean that φ is true in A, i.e., formula φ is satisfied
by structure A (or equivalently, A models φ) [40].

Two global predicates that we will use later on are conlit(c), which
states that an expression c is a constant literal, and freevar(x, e), which
holds if and only if x is a free variable of expression e.

To support analyses based on facts that involve finite maximal paths
in the control flow graph (CFG), such as liveness and dominance, we use
formulas based on CTL operators. In order to introduce these operators,
we need to formalize the concept of finite maximal paths first.

Definition 4.9 (Set of Complete Paths). Given a control flow graph G =

(V, E) and an initial node n0 ∈ V, the set of complete paths CPaths(n0, G)

starting at n0 consists of all finite sequences 〈n0, n1, . . . , nk〉 such that
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(ni, ni+1) ∈ E for all ni with i < k, and such that there does not exist a
nk+1 such that (nk, nk+1) ∈ E.

Complete paths from a specified node (i.e., instruction) are thus
maximal finite sequences of connected nodes through a CFG from an
initial point to a sink node, which in our setting is unique (unless abort
instructions are present) and corresponds to the final instruction In.

First-order CTL can be used to specify properties of nodes and paths
in a CFG. In particular, temporal CTL operators can be used to express
properties of some or all possible future computational paths, any one
of which might be an actual path that is realized. Before formalizing
the temporal operators that we are going to use in the remainder of
this chapter, we provide an intuitive definition for them. We say that,
given a point l in a program π and two formulas φ and ψ, the following
predicates are satisfied at l if:

•
−→
AX(φ): φ holds for all immediate successors of l;

•
−→
EX(φ): φ holds for at least one immediate successor of l;

•
−→
A (φ U ψ): φ holds on all paths from l, until ψ holds;

•
−→
E (φ U ψ): φ holds on at least one path from l, until ψ holds.

Corresponding operators
←−
AX and

←−
EX are defined for immediate prede-

cessors of l, while
←−
A and

←−
E refer to backward paths from l.

Definition 4.10 (Temporal Operators). Given a node n in the control
flow graph G = (V, E) of a program π, we define the following CTL
temporal operators as:

n |= −→
AX(φ) ⇐⇒ ∀m : (n, m) ∈ E : π, m |= φ

n |= −→
EX(φ) ⇐⇒ ∃m : (n, m) ∈ E : π, m |= φ

n |= −→
A (φ U ψ) ⇐⇒ ∀p : p ∈ CPaths(n, G) : Until(π, p, φ, ψ)

n |= −→
E (φ U ψ) ⇐⇒ ∃p : p ∈ CPaths(n, G) : Until(π, p, φ, ψ)

where for p = 〈n0, n1, . . . , nk〉 ∈ CPaths(n0, G) predicate Until(π, p, φ, ψ)

holds if:

∃j : 0 ≤ j ≤ k : π, nj |= ψ ∧ ∀0 ≤ i < j : π, ni |= φ

Operators
←−
AX,

←−
EX,

←−
A , and

←−
E can be defined similarly on the reverse

control flow graph
←−
G , which is identical to G but with every edge in

←−
E

flipped.
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def(x) � Il = x:=e ∨ Il = in · · · x · · ·
[x is defined by instruction Il in π]

use(x) � Il = y:=e[x] ∨
Il = if (e[x]) goto m ∨
Il = out · · · x · · ·
[x is used by instruction Il in π]

trans(e) � Il = x:=e’ ∧ ¬freevar(x, e) ∨ Il �= x:=e’

[no constituent of e is modified by instruction Il in π]

is_live(x) �
←−
AX

←−
A (true U def(x)) ∧ −→

E (¬def(x) U use(x))

[x is live at program point l in π]

urdef(x, l′) �
←−
AX

←−
A (¬def(x) U point(l′) ∧ def(x))

[unique definition of x at l′ reaching l in π]

stmt(I) � I = Il [I is the instruction at l in π]

point(m) � m = l [program point m is l in π]

Fig. 4.10. Predicates expressing local properties of a point l ∈ [1, n] in a program π =
〈I1, . . . , In〉, with meta-variables e, e’ ∈ Expr, x, y ∈ Var, and l, m ∈ Num.

Operators A and E are quantifiers over paths, while X and U path-
specific quantifiers. Notice that φ U ψ requires that φ has to hold at least
until at some node ψ is satisfied: this implies that ψ will be verified in
the future.

Figure 4.10 shows a number of local predicates that will be useful
throughout this thesis. For instance, π, l |= urdef(x, l′) (unique reaching
definition) holds if and only if variable x is defined at l and on all paths
in the control flow graph starting from an immediate successor of l, x is
not redefined until point l′ is reached, i.e., there is a unique definition of
x that reaches l′, and this definition is at l. urdef’s formulation relies on
nested CTL operators:

−→
AX is used to encode a property for all successors

of l, while the nested
−→
A captures all forward paths starting at such nodes.

The following definition will be useful, too:

Definition 4.11 (Live Variables). The set of live variables of a program
π at point l is defined as:

live(π, l) � { x ∈ Var | π, l |= is_live(x) }
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Example 4.1. Dominance analysis is widely employed in a number of
program analysis and optimization techniques. In a CFG we say that a
node n dominates another node m if every path from the CFG’s entry
node to m must go through n. Using CTL operators, we can easily
encode this property. Given a program π as in Definition 4.1, we can
write:

dom(n, m) ⇐⇒ π, I1 |= ¬E(¬point(n) U point(m))

which captures the idea that there does not exist a path starting at the
entry node (i.e, the first instruction in π) that reaches m without reaching
n first.

Program Transformations
To describe program transformations we use rewrite rules with side

conditions in a similar manner to [86, 84]. We consider generalized
rules that transform multiple instructions simultaneously, with side
conditions drawn from CTL formulas:

Definition 4.12 (Rewrite Rule). A rule T has the form:

T = m1 : Î1 =⇒ Î′1 · · · mr : Îr =⇒ Î′r if φ

where ∀k ∈ [1, r], mk is a meta-variable that denotes a program point, Îk

and Î′k are program instructions that can contain meta-variables, and φ

is a side condition that states whether the rewriting rule can be applied
to the input program. We denote by T the set of all possible rewrite
rules.

An elementary example of rewrite rule with meta-variables m, x, and
y is the following, which implements a peephole optimization based on
a weak form of operator strength reduction [42]:

m : y := 2 ∗ x =⇒ y := x + x if true

Rules can be applied to concrete programs by a transformation engine
based on model checking: when the checker finds a substitution θ that
binds free meta-variables with program objects so that θ(φ) is satisfied
in π and θ( Îk) = Iθ(mk)

∈ π for some k ∈ [1, t], then Iθ(mk)
is replaced

with θ( Î′k) = I′
θ(mk)

∈ π′, as formalized next:
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Definition 4.13 (Rule Semantics). Let T be a rewrite rule as in Defini-
tion 4.12. Transformation function [[T]] : Prog → Prog is defined as
follows:

∀π, π′ ∈ Prog : π′ = [[T]](π) ⇐⇒ ∃ θ : π |= θ(φ) ∧
∀k ∈ [1, r] : θ( Îk) = Iθ(mk)

∈ π ∧

θ( Î′k) = I′θ(mk)
∈ π′

In this thesis we focus on transformations that do not alter the se-
mantics of a program:

Definition 4.14 (Semantics-Preserving Rules). A rewrite rule T is semantics-
preserving if for any program π it holds [[π]] = [[π′]], where π′ = [[T]](π).

Examples of semantics-preserving rules for classic compiler opti-
mizations (as proved in [85, 86]) are given in Figure 4.11.

The constant propagation (CP) rule replaces uses of a variable v at
a node m with a constant c. Its side condition is satisfied when in all
backward paths starting at m, the first definition of v we encounter is
always v := c.

The dead code elimination (DCE) rule deletes an instruction at a
node m if the result of its computation will never be used later in the
program’s execution. As we are not interested in uses of the variable
itself at m, in the side condition we skip past it with AX and specify that
there should not exist a forward path that eventually uses (i.e., reads
from) the variable.

Finally, the code hoisting (Hoist) rule moves an assignment of the
form x := v[e] from a node q to a node p provided that two conditions are
met. The first requires that in all forward paths starting at the insertion
point p, x is not used until the original location q is reached. The second
requires that in all backward paths starting at q, x is not reassigned at
any node other than q and the constituents of e are not redefined, until
the insertion point p is reached.

4.2.3. OSR Framework
OSR consists in dynamically transferring execution from a point

l in a program π to a point l′ in a program π′ so that execution can
transparently continue from π′ without altering the original intended
semantics of π. To model this behavior, we assume there exists a func-
tion that maps each point l in π where OSR can safely be fired to the
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Constant propagation (CP):
m : x := e[v] =⇒ x := e[c]
if conlit(c) ∧ m |= ←−

A (¬def(v) U stmt(v := c))

Dead code elimination (DCE):
m : x := e =⇒ skip
if m |= −→

AX ¬−→E (true U use(x))

Code hoisting (Hoist):
p : skip =⇒ x := e
q : x := e =⇒ skip
if p |= −→

A (¬use(x) U point(q)) ∧
q |= ←−

A ((¬def(x) ∨ point(q)) ∧ trans(e) U point(p))

Fig. 4.11. Rewriting rules for defining CP, DCE, and Hoist transformations.

corresponding point l′ in π′ from which execution can continue. As we
observed in Section 4.1.1, the OSR practice often makes the conservative
assumption that π′ can always continue from the very same memory
store as π. However, this assumption may reduce the number of points
where sound OSR transitions can be fired. To overcome this limitation
and support more aggressive OSR transitions, our model includes a store
compensation code χ to be executed during an OSR transition from point
l in π to point l′ in π′. The goal of the compensation code is to fix the
memory store of π at l so that execution can safely continue in π′ from
l′ with the fixed store. Note that, if no compensation is needed for an
OSR transition, [[χ]] is simply the identity function. We formalize these
concepts in the next sections.

4.2.3.1. OSR Mappings
The machinery required for performing OSR transitions between

two programs can be modeled as an OSR mapping:

Definition 4.15 (OSR Mapping). For any π, π′ ∈ Prog, an OSR mapping
from π to π′ is a (possibly partial) function µππ′ : [1, |π|] → [1, |π′|]×
Prog such that:

∀σ ∈ Σ, ∀si = (σi, li) ∈ τπσ s.t. li ∈ dom(µππ′),

∃σ′ ∈ Σ, ∃sj = (σj, lj) ∈ τπ′σ′ s.t.
µπ,π′(li) = (lj, χ) ∧ [[χ]](σi|live(π,li)) = σj|live(π′ ,lj)

We say that the mapping is strict if σ′ = σ. We denote by OSRMap the
set of all possible OSR mappings between any pair of programs.
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Intuitively, an OSR mapping provides the information required to
transfer execution from any realizable state of π, i.e., an execution state
that is reachable from some initial store by π, to a realizable state of π′.
Notice that this definition is rather general, as a non-strict mapping al-
lows execution to be transferred to a program π′ that is not semantically
equivalent to π. For instance, π′ may contain speculatively optimized
code, or just some optimized fragments of π [69, 13, 66]. In those sce-
narios, one typically assumes that execution in π′ can be invalidated
by performing an OSR transition back to π or to some other recovery
program. We also observe that Definition 4.15 uses a weak notion of
store equality restricted to live variables. To simplify the discussion, we
assume that the memory store is only defined on scalar variables (we ad-
dress extensions to memory load and store instructions in Section 4.2.5).
Hence, the behavior of a program only depends on the content of its
live variables, as stated in the following lemma:

Lemma 4.1. For any program π ∈ Prog, any σ, σ′ ∈ Σ, and any l, l′ ∈ N,
it holds:

(σ, l) ⇒π (σ′, l′) ⇐⇒ (σ|live(π,l), l) ⇒π (σ′|live(π,l′), l′)

Proof. We reason on the structure of the transition relation ⇒π for our
big-step semantics shown in Definition 4.4. We rewrite our claim as:

(σ, l) ⇒π (σ′, l′) ⇐⇒ (σ|live(π,l), l) ⇒π (σ̂, l′)

∧ σ̂|live(π,l′) = σ′|live(π,l′)

When Equation (4.1) applies, both states advance to location l + 1, and
the evaluation (σ, e) ⇓ v for the assignment yields the same result in
both stores, as each operand in e is either a constant literal or a live vari-
able for π at l. Indeed, having a variable operand for e not in live(π, l)
would contradict the definition of liveness. When the instruction at l
is a conditional expression, ⇒π applies either Equation (4.2) or Equa-
tion (4.3) to both states: as discussed for assignments, the evaluation of
expression e yields the same result in σ and σ|live(π,l), and both states
advance to the same location without affecting the store. When one
of Equations (4.4) to (4.7) applies, trivially both states advance to the
same location, while values in their stores are not affected. Finally, from
Definition 4.11 it follows that live(π, l′) ⊇ live(π, l)∪ { x | Il = x:=e }
and thus σ̂|live(π,l′) = σ′|live(π,l′).
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Input: Program π, transformation T.
Output: Program π′, OSR mappings µππ′ and µπ′π .

algorithm OSR_trans(π, T)→(π′,µππ′ ,µπ′π):
1 (π′, ∆, ∆′) ← apply(π, T)
2 foreach l ∈ dom(∆) do
3 χ ← build_comp(π, l, π′, ∆(l))
4 if χ �= undef then µππ′ (l) ← (∆(l), χ)

5 end
6 foreach l′ ∈ dom(∆′) do
7 χ ← build_comp(π′, l′, π, ∆′(l′))
8 if χ �= undef then µπ′π(l′) ← (∆′(l′), χ)

9 end
10 return (π′, µππ′ , µπ′π)

Algorithm 7: OSR_trans algorithm for OSR mapping construction.
Functions ∆ and ∆′ are used to map OSR program points between
π and π′ (and vice versa).

Notice that dom(µππ′) ⊆ [1, |π|] is the set of all possible points in π

where OSR transitions to π′ can be fired. If µππ′ is partial, then there are
points in π where OSR cannot be fired. In the next section we discuss
an algorithm whose goal is to minimize the number of these points.

4.2.3.2. OSR Mapping Generation Algorithm
We now discuss an algorithm that, given a program π and a rewrite

rule T, generates:

1. a program π′ = [[T]](π);
2. an OSR mapping µππ′ from π to π′;
3. an OSR mapping µπ′π from π′ to π.

Mappings µππ′ and µπ′π produced by the algorithm are based on
compensation code that runs in O(1) time and support bidirectional
OSR between π and π′, enabling invalidation and deoptimization. The
algorithm, which we call OSR_trans, is shown in Algorithm 7. In Sec-
tion 4.2.3.3 we prove that the algorithm is correct under the sufficient
condition that variables that are live at corresponding points in the
original and rewritten program contain the same values.

OSR_trans. The algorithm relies on two helper subroutines: apply
and build_comp. Procedure apply takes as input a program π and a
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program rewriting function T, and returns a transformed program π′

and two functions ∆ : [1, |π|] → [1, |π′|], ∆′ : [1, |π′|] → [1, |π|] that
map OSR program points between π and π′. Algorithm build_comp
(shown in Algorithm 8) takes as input π, l, π′, l′ and aims to build a
store compensation code χ that allows firing an OSR from π at l to π′ at l′.
OSR_trans first calls apply and then uses build_comp on π, π′, ∆, ∆′ to
build OSR mappings µππ′ , µπ′π . Lines 2–5 build the forward mapping
µππ′ from l in π to ∆(l) in π′, while lines 6–9 build the backward map-
ping µπ′π from l′ in π′ to ∆′(l′) in π. If any of the live variables at the
OSR destination cannot be guaranteed to be correctly assigned, no entry
is created in µππ′ or µπ′π for the OSR origin point (lines 4 and 8). Hence,
those points will not be eligible for OSR transitions. In Section 5.4 we
analyze experimentally the fraction of points for which a compensation
code can be created by algorithm build_comp in a variety of prominent
benchmarks.

build_comp. The algorithm (shown in Algorithm 8) generates a pro-
gram χ that starts with an in statement with the live variables at the
origin l in π (line 1), and ends with an out statement with the live vari-
ables at the destination l′ in π′ (line 9). The goal of χ is to make sure that
all out variables are correctly assigned, either because they already hold
the correct value upon entry, or because they can be computed in terms
of the input variables. The algorithm iterates on all variables xi that are
live at the destination, but not at the origin (line 4). For each of them, it
calls a subroutine reconstruct that builds a code fragment that assigns
xi with its correct value using live variables at the origin (line 5). If
this value cannot be determined, reconstruct throws an exception and
build_comp returns an undefined compensation code (line 8), which
implies that OSR cannot be performed at l. To avoid code duplication
in χ and unnecessary work, the algorithm assumes that all points in
π′ are initially unvisited (line 2) and lets reconstruct mark them as
visited along the way. Algorithm build_comp can be implemented with
a running time linearly bounded by the size of π′.

reconstruct. The procedure (shown in Algorithm 9) takes a variable
x, the OSR origin and destination points l and l′ in π and π′, respectively,
and an additional point l′′ in π′. It builds a straight-line code fragment
that assigns x with the value it would have had at l′′ just before reaching
l′ if execution had been carried on in π′ instead of π. The algorithm
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Input: Program π, point l, program π′, point l′.
Output: Store compensation code χ.

algorithm build_comp(π, l, π′, l′)→ χ:
1 χ ← in x1 x2 · · · xk : ∀i ∈ [1, k] : π, l |= live(xi)
2 mark all program points of π′ as unvisited
3 try
4 foreach x : π′, l′ |= live(x) ∧ π, l |= ¬live(x) do
5 χ ← χ · reconstruct(x, π, l, π′, l′, l′)
6 end
7 catch
8 return undef
9 χ ← χ · out x1 x2 · · · xk′ : ∀i ∈ [1, k′] : π′, l′ |= live(xi)

10 return χ

Algorithm 8: build_comp algorithm for compensation code con-
struction.

first checks whether there is a unique definition of x of the form x := e
at some point l̂ that reaches point l′′ in π′′ (urdef at line 1). If such a
reaching definition is not unique, then the live information available
in π at l is deemed insufficient to determine what value x would have
assumed in π′, and the algorithm gives up (line 10). The algorithm as-
sumes liveness and reaching definition analyses are available to compute
predicates live and urdef (Section 4.2.2). If x is live both at the origin
l and at the destination l′, and the definition of x at l̂ that reaches l′′ is
also a unique definition reaching l′ (line 4), then x would have assumed
at l′′ the same value available at l′. In the next section we will see that, if
we can guarantee that live variables at the origin have the same values
they would have had at the destination if execution had been performed
in π′, then the algorithm correctly assumes that x is available at the
origin and no compensation code is needed to reconstruct it (return at
line 4). If x is not available at l, then the algorithm iterates over all free
variables y of the expression e computed at l̂ and recursively builds code
that computes the values that they would have assumed at l̂ just before
reaching l′ if execution had been carried on in π′. After the recursively
generated code for assigning the constituents of e has been added to χ

(lines 6–8), the assignment x := e is appended to χ (line 9).

4.2.3.3. Algorithm Correctness
We now prove the correctness of OSR_trans, showing that it yields

strict OSR mappings if the applied rewrite rules satisfy the property
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procedure reconstruct(x, π, l, π′, l′, l′′):
1 if ∃l̂ : π′, l′′ |= urdef(x, l̂) ∧ π′, l̂ |= stmt(x:=e) then
2 if l̂ is visited then return 〈〉
3 mark l̂ as visited
4 if π′, l′ |= urdef(x, l̂) ∧ π′, l′ |= live(x) ∧ π, l |= live(x)

then return 〈〉
5 χ ← 〈〉
6 foreach y : y ∈ freevar(e) do
7 χ ← χ · reconstruct(y, π, l, π′, l′, l̂)
8 end
9 χ ← χ · x:=e

10 else throw undef
11 return χ

Algorithm 9: Value reconstruction procedure used by build_comp.

that variables that are live at corresponding points in the original and
rewritten program contain the same values. To characterize this property,
we need to introduce some formal machinery based on bisimilarity of
programs.

Definition 4.16 (Program Bisimulation). A relation R ⊆ State × State
is a bisimulation relation between programs π and π′ if for any input
store σ ∈ Σ it holds:

s ∈ τπσ ∧ s′ ∈ τπ′σ ∧ s R s′ =⇒
1) s ⇒π s1 =⇒ s′ ⇒π′ s′1 ∧ s1 R s′1
2) s′ ⇒π′ s′1 =⇒ s ⇒π s1 ∧ s1 R s′1

Notice that our notion of bisimulation between programs π and π′

requires that R be a bisimulation between transition systems (τπσ,⇒π)

and (τπ′σ,⇒π′) for any store σ ∈ Σ.

Lemma 4.2. Let R be a reflexive bisimulation relation between programs π

and π′. Then for any σ ∈ Σ it holds:

|τπσ| = |τπ′σ| (4.8)

∀i ∈ dom(τπσ), τπσ[i] R τπ′σ[i] (4.9)

Proof. We prove Equation (4.9) by induction on i. The base follows from
τπσ[0] = τπ′σ[0] = (σ, 1) and the assumption that R is reflexive. Assume
as an inductive hypothesis that τπσ[i] R τπ′σ[i] for any i < |τπσ|. Since
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|τπσ| > i then τπσ[i] ⇒π τπσ[i + 1] by Definition 4.7. It follows by
Definition 4.16 that τπσ[i + 1] R τπ′σ[i + 1].

To prove Equation (4.8), assume by contradiction that |τπσ| �= |τπ′σ|,
e.g., |τπσ| > |τπ′σ| = k. Since |τπσ| > k then τπσ[k] R τπ′σ[k] by Equa-
tion (4.9) and τπσ[k] ⇒π τπσ[k + 1] by Definition 4.7. It follows by
Definition 4.16 that τπ′σ[k] ⇒π′ τπ′σ[k + 1]. Hence |τπ′σ| > k, contra-
dicting the initial assumption. The proof for the case |τπ′σ| > |τπσ| is
analogous.

Definition 4.17 (Partial State Equivalence). For any function A : N →
2Var, the partial state equivalence relation RA ⊆ State × State is defined
as:

RA � {(s, s′) ∈ State × State |
s = (σ, l) ∧ s′ = (σ′, l) ∧ σ|A(l) = σ′|A(l)}.

Relation RA is reflexive, symmetric, and transitive.

Definition 4.18 (Live-Variable Bisimilar Programs). π and π′ are live-
variable bisimilar (LVB) if RA is a bisimulation relation between them,
where A = l �→ live(π, l) ∩ live(π′, l) is the function that yields for
each program point l the set of variables that are live at l in both π and
π′.

One consequence of Definition 4.17, which simplifies our formal
discussion, is the following:

Lemma 4.3. If π and π′ are live-variable bisimilar, then for any σ, correspond-
ing states in program traces τπσ and τπ′σ are located at the same program
points: ∀i : τπσ[i] = (σi, li) ∧ τπ′σ[i] = (σ′

i , l′i) =⇒ li = l′i .

Proof. Straightforward by Lemma 4.2 and Definition 4.17.

Corollary 4.1. If π and π′ are live-variable bisimilar, then they have the same
size: π = 〈I1, . . . , In〉 ∧ π′ = 〈I′1, . . . , I′n′ 〉 =⇒ n = n′.

Proof. By Lemma 4.2, Lemma 4.3, and Equation (4.7), for any finite trace
τπσ it holds τπσ[|τπσ|] = (−, n+ 1) and τπ′σ[|τπ′σ|] = (−, n+ 1). Hence
both π and π′ contain n instructions.

We can now prove that build_comp generates correct OSR compen-
sation code under the live-variable bisimilarity assumption.
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x := e

Fig. 4.12. Algorithm reconstruct identifies an assignment x := e at l̂ that reaches both
l′ and l′′, and no other definition of x is possible.

Lemma 4.4 (Correctness of Algorithm build_comp). Let π and π′ be
live-variable bisimilar programs. For each initial store σ ∈ Σ it holds:

∀i ∈ dom(τπσ) : χ �= unde f =⇒ [[χ]](σi|live(π,li)) = σ′
i |live(π′ ,li)

where (σi, li) = τπσ[i], (σ′
i , li) = τπ′σ[i] and χ = build_comp(π, li, π′, li).

Proof. The correctness of build_comp relies on the ability of reconstruct
to produce compensation code for each variable that is live at the OSR
destination, but not at the origin. Algorithm reconstruct(x, π, l, π′, l′, l′′)
aims at creating a sequence of instructions that assigns x with the value
that it would have assumed at l′′ in π′, using as input the values of live
variable at l in π.

We proceed by induction on the recursive calls of reconstruct. For
the algorithm to succeed, there must be a unique definition x:=e at some
point l̂ that dominates l′′ (as in Figure 4.12), otherwise unde f is thrown.

The base case happens when either:

1. e has no free variables (line 6), hence the compensation code for x
is just x:=e (line 9);

2. the definition at l̂ reaches both l′′ and l′ (lines 1, 4) and x is live
at both origin and destination (line 4), hence, since π and π′ are
live-variable bisimilar and x has the same value at l and l′, then
no compensation code for x is needed as the value of x at l is the
same that we would have had at l′′;

3. l̂ has already been visited, so compensation code for x has already
been created.

Assume by inductive hypothesis that the recursive calls of reconstruct
have added to χ the code to assign each free variable y of e with the
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value they would have assumed at l̂ (line 7). Then the value of x that we
would have had at l̂ is determined by x := e, which is appended to χ

(line 9).

Definition 4.19 (Live-Variable Equivalent Transformation). A program
transformation T is live-variable equivalent (LVE) if for any program π, π

and [[T]](π) are live-variable bisimilar.

We can finally establish the correctness of OSR_trans, which follows
directly by Lemmas 4.3 and 4.4 and Corollary 4.1:

Theorem 4.1. For any program π and live-variable equivalent transformation
T, if apply(π, T) � (π′, ∆I , ∆I) where π′ = [[T]](π) and ∆I : [1, |π|] →
[1, |π|] is the identity mapping between program points, then OSR_trans(π, T)
= (π′, µππ′ , µπ′π) yields a strict OSR mapping µππ′ between π and π′ and
a strict OSR mapping µπ′π between π′ and π.

Discussion. We remark that the assumption of an identity mapping
between program points, which is a necessary condition of live-variable
bisimilarity, is without loss of generality as it can always be enforced
by padding programs with skip statements. For instance, the Hoist
transformation of Figure 4.11, which we prove to be LVE in the next
section, replaces the hoisted instruction with a skip, and expects a skip
to already exist at the point where it is moved. As we discuss in Sec-
tion 4.2.5, this is not required in a real compiler, as a code transformation
pass can be instrumented to capture actions that make an update of the
mapping required.

4.2.3.4. Examples of LVE Transformations
In this section we show that classic compiler optimizations such

as constant propagation, dead code elimination, and code hoisting as
defined in Figure 4.11 are all examples of live-variable equivalent trans-
formations. Hence, they are provably correct building blocks of an
OSR-aware compilation toolchain based on algorithm OSR_trans. These
optimizations are representative of a broad class of transformations that
insert, delete, and modify instructions. Further optimizations, which
we do not formally discuss here, are evaluated in Section 5.4.

Theorem 4.2. Transformations CP, DCE, and Hoist of Figure 4.11 are live-
variable equivalent.
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Proof. [85] proves CP, DCE, and Hoist correct using a different bisimula-
tion relation R for each. For CP R is simply the identity relation, hence
A(l) = Val ⊇ live(π, l) ∩ live(π′, l) in Definition 4.17. For the other
two transformations, R is piecewise-defined on the indexes of the traces.
For any initial store σ ∈ Σ, let τπσ[i] = (σi, li), τπ′σ[i] = (σ′

i , l′i), and t be
the index of the final state in both traces (note that |τπσ| = |τπ′σ| from
Lemma 4.2). Let also θ be a substitution that binds free meta-variables
with concrete program objects so that a rule’s side-condition is satisfied.

For DCE R is the identity relation before the eliminated assignment
x := e, and A(l) = Val \ {θ(x)} = live(π, l) ∩ live(π′, l) after it. R
is a bisimulation such that ∀i ∈ [1, t] li = l′i and both the following
conditions hold:

1. [∀j, j < i ⇒ lj �= θ(p)] ⇒ σi = σ′
i and

2. [∃j, j ≤ i ∧ lj = θ(p)] ⇒ σi \ x = σ′
i \ x

where p is the meta-variable for the eliminated assignment in π′, and σ \
x is syntactic sugar for σ|D(σ), where D(σ) = {v ∈ Var | v �= x ∧ σ(v) �=
⊥} is the set of all the variable identifiers other than x currently defined
in σ.

For Hoist R is the identity relation before θ(p) and after θ(q) (Fig-
ure 4.11), and A(l) = Val \ {θ(x)} = live(π, l) ∩ live(π′, l) between
them. Formally, we have that ∀i ∈ [1, t] li = l′i and one of the following
cases holds:

1. σt = σ′
t ∧ ∀i [0 ≤ i < t ⇒ li /∈ {θ(p), θ(q)}]

2. σt = σ′
t ∧ ∃i [0 ≤ i < t ∧ li = θ(q) ∧ σi = σ′

i ∧
∀j (i < j < t ⇒ lj /∈ {θ(p), θ(q)})]

3. ∃i [0 ≤ i < t ∧ li = θ(p) ∧ (σt \ x = σ′
t \ x) ∧ (σi \ x = σ′

i \ x) ∧
∀j (i < j < t ⇒ lj /∈ {θ(p), θ(q)}]

Case 1 applies before θ(p) is reached in the trace. Case 3 applies after
θ(p) has been reached, but θ(q) has not. Finally, case 2 applies after θ(q)
has been reached.

4.2.3.5. Composing Multiple Transformation Passes
In this section we show that OSR mappings can be composed, al-

lowing several optimization passes to be applied to a program using
algorithm OSR_trans. The first ingredient is program composition:
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Definition 4.20 (Program Composition). We say that two programs
π, π′ ∈ Prog with π = 〈I1, . . . , In〉 and π′ = 〈I′1, . . . , I′n′ 〉 are compos-
able if In = out v1, . . . , vk and I′1 = in v′1, . . . , v′k′ with {v′1, . . . , v′k′ } ⊆
{v1, . . . , vk}. For any pair of composable programs π, π′, we define
π ◦ π′ = 〈I1, . . . , In−1, Î′2, . . . , Î′n′ 〉, where ∀i ∈ [1, n′], Î′ i is obtained
from I′i by relocating each goto target m with m + n − 2.

Lemma 4.5 (Semantics of Program Composition). Let π, π′ ∈ Prog be any
pair of composable programs, then ∀σ ∈ Σ, [[π ◦ π′]](σ) = [[π′]] ([[π]](σ)).

Proof. Straightforward by Definitions 4.5 and 4.20.

We can now show how to define a composition of OSR mappings,
and prove that it yields a valid OSR mapping:

Lemma 4.6 (Mapping Composition). Let π, π′, π′′ ∈ Prog, let µππ′ and
µπ′π′′ be OSR mappings as in Definition 4.15, and let µππ′ ◦ µπ′π′′ be a
composition of mappings defined as follows:

∀l ∈ dom(µππ′) s.t. µππ′(l) = (l′, χ) ∧ l′ ∈ dom(µπ′π′′) :

µπ′π′′(l′) = (l′′, χ′) =⇒ (µππ′ ◦ µπ′π′′)(l) = (l′′, χ ◦ χ′)

Then µππ′ ◦ µπ′π′′ is an OSR mapping from π to π′′.
Proof. Let µππ′′ = µππ′ ◦ µπ′π′′ . By Definition 4.15, it holds:

∀σ ∈ Σ, ∀si = (σi, li) ∈ τπσ s.t. li ∈ dom(µππ′′ ),

∃σ′, σ′′ ∈ Σ, ∃sj = (σj, lj) ∈ τπ′σ′ ,

∃sk = (σk, lk) ∈ τπ′′σ′′ s.t. µππ′′ (li) = (lk, χ ◦ χ′) ∧
[[χ ◦ χ′]](σi|live(π,li)) = [by Lemma 4.5]

[[χ′]]([[χ]](σi|live(π,li))) = [[χ′]](σj|live(π′ ,lj)) = σk|live(π′′ ,lk)

Hence, µππ′ ◦ µπ′π′′ is an OSR mapping from π to π′′.

Corollary 4.2. Let π, π′, π′′ ∈ Prog, let µππ′ and µπ′π′′ be strict OSR
mappings as in Definition 4.15. Then µππ′ ◦ µπ′π′′ is a strict OSR mapping
from π to π′′.

Proof. Straightforward by Definition 4.15 and Lemma 4.6.

Based on Lemma 4.6, we can easily prove by induction the correctness
of the multi-pass transformation algorithm of Algorithm 10, which takes
a program π and a list of program transformations, and applies them to
π, producing a bidirectional OSR mapping µππ′′ , µπ′′π between π and
the resulting program π′′.
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Input: Program π, list of program transformations L.
Output: Program π̂, mappings µππ̂ and µπ̂π .

algorithm do_passes(π, T :: L)→(π′′, µππ′′ , µπ′′π):
1 (π′, µππ′ , µπ′π) ← OSR_trans(π, T)
2 if L = Nil then return (π′, µππ′ , µπ′π)
3 (π′′, µπ′π′′ , µπ′′π′ ) ← do_passes(π′, L)
4 return (π′′, µππ′ ◦ µπ′π′′ , µπ′′π′ ◦ µπ′π)

Algorithm 10: OSR-aware multi-pass program transformations.

4.2.4. Multi-Version Programs
In this section we propose a general OSR model where computations

are described by a multi-version program, which consists of different
versions of a program along with OSR mappings that allow execution
to be transferred between them.

Definition 4.21 (Multi-Version Program). A multi-version program is
modeled by an edge-labeled graph Π = (V , E ,M) where V = {π1, π2,
. . . , πr} is a set of program versions, E ⊆ Π2 is a set of edges such that
(πp, πq) indicates that an OSR transition can be fired from some point
of πp to πq, and M : E → OSRMap labels each edge (π, π′) ∈ E with
an OSR mapping from π to π′.

Semantics
The state of a multi-version program is similar to the state of a pro-

gram (Definition 4.3), but it also includes the index of the currently
executed program version.

Definition 4.22 (Multi-Version Program State). The state of a multi-
version program Π = (V , E ,M) is described by a triple (p, σ, l), where
p ∈ [1, |V|] is the index of a program version, σ is a memory store, and
l ∈ [1, |πp|] is the point of the next instruction to be executed in πp. The
initial state from a store σ is (1, σ, 1), i.e., computations start at π1. We
denote by MState = N × Σ × N the set of all possible multi-version
program states.

The execution semantics of a multi-version program is described by
the following transition relation:

Definition 4.23 (Multi-Version Big-Step Transitions). For any multi-
version program Π, relation ⇒Π⊆ MState × MState is defined as fol-
lows:



4. Continuous Program Optimization Techniques 83

(Norm)
(σ, l) ⇒πp (σ′, l′)

(p, σ, l) ⇒Π (p, σ′, l′)

(OSR)
(πp, πq) ∈ E ∧ (l′, χ) = M(πp, πq)(l) ∧ σ′ = [[χ]](σ)

(p, σ, l) ⇒Π (q, σ′, l′)

(4.10)

The meaning is that at any time, execution can either continue in the
current program version (Norm rule), or an OSR transition—if possible
at the current point—can direct the control to another program version
(OSR rule). The choice is non-deterministic, i.e., an oracle can tell the
execution engine which rule to apply.

In practice, the choice may be based for instance on profile data gath-
ered by the runtime system: a common strategy is to dynamically “OSR”
to the available version with the best expected performance on the actual
workload. Notice that since ⇒Π may be non-deterministic, in general
there may be different final stores for the same initial store. However,
we are only interested in multi-version programs that deterministically
yield a unique result, which guarantees semantic transparency of OSR
transitions.

To characterize the execution behavior of a multi-version program,
we consider the system of traces of an execution transition system that
start from a given initial state.

Definition 4.24 (Trace System of Multi-Version Program). The system
of traces TΠ,σ contains all traces τ of transition system (MState,⇒Π)

such that τ[0] = (1, σ, 1).

Definition 4.25 (Deterministic Multi-Version Program). A multi-version
program Π is deterministic iff ∀σ ∈ Σ either all traces in TΠ,σ are infinite
or they all lead to the same store, i.e.:

∀τ, τ′ ∈ TΠ,σ :
(
|τ| = ∞ ⇐⇒ |τ′| = ∞

)
∧(

|τ| < ∞ =⇒ ∃ p, p′, l, l′ ∈ N, σ, σ′ ∈ Σ :

τ[|τ|] = (p, σ, l) ∧ τ′[|τ′|] = (p′, σ′, l′) ∧ σ = σ′).

The meaning of a deterministic multi-version program can be defined
as follows:

Definition 4.26 (Multi-Version Semantic Function). The semantic func-
tion [[Π]] : Σ → Σ of a deterministic multi-version program Π is defined
as:

∀σ ∈ Σ : [[Π]](σ) = σ′ ⇐⇒ (1, σ, 1) ⇒∗
Π (p, σ′, |πp|+ 1)
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where ⇒∗
Π is the transitive closure of ⇒Π.

Generation Algorithm and Correctness
A natural way to generate a multi-version program consists in start-

ing from a base program π1 and constructing a tree of different ver-
sions, where each version is derived from its parent by applying one or
more transformations. Using this approach and procedure do_passes
described in Section 4.2.3.5, it is straightforward to construct a multi-
version program Π = (V , E ,M) such that:

(πp, πq) ∈ E ⇐⇒ ∃L : do_passes(πp, L) = (πq, µ, µ′) ∧M(πp, πq) = µ ∨
do_passes(πq, L) = (πp, µ, µ′) ∧M(πp, πq) = µ′

To prove the correctness of this approach, we introduce a preliminary
lemma and then use it to prove that a multi-version program built in
this way is deterministic.

Lemma 4.7. Let τ ∈ TΠ,σ be an execution trace in the system of the traces for
the multi-version program Π = (V , E ,M) constructed using do_passes and
LVE transformations, and let ω1, . . . , ωk be the indexes of τ where an OSR
transition has just occurred, with τ[ωi] = (pωi , σωi , lωi ). Then ∀i ∈ [1, k]
there exists a state (σ̂i, l̂i) in the trace of πpωi

starting from the initial store σ

such that l̂i = lωi and σ̂i|live(πpωi
, l̂i)

= σωi |live(πpωi
, l̂i)

.

Proof. To simplify the notation we introduce:

π̂i =




π1 if i = 0

πpωi
if i ∈ [1, k]

From Equation (4.10) we can write that τ[ωi] = (pωi , σωi , lωi ) has been
obtained from τ[ωi − 1] = (pωi−1, σωi−1, lωi−1)with σωi = [[χωi−1]](σωi ).
For each OSR transition π̂i has been obtained from π̂i−1 using do_passes
for some sequence L of LVE transformations. Indeed, in order for Equa-
tion (4.10) to apply:

(π̂i−1, π̂i) ∈ E ∧ ∃L : do_passes(π̂i−1, L − 1) = (π̂i, µπ̂i−1π̂i , µ′
π̂iπ̂i−1

) ∧

M(π̂i−1, π̂i) = µπ̂i−1π̂i

When the OSR step is performed we thus have:

M(π̂i−1, π̂i)(lωi−1) = µπ̂i−1π̂i (lωi−1) = (lωi , χωi−1)
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By Theorem 4.1 function µπ̂i−1π̂i provides a strict OSR mapping between
π̂i−1 and π̂i, as all LVE transformations in L are composed into a strict
mapping (Corollary 4.2). Note also that since ∆I is being used to map
OSR program points between π̂i−1 and π̂i, it follows that lωi = lωi−1 ∀i ∈
[1, k]. We now prove our claim by induction on i.

Base step. When i = 1 we know that no OSR transition has been
performed till lω1−1 and π̂0 has been executing all the time. Then we
can write:

(1, σ, 1) ⇒∗
Π (1, σω1−1, lω1−1) ⇐⇒ (σ, 1) ⇒∗

π̂0
(σω1−1, lω1−1)

Trivially, (σω1−1, lω1−1) ∈ τπ̂0σ. We can thus infer from Definition 4.15:

∃sj = (σj, lj) ∈ τπ̂1σ s.t. µπ̂0π̂1(lω1−1) = (lj, χ) ∧
[[χ]](σω1−1|live(π̂0, lω1−1)

) = σj|live(π̂1, lj)

From the definition of µπ̂0π̂1 it follows that χ = χω1−1 and lj = lω1 =

lω1−1. To prove the claim we need to show that:

σj|live(π̂1, lω1 )
= σω1 |live(π̂1, lω1 )

which follows directly from Lemmas 4.4 and 4.6.

Inductive step. As inductive hypothesis we assume that ∃(σ̂k−1, l̂k−1) ∈
τπ̂k−1σ s.t.:

l̂k−1 = lωk−1 ∧ σ̂k−1|live(π̂k−1, l̂k−1)
= σωk−1 |live(π̂k−1, l̂k−1)

Since no OSR is performed between τ[ωk−1] and τ[ωk − 1] we can write:

(σ̂k−1, lωk−1) ⇒
∗
π̂k−1

· · · ⇒∗
π̂k−1

(σ̃, lωk−1) ⇐⇒

(σωk−1 , lωk−1) ⇒
∗
π̂k−1

· · · ⇒∗
π̂k−1

(σωk−1, lωk−1)

in the same number of steps, where by Lemma 4.1 σ̃|live(π̂k−1, lωk−1)
=

σωk−1|live(π̂k−1, lωk−1)
. Since (σ̃, lωk−1) ∈ τπ̂k−1σ by the strictness of the

OSR mapping µπ̂k−1π̂k we can write:

∃sj = (σj, lj) ∈ τπ̂kσ s.t. µπ̂k−1π̂k (lωk−1) = (lj, χ) ∧
[[χ]](σ̃|live(π̂k−1, lωk−1)

) = σj|live(π̂k , lj)
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From the definition of µπ̂k−1π̂k it follows that χ = χωk−1 and lj = lωk =

lωk−1. By Lemmas 4.4 and 4.6 we thus prove:

σj|live(π̂k , lωk )
= [[χωk−1]](σ̃|live(π̂k−1, lωk−1)

)

= [[χωk−1]](σωk−1|live(π̂k−1, lωk−1)
)

= σk|live(π̂k , lωk )
)

Theorem 4.3 (Multi-Version Program Determinism). Let Π = (V , E ,M)

be a multi-version program constructed using do_passes and live-variable
equivalent transformations. Then Π is deterministic.

Proof. To prove that Π is deterministic, we need to show that, given
any initial store σ on which π1 ∈ Π terminates on some final state
σ′ = [[π1]](σ), any execution trace τ ∈ TΠ,σ terminates with σ′.

Let ω1, . . . , ωk be the indexes of τ where an OSR transition has just
occurred, i.e., for any i ∈ [1, k], state τ[ωi] is obtained from τ[ωi − 1] by
applying compensation code χωi−1 on store σωi−1, which yields a store
σωi . The transition leads from a point lωi−1 in version πpωi−1 to a point
lωi = lωi−1 in version πpωi

in Π.
By Lemma 4.7 ∀i ∈ [1, k] there exists a state (σ̂i, l̂i) in the trace of π̂i =

πpωi
starting from the initial store σ such that l̂i = lωi and σ̂i|live(π̂i ,l̂i)

=

σωi |live(π̂i ,l̂i)
. Hence, since no OSR is fired after ωk, by Equation (4.10) it

holds:

(π̂k, σωk , lωk ) ⇒
∗
Π (π̂k, σ′, |π̂k|+ 1) ⇐⇒ (σωk , lωk ) ⇒

∗
π̂k

(σ′, |π̂k|+ 1)

We can then apply Lemmas 4.1 and 4.7 to write:

(σωk , lωk ) ⇒
∗
π̂k

(σ′, |π̂k|+ 1) ⇐⇒

(σωk |live(π̂k ,lωk )
, lωk ) ⇒

∗
π̂k

(σ′, |π̂k|+ 1) ⇐⇒

(σ̂k|live(π̂k ,l̂k)
, l̂k) ⇒∗

π̂k
(σ′, |π̂k|+ 1)

As (σ̂k, l̂k) ∈ τπ̂kσ, by Lemma 4.1 necessarily σ′ = [[π̂k]](σ). Given that
all programs in Π are semantically equivalent, we can conclude that
[[Π]](σ) = σ′ = [[π̂k]](σ) = [[π1]](σ).

4.2.5. LLVM Implementation
In this section we present an implementation in LLVM of our auto-

matic OSR mapping construction techniques. In particular, we discuss
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how to deal with the memory load and store instructions, and how to
implement algorithms apply and build_comp in a real compiler.

Background
The LLVM compiler infrastructure is designed to support transpar-

ent, life-long program analysis and transformation for arbitrary pro-
grams [90]. LLVM is widely used to efficiently compile static languages
(e.g., C, C++, Objective C/C++) and, as we have seen in Section 4.1.2, as
a JIT compiler for a variety of dynamic languages.

The core of LLVM is its low-level intermediate representation (IR): a
front-end for a high-level language can compile a program’s source code
to LLVM IR; platform-independent optimization passes then manipulate
the IR, and a back-end eventually compiles IR to native code, performing
architecture-specific further optimizations. Front-end authors can thus
benefit from LLVM’s shared extensive optimization pipeline to generate
better code for their language.

LLVM provides an infinite set of typed virtual registers that can hold
primitive types. Virtual registers are in SSA form [47], and values can be
transferred between registers and memory solely via load and store op-
erations. Virtual registers are uniquely assigned by expressions defined
on incoming registers, and in the implementation they simply corre-
spond to the instructions assigning to them. When a program variable
might assume a different value depending on which way the control
flow came from, the SSA form requires the insertion of a φ function to
merge multiple incoming virtual registers into a new one (i.e., a φ-node).

Supporting load and store Instructions
A store instruction writes the content of a virtual register to a given

memory address. For live-variable bisimilar versions of a program, a
sufficient condition for which the associated multi-program is determin-
istic is that store instructions are executed at the same program point
in all versions.

A load instruction assigns to a virtual register the value read from a
given address and can be treated as a special case of variable assignment
in our setting. This ensures that—under the above assumption for store
instructions—given a program location and two program versions, if a
live virtual register from one version corresponds to a live register in the
other version according to OSRMap, then both load instructions would
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have yielded the same value.
Common LLVM optimizations such as loop hoisting and code sinking

by default do not move store instructions around. However, enforcing
the store hypothesis described above might be restrictive in a different
optimization setting: for this reason, we describe a possible extension of
our approach to deal with the issue. We can model a hoisted or sunk
store instruction as special assignment to a variable that is assumed
to be live at each program location reachable in the CFG between the
original location and the insertion point. For the sinking case, when
performing an OSR at one of the affected points:

• from the less to the more optimized version of the function, no
compensation code is required, and executing the sunk store will
simply be redundant;

• from the more to the less optimized version, we have to realign
the memory state by executing the sunk store (not reached yet in
the current version).

The hoisting case is the converse, although store(s) are typically only
sunk.

Tracking Optimizations
Without loss of generality, we can capture the effects of a live-variable

equivalent program transformation in terms of six primitive actions:

• add(inst, loc): insert a new instruction inst at location loc;

• delete(loc): delete the instruction at loc;

• hoist(loc, newLoc): hoist an instruction from loc to newLoc;

• sink(loc, newLoc): sink an instruction from loc to newLoc;

• replace_operand(inst, old_op, new_op): replace an operand old_op
for a a given instruction with another operand new_op;

• replace_all(old_op, new_op): replace all uses in the code of an
operand with another operand.

Existing LLVM optimization passes do not need to be rewritten: we
simply instrument them at places where a primitive action is performed.
Algorithm apply takes as input a function and an optimization, clones
the function, optimizes the clone, and finally constructs an OSR mapping
between the two versions by processing the history of applied actions.
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Tracking actions of the first four kinds is essential in order to main-
tain mappings between program points from different versions. While
programs expressed in our language are padded by an oracle with skip
instructions for optimizations, a mapping between LLVM instruction
locations for two versions should be explicitly maintained.

An OSR mapping for LLVM programs is defined as a mapping be-
tween virtual registers. For each replace_all(O, N) operation we can
update the OSR mapping as follows. When all uses of O are replaced
with N, O becomes trivially dead: as in an LVE transformation N and
O yield the same result, any virtual register O′ in OSRMap pointing to
O can be updated to point to N. This is useful for deoptimization, as
our experiments suggest that a variable in an optimized program often
holds the value of multiple variables in the unoptimized code.

In our experience, to make an LLVM pass OSR-aware we usually
needed to insert 5-15 tracking primitive actions, while the hardest part
was understanding what each LLVM pass does. Readers familiar with
LLVM may notice that most primitive actions mirror typical manipula-
tion utilities used in optimization passes (e.g., replace_all is equivalent
to LLVM’s widely employed RAUW).

Implementing build_comp
We now discuss the implications of implementing the build_comp

algorithm presented in Algorithm 7 for a program written in SSA form.
While this form guarantees that the reaching definition for a variable is
unique at any point it dominates, reconstruct gives up when attempt-
ing to reconstruct an assignment made through a φ function. As we do
not employ alias analysis at the moment, we also conservatively prevent
it from inserting load instructions in the compensation code.

Compared to the abstract model described in Section 4.2.1, the partic-
ular form of IR code generated by LLVM may limit the effectiveness of
reconstruct in our context. We have thus implemented four versions
of the algorithm, each one extending the previous one.

We denote by P the pool of variables at the OSR source that are used
to reconstruct the assignments:

1. The first versionof reconstruct, which we will refer to as live, is
the base version of Algorithm 9 that uses as P only variables that
are live at the OSR source.

2. An enhanced version live(e) exploits some features of LLVM IR. In
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particular, this version can recursively reconstruct a φ-assignment
that merges together the same value for all CFG paths3, and in-
cludes in P also non-live function arguments, as they cannot be
modified in the IR.

3. A third version, which we call alias, can also exploit implicit alias-
ing information deriving from a replace_all(O, N). Let O′ and
N′ be the corresponding variables according to the OSR mapping
for O and N, respectively: we can add N := O′ to the compensation
code required to reconstruct N when N′ is not live at the source
location but O′ is.

4. Finally, the fourth version avail includes in P also those variables
that are not live at the source location, but contain available values
that reconstruct can directly assign to the instruction operand
(line 7) or assignment (line 8) being reconstructed. We exploit the
uniqueness of reaching definitions in the SSA form to efficiently
identify such variables.

4.2.6. Discussion
The techniques described in the previous pages represent a first

step towards a provably sound methodological framework for on-stack
replacement. OSR is not only a great engineering problem, but also an
intellectually challenging endeavor. We think that our formalization,
by distilling OSR to an abstract program morphing problem, may help
researchers prototype better continuous optimizations.

A key innovation we introduce is the ability to make single passes
OSR-aware in isolation, and then flexibly combine them in any order
by exploiting the composability of glue code. Think for instance of ap-
plying a speculative optimization (e.g., aggressive inlining), followed
by further passes enabled by that optimization. Without a principled
approach to composing glue code, dynamically jumping to a safe version
by undoing all the applied optimizations when an assumption fails be-
comes a daunting engineering task that only production runtimes such
as HotSpot dare to pursue. Demystifying OSR can allow the community
to contribute.

3 Compilers can place φ-nodes at loop exits for values that are live across the loop
boundary, constructing the Loop-Closed SSA (LCSSA) form.
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Ideally, the presence of an OSR point should be completely trans-
parent, without slowing down the performance of the code in any way.
However, this may not always be possible as the glue code may require
state portions to be logged during the program’s execution. Our work
lies at the performance-preserving end of the spectrum, as we do not
impose any barriers to optimizations—which run unhindered—and
we do not require any state logging. We assess the practical impact of
this design choice in Section 5.4, in which we experimentally analyze in
prominent benchmarks the fraction of program locations where OSR
can be efficiently fired in the presence of typical optimization passes
from the LLVM compiler toolchain.

A deep understanding of the flexibility/performance trade-offs in
OSR remains nonetheless a compelling goal. How can we perform fine-
grained OSR transitions across transformations that significantly change
the structure of a program, as aggressive loop optimizations do? How
can we handle situations where the landing location of an OSR transition
may not be unique, as in software pipelining optimizations [84]?

4.2.7. Comparison with Related Work
In this section we discuss the connections of our ideas with previous

works. For existing OSR implementations, in which the generation of
compensation code is left to code optimizers, we refer the reader to
Section 4.1.4.

Correctness of Compiler Optimizations. Translation validation [114,
105] tackles the problem of verifying that the optimized version of a
specific input program is semantically equivalent to the original pro-
gram. Lacey et al. [85, 86] proposed to express optimizations as rewrite
rules with CTL formulas as side conditions, showing how to prove such
transformations correct. [91, 92, 84] investigated how to automatically
prove soundness for optimizations expressed in terms of transformation
rules. In particular, a further step towards generality is made in [84]:
proving the equivalence of parameterized programs enables proving the
correctness of transformation rules once for all. We believe that this
approach deserves further investigation in the OSR context, as it could
provide a principled approach to computing mappings between equiv-
alent points in different program versions in the presence of complex
optimizations.

While all the aforementioned works focus on proving optimizations
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sound, in this thesis we aim at proving OSR correct in the presence
of optimizations. Of a different flavor, but in a similar spirit as ours,
Guo and Palsberg [69] used bisimulation to study which optimizations
are sound in a tracing JIT compiler. While OSR is used in traditional
JIT compilation to devise efficient code for a whole method, a tracing
JIT performs aggressive optimizations on a linear sequence of instruc-
tions, which may return from guarded side exits when the control flow
diverges from the recorded trace.

Debugging Optimized Code. Hennessy’s seminal paper [73] sparked
a lot of interest in debugging of optimized code in the past three decades
(e.g., [46, 2, 144, 78, 16]). Some works [73, 144] in particular attempt
to reconstruct source-level variable values in the presence of certain
optimizations. We discuss our connections with them in Section 6.3, in
which we explore the end-to-end utility of our OSR mappings in the
context of a source-level debugger.

Other Related Work. Program slicing techniques [140, 141, 83, 3] have
found many diverse applications, such as program debugging, compre-
hension, analysis, testing, verification and optimization. Given a slicing
criterion consisting of a program point P and several variables used
at P, program slicing computes a slice of the program that may affect
their values at P in terms of data and control dependencies [133]. We
believe that the simple ideas behind our build_comp algorithm could
be improved by taking advantage of this wealth of analysis techniques.

Another interesting work to look at is [20], which explores deopti-
mization in the presence of exceptions for the loop tiling transformation.
In order to be able to roll back out-of-order updates, an algorithm identi-
fies a minimal number of elements to backup and generates the necessary
code. Intuitively, supporting deoptimization for complex loop trans-
formations may be both space and time-costly, but in the OSR context
flexibility/performance trade-offs are still largely unexplored.

4.3. Conclusions
On-stack replacement is a staple of modern adaptive optimization

systems, yet has tended to be restricted to a few of the most advanced
language runtimes that have seen enormous commercial investments.
We have presented an OSR framework that combines some of the best
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practices in the literature with novel features, and that should allow
developers to leverage OSR in their runtimes without the daunting
prospect of building the mechanisms from the ground up. We have in-
troduced a theoretical framework that might help the community reason
about OSR underpinnings and its soundness in the face of important
code transformations. We evaluate LLVM embodiments of our ideas in
Sections 5.3 and 5.4.





5. Experimental Evaluation

In this chapter we illustrate experimental studies that we have performed
for the techniques described in Chapters 3 and 4, which have been
implemented in production systems and evaluated against prominent
benchmarks.

In the first part of the chapter we evaluate our space-efficient inter-
procedural technique for context-sensitive profiling. In our analysis
we take into account a large collection of popular interactive Linux
applications and industrial-strength benchmarks. Results collected for
a number of accuracy and space usage metrics reinforce the theoretical
prediction that the Hot Calling Context Tree (HCCT) achieves a similar
precision as the CCT in a several orders of magnitude smaller, and
roughly proportional to the number of hot contexts. Our implementation
is cast in a full-fledged infrastructure that we developed for profiling
multi-threaded Linux C/C++ applications, and ships as a plugin for
the GNU Compiler Collection. We also discuss how we integrated our
technique with static bursting, resulting in faster running times without
substantially affecting accuracy: we incur a slowdown competitive with
the gprof call-graph profiler while collecting finer-grained program
profiles.

In the second part we discuss an implementation in Jikes RVM of
our intra-procedural technique for multi-iteration path profiling. We
present a broad experimental study on a large suite of prominent Java
benchmarks, showing that our profiler can collect profiles that would
have been too costly to gather using previous multi-iteration techniques.
The key to the efficiency of our approach is to replace costly hash table
accesses, which are required by the Ball-Larus algorithm to maintain
path counters for larger programs, with substantially faster operations
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on trees. We then study structural properties of path profiles that span
multiple iterations for several representative benchmarks, and discuss
memory footprints of the k-SF and k-IPF data structures for increasing
values of k.

Finally, we present an extensive experimental evaluation of our on-
stack replacement (OSR) techniques for continuous program optimiza-
tion. We first analyze the performance of OSRKit in the TinyVM proof-
of-concept virtual machine that we developed in LLVM. Our goal is
to address a number of typical concerns of VM builders, measuring,
e.g., the impact of having an OSR point in a hot code portion, and the
actual cost of performing an OSR transition. We then present an LLVM
implementation of the techniques for automatically constructing OSR
mappings described in Section 4.2.3.2, evaluating the fraction of pro-
gram locations where they allow OSR to be efficiently fired in prominent
benchmarks. Our experiments suggest that bidirectional OSR transi-
tions between rather different program versions can be supported almost
everywhere in the code under several classic optimizations.

5.1. HCCT Construction and Accuracy

In this section we present an extensive experimental study of our
data streaming-based methodology for context-sensitive profiling. We
implemented several variants of context-sensitive profilers and we ana-
lyzed their performance and the accuracy of the produced (φ, ε)-HCCT
with respect to a number of metrics and using many different parame-
ter settings. Besides the exhaustive approach, where each routine call
and return is instrumented, we integrate our solution with previous
techniques aimed at reducing time overhead: we focus in particular on
static bursting [152], which offers convenient time-accuracy trade-offs.
The experimental analysis not only confirms, but reinforces the theoreti-
cal prediction: the (φ, ε)-HCCT represents the hot portions of the full
CCT very well using only an extremely small percentage of the space
required by the entire CCT: all the hottest calling contexts are always
identified correctly, their counters are very accurate, and the number of
false positives is rather small. With bursting, the running time overhead
can be kept under control without affecting accuracy in a substantial
way.
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5.1.1. Implementation
Compiler Plugin. The gcc compiler provides an instrumentation in-
frastructure to emit calls to analysis routines at the beginning and at the
end of each function, passing as arguments the address of the current
function and its calling site. On top of these two primitives, we have
built a full-fledged infrastructure for context sensitive profiling of multi-
threaded Linux C/C++ applications that ships as a plugin1 for the GNU
Compiler Collection.

Our plugin provides native support for techniques aimed at reducing
run-time overhead, such as sampling and bursting, and does not require
modifications to the existing gcc installation or to the program to be
analyzed (except for its Makefile). When a program is compiled, instru-
mentation is injected into the code by the compiler and the executable
is eventually linked against a generic profiling library named libhcct.
When a user wants to analyze the behavior of an instrumented pro-
gram, it is possible to switch between different techniques—including
the canonical CCT construction—or parameter settings with no need to
further recompile the code.

Data Structures. We use a first-child, next-sibling representation for
calling context tree nodes. Each MCCT node also contains a pointer to its
parent, the routine ID, the call site, and the performance metric. The first-
child, next-sibling representation is space-efficient and still guarantees
that the children of each node can be explored in time proportional to
their number. According to our experiments with several benchmarks,
the average number of scanned children is a small constant around 2-
3, so this representation turns out to be convenient also for checking
whether a routine ID already appears among the children of a node.
The parent field, which is needed to perform tree pruning efficiently
(Algorithm 1 in Section 3.1.3), is not required in CCT nodes. As a routine
ID, we simply use the routine address. Overall, CCT and MCCT nodes
require 20 and 24 bytes, respectively, on 32 bit architectures. Using a
simple bit packing technique [126], we also encode in one of the pointer
fields a Boolean flag that tells whether the calling context associated
with the node is monitored in the streaming data structure M, without
increasing the number of bytes per node. To improve time and space

1 Source code and documentation are available at: https://github.com/dcdelia/
hcct
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efficiency, we allocate nodes through a custom, page-based allocator
that maintains blocks of fixed size. Any additional algorithm-specific
information needed to maintain the heavy hitters is stored as trailing
fields within MCCT nodes.

Integration with Static Bursting. Static bursting [152] is a profiling
technique that combines the advantages of sampling-based and exhaust-
ing profiling mechanisms. As in sampling-based solutions, a bursting
profiler lets a program run unhindered between sampling points, and
performs stack walking to determine the current calling context when a
sampling point is reached. Rather than incrementing the counter for the
corresponding node (which may not reflect an actual function call and
thus lead to misleading results), a bursting profiler performs exhaustive
instrumentation on the sequence (i.e., burst) of call/return events col-
lected in an interval whose length we refer to as burst length. Further
refinement of static bursting are possible, e.g., analysis overhead can be
further reduced by selectively disabling bursts for previously sampled
calling contexts and then probabilistically re-enabling them [152]. In our
setting, driven by the shadow stack maintained by the profiling infras-
tructure, we update our cursor pointer by walking down the tree from
its root. Missing nodes are initialized and added to the tree during the
walk. The execution stream we observe is thus partitioned into bursts
and sequences that are transparent to profiling.

Other Software. As part of our infrastructure, we have developed two
additional pieces of software that might be of independent interest: a
library for resolving addresses to symbols, and a set of tools for the
analysis and comparison of CCTs from distinct executions. In general,
even for deterministic benchmarks it might not be trivial to line up nodes
from two executions, as due to technical respects such as address space
randomization and dynamic loading of libraries, program addresses
can change. In some cases it is not always possible to resolve addresses
offline up to a source-file line-number granularity, but the available
information is only partial (e.g., we know only the source file where the
method is defined). If this happens for two or more sibling nodes that
have identical frequency counters, lining them up with tree nodes from
another execution requires a similarity analysis of their spanned subtrees.
We observed similar scenarios frequently in our experiments, both for
hot and cold calling contexts. Since spanned subtrees for CCT nodes can
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be large, rapid and accurate heuristics are required to summarize the
subtrees and compute their similarity; accuracy of heuristics is even more
crucial when comparing a CCT with a HCCT, as spanned subtrees in the
latter might have been partially or entirely pruned. Using combinatorial
techniques and ad-hoc heuristics based on topological properties of the
trees, we were able to quickly (i.e., in a few minutes) reconstruct for all
our experiments a full and accurate mapping between pairs of different
trees.

5.1.2. Experimental Setup
In this section we present the details of our experimental method-

ology, focusing on benchmarks and accuracy metrics, and we describe
how the parameters of the streaming algorithms can be tuned.

Benchmarks
We performed our tests on a variety of large-scale Linux applications,

and on benchmarks from the Phoronix PTS [74] and SPEC CPU2006 [74]
suites with CCTs of at least 100 000 nodes. To support execution replay
for interactive applications, we used the Pin dynamic instrumentation
framework [96] to record timestamped execution traces for typical usage
sessions of approximately fifteen minutes.

Interactive applications include graphics programs (inkscape and
gimp), a hexadecimal file viewer (ghex2), audio players/editors (amarok
and audacity), an archiver (ark), an Internet browser (firefox), an
HTML editor (quanta), a chat program (pidgin), and the OpenOffice
suite for word processing (oowriter), spreadsheets (oocalc), and draw-
ing (ooimpress).

Non-interactive benchmarks include a cryptographic library (botan),
a 2D graphics library (cairo-perf-trace), advanced chess engines
(crafty and sjeng), the Connect Four (fhourstones) and Go (gobmk)
games, and two 3D games run in demo mode (PlanetPenguin Racer in
the ice-labyrinth and mount-herring scenarios, and SuperTuxKart
on the overworld and scotland tracks).

We report statistical information about test sets in Table 3.1 (page 17):
even short sessions result in CCTs consisting of tens of millions of calling
contexts, whereas the call graph has only a few thousand nodes. We
also observe that the number of distinct call sites is roughly one order
of magnitude larger than the call graph.
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Metrics
Besides memory usage and time consumption of our profiler, we test

the accuracy of the (φ, ε)-HCCT according to a variety of metrics.

1. Degree of overlap [8, 9, 152] measures the completeness of the
(φ, ε)-HCCT with respect to the full CCT:

overlap((φ, ε)-HCCT, CCT) = 1
N ∑

arcs e∈(φ,ε)-HCCT

w(e)

where N is the total number of routine activations (corresponding
to the CCT total weight) and w(e) is the true frequency of the target
node of arc e in the CCT.

2. Hot edge coverage [152] measures the percentage of CCT hot edges
covered by the (φ, ε)-HCCT, using an edge-weight threshold τ ∈
[0, 1] to determine hotness. Since (φ, ε)-HCCT⊆CCT, hot edge
coverage can be defined as follows:

cover((φ, ε)-HCCT, CCT, τ) =
|{e ∈ (φ, ε)-HCCT: w(e) ≥ τ · wmax}|

|{e ∈ CCT: w(e) ≥ τ · wmax}|

where wmax is the weight of the hottest CCT arc.

3. Maximum hotness of uncovered calling contexts, where a context
is uncovered if is not included in the (φ, ε)-HCCT:

maxUncov((φ, ε)-HCCT, CCT) = max
e∈CCT\(φ,ε)-HCCT

w(e)
wmax

× 100

Average hotness of uncovered contexts is defined similarly.

4. Number of false positives, i.e., |A \ H|: the smaller this number,
the better the (φ, ε)-HCCT approximates the exact HCCT obtained
from CCT pruning.

5. Maximum counter error, i.e., maximum error in the frequency
counters of (φ, ε)-HCCT nodes with respect to their true value in
the full CCT:

maxError((φ, ε)-HCCT) = max
e∈(φ,ε)-HCCT

|w(e)− w̃(e)|
w(e)

× 100

where w(e) and w̃(e) are the true and the estimated frequency of
context e, respectively. Average counter error is defined similarly.

We remark that an accurate solution should maximize (1) and (2),
and minimize the remaining metrics.
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HCCT nodes HCCT nodes HCCT nodes CCT nodes
Benchmark φ = 10−3 φ = 10−5 φ = 10−7

audacity 112 9 181 233 362 13 131 115
dolphin 97 14 563 978 544 11 667 974

gimp 96 15 330 963 708 26 107 261
ice-labyrinth 93 9 413 529 945 2 160 052

inkscape 80 16 713 830 191 13 896 175
oocalc 136 13 414 1 339 752 48 310 585
quanta 94 13 881 812 098 27 426 654

Tab. 5.1. Typical thresholds for calling context frequencies.

Parameter Tuning
Before describing our experimental findings, we discuss how to

choose the parameters φ and ε taken as input by streaming algorithms.
According to the theoretical analysis, an accurate choice of φ and ε might
greatly affect the space used by the algorithms and the accuracy of the
solution. In our study we considered many different choices of φ and ε

across rather heterogeneous sets of benchmarks and execution traces,
always obtaining similar results that we summarize below.

A rule of thumb about φ and ε validated by previous experimental
studies [44] suggests that it is sufficient to choose ε = φ/10 in order to
obtain high counter accuracy and a small number of false positives.

We found this choice overly pessimistic in our scenario: the extremely
skewed cumulative distribution of calling context frequencies shown
in Figure 3.1 (page 18) makes it possible to use much larger values of
ε without sacrificing accuracy. This yields substantial benefits on the
space usage, which is roughly proportional to 1/ε. Unless otherwise
stated, in our experiments we used ε = φ/5.

Let us now consider the choice of φ: φ is the hotness threshold with
respect to the stream length N, i.e., to the number of routine enter events.
However, N is unknown a priori during profiling, and thus choosing φ

appropriately may appear to be difficult: too large values might result
in returning very few hot calling contexts (even no context at all in some
extreme cases), while too small values might result in using too much
space and returning too many contexts without being able to discrimi-
nate accurately which of them are actually hot. Our experiments suggest
that an appropriate choice of φ is mostly independent of the specific
benchmark and of the stream length: as shown in Table 5.1, different
benchmarks have HCCT sizes of the same order of magnitude when
using the same φ threshold (results for omitted benchmarks are similar).
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Fig. 5.1. Space usage as a function of the hotness threshold φ.

This is a consequence of the skewness of context frequency distribu-
tion, and greatly simplifies the choice of φ in practice. Unless otherwise
stated, in our experiments we used φ = 10−4, which corresponds to
mining roughly the hottest 1,000 calling contexts independently of the
benchmark.

Platform
In our experiments we used a 2.53GHz Intel Core2 Duo T9400 with

128KB of L1 data cache, 6MB of L2 cache, and 4 GB of main memory
DDR3 1066, running Ubuntu 12.04, Linux Kernel 3.5.0, gcc 4.7.2, 32 bit.
We collected performance measurements with negligible background
activity, running multiple trials for each benchmark/tool combination
and reporting confidence intervals stated at 95% confidence level.

5.1.3. Memory Usage
We first evaluate how much space can be saved by our approach,

reporting the size of the MCCT constructed by the Space Saving (SS)
algorithm compared to the size of the full CCT as a function of the
hotness threshold φ. Figure 5.1 shows the results for a representative
subset of benchmarks. Notice that the size of the MCCT, hence the space
used by the algorithm, decreases with φ. For values of φ ≥ 10−4, i.e.,
contexts that appear at least 0.01% of the time, space usage remains less
than 1% than the CCT size for most benchmarks, with a worst case of
about 4.1% over all our experiments.

As a second experiment, we study the actual memory footprint of
our profilers considering both SS and the combination of SS with static
bursting. Figure 5.2 plots the peak memory usage of our profilers as a
percentage of the full CCT. We recall that during the computation we



5. Experimental Evaluation 103

0.1

1

10

100

am
arok

ark
audacity

bluefish

dolphin

firefox

gedit

ghex2

gim
p

sudoku

gw
enview

inkscape

oocalc

ooim
press

oow
riter

pidgin

quanta

vlc
crafty

ice-labyrinth

m
ount-herring

overw
orld

scotland

V
ir
tu

a
l 
m

e
m

o
ry

 p
e

a
k

(%
 o

f 
fu

ll 
C

C
T

)
Space comparison with full CCT

static bursting Space Saving SS + static bursting
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store the minimal subtree MCCT of the CCT spanning all monitored
contexts. This subtree is eventually pruned to obtain the (φ, ε)-HCCT
(Sections 3.1.2 and 3.1.3). The peak memory usage is proportional to the
number of MCCT nodes, which is typically much larger than the actual
number of hot contexts obtained after pruning.

Quite surprisingly, static bursting also improves space usage. This
depends on the fact that sampling reduces the variance of calling context
frequencies: MCCT cold nodes that have a hot descendant are more
likely to become hot when sampling is active, and monitoring these
nodes reduces the total MCCT size. The histogram also shows that static
bursting alone (i.e., without streaming) is not sufficient to substantially
reduce space: in addition to hot contexts, a large fraction of cold contexts
is also sampled and included in the CCT. We also observed that the larger
the applications, the larger the space reduction of our approach over
bursting alone.

Since the average node degree is a small constant, cold HCCT nodes
are typically a fraction of the total number of nodes, as it is later shown
in Figure 5.7 for φ = 10−4 (page 108). In our experiments we observed
that this fraction strongly depends on the hotness threshold φ, and in
particular decreases with φ: cold nodes that have a hot descendant are
indeed more likely to become hot when φ is smaller.

5.1.4. Time Overhead
We now discuss the time overhead of our approach, both alone and

in combination with static bursting. We compare to native execution, to
the widely used call-graph profiler gprof [67], and to the canonical CCT
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construction. To assess the instrumentation overhead, we also compare
to empty instrumentation (i.e., when no analysis is performed).

Figure 5.3(a) shows the overheads of the different profilers normal-
ized against the performance of a native execution. The average slow-
down for the CCT construction is 2.45×, with a peak of 3.56× for
mount-herring. Note that data for benchmarks fhourstones, gobmk,
and sjeng are not reported for the CCT profiler as it ran out of mem-
ory. We observe that the construction of the (φ, ε)-HCCT incurs an
average slowdown of 2.9× (3.09× considering also OOM benchmarks)
and is 16.28% slower than the CCT profiler, with a peak of 26.08% for
mount-herring. If we take into account also the previously discussed
memory usage reduction and the (φ, ε)-HCCT accuracy results that we
will discuss in the next section, we believe this represents an interesting
trade-off between time, space, and precision.

The integration with static bursting reduces the average overhead of
our approach to 1.58× for the whole set of benchmarks, which is not
far from the 1.21× slowdown introduced by the gcc instrumentation
itself. We observe a peak of 2.62× on the benchmark fhourstones: we
believe this is due to the particular structure of its source code, which
contains very frequently invoked tiny functions that are not inlined in
the experiment.

In Figure 5.3(b) we have normalized the run-time overheads against
an execution under gprof. The combination of our approach with static
bursting is very effective, as it is on average 18% (5.16% if we exclude
fhourstones) slower than gprof. On 5 out of 10 benchmarks the two
tools achieve nearly-identical slowdowns. We observe 2.34×, 1.44×, and
1.74× slowdowns on fhourstones, overworld, and scotland, respec-
tively. Notice that for all these benchmarks the cost of the instrumenta-
tion inserted by gcc is already greater than the slowdown introduced
by gprof. On the other hand, we observe appreciable speedups on
ice-labyrinth and mount-herring, for which SS combined with static
bursting is 1.51× and 1.55× faster than gprof, respectively.

5.1.5. Accuracy
Exact HCCT. We first discuss the accuracy of the exact HCCT with
respect to the full CCT. Since the HCCT is a subtree of the (φ, ε)-HCCT
computed by our algorithms, the results described in this section apply
to the (φ, ε)-HCCT as well: the values of degree of overlap and hot edge
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Fig. 5.3. Run-time analysis for CCT and (φ, ε)-HCCT construction compared to (a) native
executions and (b) executions under gprof. The empty bars measure the cost of instrument-
ing function calls and returns. SS with stating bursting has been executed with sampling
interval 20 msec and burst length 2 msec.

coverage on the HCCT are a lower bound to the corresponding values in
the (φ, ε)-HCCT, while the frequency of uncovered contexts is an upper
bound.

It is not difficult to see that the cumulative distribution of calling
context frequencies shown in Figure 3.1 (page 18) corresponds exactly
to the degree of overlap with the full CCT. This distribution roughly
satisfies the 10% – 90% rule: hence, with only 10% of hot contexts we
have a degree of overlap around 90% on all benchmarks.

Figure 5.4 illustrates the relation between degree of overlap and
hotness threshold, plotting the value φ̃ of the largest hotness threshold
for which a given degree of overlap d can be achieved: using any φ ≤ φ̃,
the achieved degree of overlap will be larger than or equal to d. The value
of φ̃ decreases as d increases: if we want to achieve a larger degree of
overlap, we must include in the HCCT a larger number of nodes, which
corresponds to choosing a smaller hotness threshold. However, when
computing the (φ, ε)-HCCT, the value of φ indirectly affects the space
used by the algorithm and in practice cannot be too small (Section 5.1.2).
By analyzing hot edge coverage and uncovered frequency, we show that
even when the degree of overlap is not particularly large, the HCCT and
the (φ, ε)-HCCT are nevertheless good approximations of the full CCT.

As shown in Figures 5.1 and 5.5, for values of φ as small as 10−4 the
space usage is less than 1% of the full CCT, while guaranteeing 100%
coverage for all edges with hotness at least 10% on most benchmarks.
Smaller values of φ increase space and improve the degree of overlap,
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but are unlikely to be interesting in applications that require mining hot
calling contexts.

Notice that φ = 10−4 yields a degree of overlap as small as 10%
on two of the less skewed benchmarks (oocalc and firefox), which
seems to be a bad scenario. However, Figure 5.6 analyzes how the
remaining 90% of the total CCT weight is distributed among uncovered
contexts: the average frequency of uncovered contexts is about 0.01%
of the frequency of the hottest context, and the maximum frequency is
typically less than 10%. This suggests that uncovered contexts are likely
to be uninteresting with respect to the hottest contexts, and that the
distribution of calling context frequencies obeys a “long-tail, heavy-tail”
phenomenon: the CCT contains a huge number of calling contexts that
rarely get executed, but overall these low-frequency contexts account
for a significant fraction of the total CCT weight.

Figure 5.5 confirms this intuition, showing that the HCCT represents
the hot portions of the full CCT remarkably well even for values of φ

for which the degree of overlap may be small. The figure plots, as a
function of φ, the smallest value τ̃ of the hotness threshold τ for which
hot edge coverage of the HCCT is 100%. Results are shown only on some
of the less skewed, and thus more difficult, benchmarks. Note that τ̃

is directly proportional to and roughly one order of magnitude larger
than φ. This is because the HCCT contains all contexts with frequency
≥ �φN�, and always contains the hottest context, which has weight
wmax as in the definition of hot edge coverage in Section 5.1.2. Hence,
the hot edge coverage is 100% as long as �φN� ≥ τ · wmax, which yields
τ̃ = �φN�/wmax. The experiment shows that 100% hot edge coverage is
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always obtained for τ ≥ 0.01. As a frame of comparison, notice that the
τ thresholds used in [152] to analyze hot edge coverage are always larger
than 0.05, and for those values we always guarantee total coverage.

(φ,ε)-HCCT. We now discuss the accuracy of the (φ, ε)-HCCT com-
pared to the exact HCCT. Figure 5.7 shows the percentages of cold nodes,
true hots, and false positives in the (φ, ε)-HCCT using φ = 10−4 and
ε = φ/5. We observe that SS includes in the tree only very few false
positives: less than 10% of the total number of tree nodes in the worst
case, and between 0% and 5% for the large majority of the benchmarks.
The percentage of cold nodes strictly depends on the characteristics
of the particular benchmark, and is not remarkably influenced by the
number of false positives, which is small.

An interesting feature of our approach is that counter estimates are
very close to the true frequencies, as shown in Figure 5.8. A comparison
between average and maximum errors suggests that just a few nodes are



108 New Techniques for Adaptive Program Optimization

 0

 20

 40

 60

 80

 100

 am
arok

 ark
 audacity

 bluefish

 dolphin

 firefox

 gedit

 ghex2

 gim
p

 gw
enview

 inkscape

 oocalc

 ooim
press

 oow
riter

 pidgin

 quanta

 sudoku

 vlc
 botan

 cairo-perf-trace

 crafty

 ice-labyrinth

 m
ount-herring

C
o

ld
 n

o
d

e
s
 /

 h
o

t 
n

o
d

e
s

 /
 f

a
ls

e
 p

o
s
it
iv

e
s
 (

%
)

Classification of (φ,ε)-HCCT nodes

Fig. 5.7. Partition of (φ, ε)-HCCT nodes into: cold (bottom bar), hot (middle bar), and
false positives (top bar).

 0

 4

 8
 12

 16

 20

am
arok

ark
audacity

bluefish

dolphin

firefox

gedit

ghex2

gim
p

sudoku

gw
enview

inkscape

oocalc

ooim
press

oow
riter

pidgin

quanta

vlc
botan

cairo-perf-trace

crafty

ice-labyrinth

m
ount-herring

A
v
g
/m

a
x
 e

rr
o
r 

(%
) Avg/max counter error among hot elements (% of the true frequency)

avg
max

Fig. 5.8. Accuracy of calling-context frequencies measured on hot contexts included in
the (φ, ε)-HCCT.

appreciably overestimated. The average counter error computed for hot
contexts is actually greater than 4% only for crafty, and smaller than
2% for the majority of the benchmarks.

It is worth noticing that, when integrating SS with sampling-based
approaches, the theoretical guarantees of the algorithm apply only to
the stream of sampled events, and not to the full stream of routine calls
and returns from the execution. For this reason, we analyze the impact
of static bursting on the quality of the solution.

Figure 5.9(a) shows the average counter error among hot calling
contexts. In order to compare them with the exact frequencies from the
corresponding CCTs, we adjusted the counters by dividing them by the
fraction of sampled events in the stream of function calls and returns.
Notice that if the stream is uniformly distributed in time, this fraction is
equal to the ratio between burst length and sampling interval. While
processing roughly only one tenth of the whole stream, we observe that
the average counter error ranges from 6.89% to 17.31%. An analysis of
the results from the integration of static bursting with the canonical CCT
construction shows very similar numbers, suggesting that SS does not
degrade the quality of the solution.

The adoption of sampling-based techniques may cause the algorithm
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Fig. 5.9. (a) Accuracy of frequencies measured on hot calling contexts when SS is combined
with static bursting. (b) Hot edge coverage for decreasing values of the hotness threshold τ.
As pointed out in Section 5.1.5, τ̃ is the minimum threshold for which SS guarantees 100%
coverage when static bursting is disabled. We chose a representative subset of benchmarks
for both charts; sampling interval has been set to 20 msec and burst length to 2 msec.

to miss some of the contexts with frequency very close to �φN�, leading
to some false negatives. However, our analysis of hot edge coverage
reported in Figure 5.9(b) shows that static bursting does not appreciably
degrade the quality of the solution. Given the smallest τ̃ value for which
SS guarantees 100% coverage, in all of our experiments we achieve 100%
coverage for any τ ≥ 2τ̃ (i.e., when τ̃/τ ≤ 0.5), and only in one case
(mount-herring benchmark) hot edge coverage drops below 90%.

5.1.6. Discussion

We have seen that maintaining the (φ, ε)-HCCT typically requires
orders of magnitude less memory compared to the CCT. Although the
fraction of cold ancestors varies from one application to another, the
space required by the MCCT is typically proportional to the number
of monitored contexts, which for a given φ is constant in Space Saving:
for this reason, the (φ, ε)-HCCT scales very well to larger applications.
Theoretical predictions on accuracy are reinforced by experimental re-
sults: frequency estimates are very close to the exact counts, and Space
Saving achieves good precision as well (i.e., the fraction of false positives
is small). An integration with static bursting to reduce the instrumen-
tation overhead seemed like a natural choice: our results suggest that
only contexts whose frequency is very close to φN may be missed, and
the error in frequency estimates due to sampling is reasonable.
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5.2. Multi-iteration Path Profiling
In this section we discuss and evaluate an implementation, which

we call k-BLPP, of our approach to multi-iteration path profiling in
the Jikes Research Virtual Machine (RVM) [4]. Our code is publicly
available in the Jikes RVM Research Archive2 and has been endorsed
by the OOPSLA 2013 Artifact Evaluation Committee. The goal of our
experimental study is to assess the performance of our profiler compared
to previous approaches and to study properties of path profiles that
span multiple iterations for several representative benchmarks. The
results indicate that our technique can profile paths that extend across
many loop iterations in a time comparable with acyclic-path profiling
on a large variety of industrial-strength benchmarks.

5.2.1. Implementation
Adaptive Compilation. Jikes RVM is a high-performance meta-circular
virtual machine: unlike most other JVMs, it is written in Java. Jikes
RVM does not include an interpreter: all bytecode must be translated
into native machine code. The unit of compilation is the method, and
methods are compiled lazily by a fast non-optimizing compiler—the
so-called baseline compiler—when they are first invoked by the program.
As execution continues, the Adaptive Optimization System monitors
program execution to detect program hot spots and selectively recom-
piles them with three increasing levels of optimization. This approach is
typical of modern production JVMs, which rely on some variant of selec-
tive optimizing compilation to target the subset of the hottest program
methods where they are expected to yield the most benefits.

Recompilation is performed by the optimizing compiler, that generates
higher-quality code but at a significantly larger cost than the baseline
compiler. Since Jikes RVM promptly recompiles frequently executed
methods, we implemented k-BLPP only in the optimizing compiler.

Adding Instrumentation. As discussed in Section 3.2.2, the Ball-Larus
tracing technique requires instrumenting CFG edges so that when an
edge is traversed, the probe value is incremented by a quantity computed
by the path numbering algorithm on the DAG obtained by transforming
back edges in the CFG.

2 http://sourceforge.net/p/jikesrvm/research-archive/41/.
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k-BLPP adds instrumentation to hot methods in three passes:

1. building the DAG representation;

2. assigning values to edges;

3. adding instrumentation to edges.

k-BLPP adopts the smart path numbering algorithm proposed by Bond
and McKinley [29] to improve performance by placing instrumentation
on cold edges. In particular, line 6 of the canonical Ball-Larus path num-
bering algorithm shown in Algorithm 3 (page 34) is modified such that
outgoing edges are picked in decreasing order of execution frequency.
For each basic block edges are sorted using existing edge profiling in-
formation collected by the baseline compiler: we can assign zero to the
hottest hedge, so that k-BLPP will not place any instrumentation on it.

During compilation Jikes RVM introduces yield points, which are
program points where the running thread determines whether it should
yield to another thread. Since JVMs need to gain control of threads
quickly, their compilers insert yield points in method prologues, loop
headers, and method epilogues. We modified the optimizing compiler
to also store the path profiling probe on loop headers and method epi-
logues. Ending paths at loop headers rather than back edges causes a
path that traverses a header to be split into two paths: this difference
from canonical Ball-Larus path profiling is minor because it only affects
the first path through a loop [28].

Note that optimizing compilers do not insert yield points in a method
when either it does not contain branches (hence its profile is trivial) or it
is marked as uninterruptible. The second case occurs in internal Jikes
RVM methods only; the compiler occasionally inlines such a method
into an application method, and this might result in a loss of information
only when the execution reaches a loop header contained in the inlined
method. However, according to [28] this loss of information appears to
be negligible.

Path Profiling. To make fair performance comparisons with state-of-
the-art previous profilers, we built our code on top of the BLPP profiler
developed by Bond [28, 79], which provides an efficient implementation
of the Ball-Larus acyclic-path profiling technique. The k-SF construction
algorithm described in Section 3.2.3 is implemented using a standard
first-child, next-sibling representation for nodes. This representation is
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Fig. 5.10. Routine with an initial branch before the first cycle.

very space-efficient, as it requires only two pointers per node: one to its
leftmost child and the other to its right nearest sibling.

Tree roots are stored and accessed through an efficient implementa-
tion3 of a hash map, using the pair represented by the Ball-Larus path
ID and the unique identifier associated to the current routine (i.e., the
compiled method ID) as key. Note that this map is typically smaller than
a map required by a traditional BLPP profiler, since tree roots represent
only a fraction of the distinct path IDs encountered during the execution.
Consider, for instance, the example shown in Figure 5.10: this control
flow graph has N acyclic paths after back edges have been removed.
Since cyclic paths are truncated on loop headers, only path IDs 0 and
1 can appear after the special marker ∗ in the stream, thus leading to
the creation of an entry in the hash map. Additional entries might be
created when a new tree is added to the k-SF (line 10 of the streaming
algorithm shown in Algorithm 4 on page 40); however, experimental
results show that the number of tree roots is usually small, while N
increases with the complexity (i.e., number of branches and loops) of
the routine.

5.2.2. Experimental Setup
In this section we illustrate the details of our experimental method-

ology, focusing on benchmarks, performance and topological metrics,
and compared profiling techniques.

3 HashMapRVM is a stripped-down implementation of the HashMap data structure used
by core parts of the Jikes RVM runtime and by Bond’s BLPP path profiler.
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Benchmarks
We evaluated k-BLPP against a variety of prominent benchmarks

drawn from three suites. The DaCapo suite [21] consists of a set of
open source, real-world applications with non-trivial memory loads.
We use the superset of all benchmarks from DaCapo releases 2006-10-
MR2 and 9.12 that can successfully run in Jikes RVM, using the largest
available workload for each benchmark. In particular, avrora, jython,
luindex, sunflow, and xalan are taken from the 9.12 release, while
chart, eclipse, and hsqldb are from the 2006-10-MR2 release.

The SPEC JVM2008 suite [124] focuses on the performance of the hard-
ware processor and memory subsystem when executing common gen-
eral purpose application computations. Benchmarks from the suite that
we could run4 on Jikes RVM include: compiler.compiler, compress,
mpegaudio, and scimark.{montecarlo, sor.large, sparse.large}.

Finally, we chose two memory-intensive benchmarks (heapsort and
md) from the Java Grande 2.0 suite [31] to further evaluate the perfor-
mance of k-BLPP.

Metrics
We considered a variety of metrics, including wall-clock time, num-

ber of operations per second performed by the profiled program, number
of hash table operations, data structure size (e.g., number of hash table
items for BLPP and number of k-SF nodes for k-BLPP), and statistics
such as average node degree of the k-SF and the k-IPF and average depth
of k-IPF leaves. To interpret our results, we also “profiled our profiler”
by collecting hardware performance counters with perf [111], includ-
ing L1 and L2 cache miss rate, branch mispredictions, and cycles per
instruction (CPI).

Compared Codes
In our experiments, we analyzed the native (uninstrumented) ver-

sion of each benchmark and its instrumented counterparts, comparing
k-BLPP for different values of k (2, 3, 4, 6, 8, 11, 16) with the BLPP profiler
developed by Bond [79] for Ball-Larus acyclic-path profiling. We up-
graded the original tool by Bond to take advantage of native threading
support introduced in later Jikes RVM releases; the code is structured as

4 Due to limitations of the GNU classpath, only a small number of them are supported.
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in Figure 3.4 (page 32), except that it does not produce any intermediate
stream, but it directly performs count[r]++.

Platform
In our experiments we used a 2.53GHz Intel Core2 Duo T9400 with

128KB of L1 data cache, 6MB of L2 cache, and 4 GB of main memory
DDR3 1066, running Ubuntu 12.10, Linux Kernel 3.5.0, 32 bit. We ran all
of the benchmarks on Jikes RVM 3.1.3 (default production build) using
a single core and a maximum heap size equal to half of the amount of
physical memory. For each benchmark/profiler combination we per-
formed 10 trials, each preceded by a warm-up execution, and computed
the arithmetic mean. We collected performance measurements with
negligible background activity. We report confidence intervals stated at
95% confidence level.

5.2.3. Time Overhead
In Figure 5.11 we report for each benchmark the profiling overhead

of k-BLPP relative to BLPP. The chart shows that for 12 out of 16 bench-
marks the overhead decreases for increasing values of k, providing up
to almost 45% improvements over BLPP. This is explained by the fact
that hash table accesses are performed by process_bl_path_id every
k − 1 items read from the input stream between two consecutive routine
entry events (lines 8 and 10 in Algorithm 4 on page 40). As a conse-
quence, the number of hash table operations for each routine call is
O(1 + N/(k − 1)), where N is the total length of the path taken during
the invocation.

In Figure 5.12 we report the measured number of hash table accesses
for our experiments, which decreases as predicted on all benchmarks
with intense loop iteration activity. Notice that not only does k-BLPP
perform fewer hash table operations, but since only a subset of BL path
IDs are inserted, the table is also smaller, thus yielding further perfor-
mance improvements. For codes such as avrora and hsqldb, which
perform on average a small number of iterations, increasing k beyond
this number does not yield any benefit.

On eclipse, k-BLPP gets faster as k increases, but unlike all the other
benchmarks in this class, it remains slower than BLPP by at least 25%.
The reason is that, due to structural properties of the benchmark, the
average number of node scans at lines 13 and 21 of process_bl_path_id
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Fig. 5.11. Performance of k-BLPP relative to BLPP.

is rather high (58.8 for k = 2 down to 10.3 for k = 16). In contrast, the
average degree of internal nodes of the k-SF is small (2.6 for k = 2
decreasing to 1.3 for k = 16), hence there is intense activity on nodes
with a high number of siblings. No other benchmark exhibited this
extreme behavior. We expect that a more efficient implementation of
process_bl_path_id, e.g., that adaptively moves hot children to the
front of the list, could reduce the scanning overhead for this kind of
worst-case benchmarks as well.

Benchmarks compress, scimark.montecarlo, heapsort, and md made
an exception to the general trend we observed, with performance over-
head increasing, rather than decreasing, with k. To explain this behavior,
we collected and analyzed several hardware performance counters and
noticed that on these benchmarks our k-BLPP implementation suffers
from increased CPI for higher values of k.

Figure 5.13 shows this phenomenon, comparing the four outliers
with other benchmarks in our suite. By analyzing L1 and L2 cache
miss rates, reported in Figure 5.14(a) and Figure 5.14(b), we noticed that
performance degrades due to poor memory access locality. We believe
this to be an issue of our current implementation of k-BLPP, in which we
did not make any effort aimed at improving cache efficiency in accessing
the k-SF, rather than a limitation of the general approach we propose.
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Fig. 5.12. Number of hash table operations performed by k-BLPP relative to BLPP.
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Fig. 5.13. Hardware performance counters for k-BLPP: cycles per instruction (CPI).
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Fig. 5.14. Hardware performance counters for k-BLPP: (a) L1 and (b) L2 cache miss rates.

As nodes may be unpredictably scattered in memory due to the linked
structure of the forest, pathological situations may arise where node
scanning incurs several cache misses.
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Fig. 5.15. Space requirements: number of hash table entries in BLPP and number of nodes
in the k-SF.

Notice that since we never delete either entries from the hash table
or nodes from the k-SF, the only load we place on the garbage collector
comes from allocating new nodes when needed. In fact, the profiler
causes memory release operations only when a thread terminates, dump-
ing all of its data structures at once.

5.2.4. Memory Usage and Structural Properties
Figure 5.15 compares the space requirements of BLPP and k-BLPP

for different values of k. The chart reports the total number of items
stored in the hash table by BLPP and the number of nodes in the k-SF.

Since both BLPP and k-BLPP exhaustively encode exact counters
for all distinct taken paths of bounded length, space depends on in-
trinsic structural properties of the benchmark. Programs with intense
loop iteration activity are characterized by substantially higher space
requirements for k-BLPP, which collects profiles containing up to sev-
eral millions of paths. Notice that on some benchmarks we ran out of
memory for large values of k, hence some bars in the charts discussed in
this section are missing. In Figure 5.16 we report the number of nodes in
the k-IPF, which corresponds to the number of paths profiled by k-BLPP.
Notice that since a path may be represented more than once in the k-SF,
the k-IPF represents a more compact version of the k-SF.

As a final experiment, we measured structural properties of the k-IPF
such as the average degree of internal nodes (Figure 5.17) and the average
leaf depth (Figure 5.18). Our tests reveal that the average node degree
generally decreases with k, showing that similar patterns tend to appear
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Fig. 5.16. Number of paths profiled by BLPP and k-BLPP.

frequently across different iterations. Some benchmarks, however, such
as sunflow and heapsort exhibit a larger variety of path ramifications,
witnessed by increasing node degrees at deeper levels of the k-IPF. The
average leaf depth allows us to characterize the loop iteration activity
of different benchmarks. Notice that for some benchmarks, such as
avrora and hsqldb, most cycles consist of a small number of iterations:
hence, by increasing k beyond this number, k-BLPP does not collect any
additional useful information.

5.2.5. Discussion

Compared to previous approaches that enumerate k-iteration paths
explicitly using numerical identifiers (Section 3.2.5), our prefix forest-
based solution resorts to the original Ball-Larus encoding algorithm and
maintains an intermediate data structure, the k-SF, that can be updated
in constant time regardless of the value of k. Our technique can be
faster than the original Ball-Larus algorithm on large programs, as it
performs fewer operations on possibly smaller hash tables; for the same
reason, its run-time overhead typically decreases for increasing values
of k. We believe that our implementation is amenable to interesting
enhancements, for instance by devising pruning heuristics in order to
scale to larger values of k, or by having a separate thread construct
the k-SF from the stream of BL path IDs emitted by an instrumented
program’s thread.
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Fig. 5.18. Average depth of k-IPF leaves.

5.3. OSR in LLVM
In this section we present an experimental study of OSRKit. In par-

ticular, we aim at addressing the following questions:

Q1 How much does a never-firing OSR point impact code quality?
What kind of slowdown should we expect?

Q2 What is the run-time overhead of an OSR transition, for instance
to a clone of the running function?

Q3 What is the overhead of OSRKit for inserting OSR points and
creating a stub or a continuation function?

Experimental results suggest that inserting an OSR point is unlikely
to degrade the quality of generated code, and that the time spent in
IR manipulation is likely to be dominated by compilation costs. For
an optimizer, the choice whether to insert an OSR point into a func-
tion merely depends on the trade-off between the expected benefits in
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Benchmark Description
b-trees Adaptation of a GC bench for binary trees

fannkuch Fannkuch benchmark on permutations
fasta Generation of DNA sequences

fasta-redux Generation of DNA sequences (with lookup table)
mbrot Mandelbrot set generation
n-body N-body simulation of Jovian planets

rev-comp Reverse-complement of DNA sequences
sp-norm Eigenvalue calculation with power method

Tab. 5.2. Description of the shootout benchmarks.

terms of execution time and the overhead from generating the new code
version: compared to this task, the cost of OSR-related operations is
negligible.

5.3.1. Experimental Setup
We illustrate the details of our experimental methodology next.

Benchmarks
We address questions Q1-Q3 by analyzing the performance of OSRKit

on a selection of the shootout benchmarks, also known as the Computer
Language Benchmarks Game [64], running in TinyVM. We focus on
single-threaded benchmarks that do not rely on external libraries to
perform their core computations. Benchmarks and their description
are reported in Table 5.2; four of them (b-trees, mbrot, n-body and
sp-norm) are evaluated against two workloads of different size.

We generate the IR modules for our experiments with clang starting
from the C version of the shootout suite. To cover scenarios where OSR
machinery is inserted in programs with different optimization levels, we
consider two versions: 1) unoptimized, where the only LLVM optimiza-
tion we perform is mem2reg to promote stack references to registers and
construct the static single assignment (SSA) form; 2) optimized, where
we apply opt -O1 to the unoptimized version.

Environment
TinyVM supports interactive invocation of functions and it can com-

pile LLVM IR either generated at run time or loaded from disk. The
main design goal behind TinyVM is the creation of an interactive en-
vironment for IR manipulation and JIT-compilation of functions: for
instance, it allows the user to insert OSR points in loaded functions, run
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optimization passes on them or display their CFGs, repeatedly invoke a
function for a specified amount of times and so on.

TinyVM supports dynamic library loading and linking, and comes
with a helper component for MCJIT that simplifies tasks such as handling
multiple IR modules, symbol resolution in the presence of multiple
versions of a function, and tracking native code and other machine-level
generated object such as Stackmaps (Section 4.1.2). TinyVM is thus an
ideal playground to exercise our OSR technique.

Platform
We performed our experiments on an octa-core 2.3Ghz Intel Xeon

E5-4610 v2 with 256+256KB of L1 cache, 2MB of L2 cache, 16MB of
shared L3 cache, and 128 GB of DDR3 main memory, running Debian
Wheezy 7, Linux kernel 3.2.0, LLVM 3.6.2 (Release build, compiled using
gcc 4.7.2), 64 bit. For each benchmark we analyze CPU time performing
10 trials preceded by an initial warm-up iteration; reported confidence
intervals are stated at 95% confidence level.

5.3.2. Impact on Code Quality
In order to measure how much a never-firing OSR point might im-

pact code quality (Q1), we analyzed the source-code structure of each
benchmark and profiled its run-time behavior to identify performance-
critical sections for OSR point insertion. The distinction between open
and resolved OSR points is nearly irrelevant in this context: we choose
to focus on open OSR points, passing null as the val argument for the
stub (Section 4.1.2).

For iterative benchmarks we insert an OSR point in the body of their
hottest loops. We classify a loop as hottest when its body is executed for
a very high cumulative number of iterations (e.g., from millions up to
billions) and it either calls the method with the highest self time in the
program, or it performs the most computational-intensive operations
for the program in its own body.

These loops are natural candidates for OSR point insertion: for in-
stance, Jikes RVM inserts yield points on backward branches to trigger
operations such as method recompilation through OSR and thread pre-
emption for garbage collection. In the shootout benchmarks the number
of such loops is typically 1 (2 for spectral-norm).

For recursive benchmarks we insert an OSR point in the body of the
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Fig. 5.19. Q1: Impact on running time of never-firing OSR points inserted inside hot code
portions (unoptimized code).
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Fig. 5.20. Q1: Impact on running time of never-firing OSR points inserted inside hot code
portions (optimized code).

method that accounts for the largest self execution time in the program.
Such an OSR point might be useful to trigger recompilation of the code at
a higher degree of optimization, enabling for instance multiple levels of
inlining for non-tail-recursive functions. The only analyzed benchmark
showing a recursive pattern is b-trees.

Results for the unoptimized and optimized versions of the bench-
marks are reported in Figures 5.19 and 5.20, respectively. For both
scenarios we observe that the overhead is very small, i.e., less than 1%
for most benchmarks and less than 2% in the worst case. For some
benchmarks, code might run slightly faster after OSR point insertion
due to instruction cache effects. The number of times the OSR condition
is checked for each benchmark is reported in Table 5.3.

5.3.3. Overhead of OSR Transitions
Table 5.3 reports estimates of the average cost of performing an OSR

transition to a clone of the running function (Q2). For each benchmark we
compute the time difference between the scenarios in which an always-
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Unoptimized code Optimized code

Benchmark Fired
OSRs (M)

Live
values

Avg time
(ns)

Live
values

Avg time
(ns)

b-trees 605 2 1.731 3 0.974
b-trees-large 2 690 2 1.749 3 1.423

fannkuch 399 0 1.793 0 0.621
fasta 400 2 2.335 2 2.699

fasta-redux 400 4 2.306 4 2.269
mbrot 256 15 5.016 15 3.628

mbrot-large 1 024 15 5.268 15 4.637
n-body 50 3 2.952 3 6.929

n-body-large 500 3 2.953 3 6.953
rev-comp 6 8 -10.158 8 8.267
sp-norm 1 210 2 0.772 2 -0.030

sp-norm-large 19 360 2 0.778 2 -0.003

Tab. 5.3. Cost of OSR transitions to the same function. For each benchmark we report the
number of fired OSR transitions (rounded to millions), the number of live values passed
at the OSR point, and the average time for a transition.

firing and a never-firing resolved OSR point is inserted in the code,
respectively; we then normalize this difference against the number of
fired OSR transitions.

Hot code portions for OSR point insertion have been identified as in
the Q1 experiments for code quality. Depending on the characteristics
of the hot loop, we either transform its body into a separate function
and instrument its entry point or, when the loop calls a method with a
high self time, we insert an OSR point at the beginning of that method.

Normalized differences reported in the table represent a reasonable
estimate of the average cost of firing an OSR transition, which consists
in moving live values to stack locations or registers to match the calling
convention and then invoking the OSR continuation function. Reported
numbers are in the order of nanoseconds, and might be negative due to
instruction cache effects. We remark that for this experiment slicing the
loop body is preferable to inserting an OSR point in it, as the continuation
function should fire an OSR itself at the very next loop iteration and so
on, possibly leading to an undesired stack growth.

5.3.4. OSR Machinery Generation
We now discuss the overhead of the OSRKit library for inserting

OSR machinery in the IR of a function (Q3). Table 5.4 reports for each
benchmark the number of IR instructions in the instrumented function
and the time spent in the IR manipulation. Locations for OSR points are
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Open OSR (µs) Resolved OSR (µs)

Insert Gen. Insert Generate f’to
Benchmark |IR| point stub point Total Avg/inst

b-trees 13 15.40 28.32 14.31 76.13 5.86
fannkuch 50 14.16 18.66 12.84 208.03 4.16

fasta 38 12.93 27.07 13.01 250.39 6.59
fasta-redux 55 13.79 23.44 9.32 258.36 4.70

mbrot 77 15.96 27.39 15.30 384.61 4.99
n-body 19 14.31 19.73 11.58 88.73 4.67

rev-comp 145 16.31 39.99 13.90 810.84 5.59
sp-norm 28 15.31 27.50 12.41 154.54 5.52

Tab. 5.4. Q3: OSR machinery insertion in optimized code. Time measurements are in
microseconds. Results for unoptimized code are very similar and thus not reported.

chosen as in the Q1 experiments (Section 5.3.2), and the target function
is a clone of the source function.

For open OSR points we report the time spent in inserting the OSR
point in the function and in generating the stub; both operations do
not depend on the size of the function. For resolved OSR points we
report the time spent in inserting the OSR point and in generating the
f’to function.

Unsurprisingly, constructing a continuation function takes longer
than the other operations (i.e., up to 1 ms vs. 20-40 us), as it involves
cloning and manipulating the body of the target function and thus
depends on its size: Table 5.4 hence comes with an additional column
in which time is normalized against the number of IR instructions in the
target function.

5.3.5. Discussion
Our results suggest that the LLVM MCJIT compiler is able to generate

efficient native code for the OSR machinery inserted in performance-
critical code sections. The overall cost of IR manipulation for inserting
an OSR point insertion and generating a continuation function is in the
order of hundreds of microseconds on our benchmarks, and will likely
be dominated by the time spent in just-in-time compilation. We present
an example of effective optimization enabled by OSRKit in Section 6.2.

5.4. Building OSR Compensation Code
In this section we evaluate our implementation in LLVM of the tech-

niques for automatic OSR mapping construction described in Section 4.2.
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In particular, we investigate whether in the presence of a number of com-
mon compiler optimizations, the algorithm build_comp can offer an ex-
tensive “menu” of possible program points where OSR can safely occur,
generating the possibly required compensation code in an automated
fashion. Our experiments suggest that bidirectional OSR transitions can
be supported almost everywhere in this setting.

5.4.1. Experimental Setup
We illustrate the details of our experimental methodology next.

Benchmarks and Environment
We implemented our technique in TinyVM, introducing a number of

features to:

• clone a function fbase and apply a sequence of OSR-aware opti-
mization passes, thus generating an optimized version fopt;

• construct and compose OSR mappings for the applied transforma-
tions;

• for each feasible OSR point in fbase/ fopt, invoke OSRKit to materi-
alize the compensation code χ produced by reconstruct into a
sequence of IR instructions for the OSR entry block of f ′opt/ f ′base
(Section 4.1.1).

We instrumented a number of standard LLVM optimization passes,
including aggressive dead code elimination (ADCE), constant propagation
(CP), common subexpression elimination (CSE), loop-invariant code motion
(LICM), sparse conditional constant propagation (SCCP), and code sinking
(Sink). We also instrumented a number of utility passes required by
LICM, such as natural loop canonicalization (LC) and LCSSA-form construc-
tion (LCSSA). Optimizations performed by the back-end (e.g., instruction
scheduling, register allocation, peephole optimizations) do not require
instrumentation as we operate at the IR level.

We evaluated our technique using the SPEC CPU2006 [74] and the
Phoronix PTS [112] benchmarking suites, reporting data for a subset
of their C/C++ benchmarks. We profiled each benchmark to identify
the hottest method and generated the IR for it using clang with no
optimization enabled other than mem2reg. Starting from this version of
the IR, which we will refer to as base, we generated an opt version by
applying all our instrumented LLVM optimizations.
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Optimizations Utilities
Suite Benchmark ADCE CP CSE SCCP LICM Sink LC LCSSA

SPEC

bzip2 � � � �
h264ref � � � � � �
hmmer � � � �
namd � � � � � � �

perlbench � � � � � �
sjeng � � � � �

soplex � � � �

PTS

bullet � � � � �
dcraw � � � � �
ffmpeg � � � � � � �

fhourstones � � � � �
vp8 � � � �

Tab. 5.5. Optimizations and utility passes effective on the hottest function of each bench-
mark. Optimization passes have been applied in the same order (left-to-right) as they
appear in the table. Utility passes LC and LCSSA are prerequisites-requisites of LICM.

The list of benchmarks and transformations that are effective on their
hottest method is reported in Table 5.5. Numbers reported in Table 5.6
for the IR manipulations performed by the transformations suggest
that, while the opt version is typically shorter than its base counterpart,
it might have a larger number of φ-nodes (most of them are inserted
during the LCSSA-form construction). We observed that SCCP was able
to eliminate a large number of unreachable blocks for ffmpeg, while
for the remaining benchmarks the majority of instruction deletions are
performed by CSE, which replaces all of the uses of these instructions
in the function with uses of equivalent available instructions.

Platform
We performed our tests on a machine with an Intel Core i7-3632QM

processor, running Ubuntu 14.10, LLVM 3.6.2 (Release build), 64 bit.

5.4.2. OSR to Optimized Version
Figure 5.21 shows the fraction of program points that are feasible for

an OSR from base to opt depending on the version of reconstruct being
used (Section 4.2.5).

Locations that can fire an OSR with no need for a compensation code
(i.e., χ = 〈〉) account for a limited fraction of all the potential OSR points
(less than 10% for most benchmarks). This suggests that optimizations
can significantly modify a program’s live state across program locations.

We observe that the live version of reconstruct performs well on
some benchmarks (e.g., perlbench, bullet, dcraw) and poorly on oth-
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base opt
Benchmark Function |π| |φ| |π| |φ|

bzip2 mainSort 657 32 596 44
h264ref SetupFastFullPelSearch 671 28 576 36
hmmer P7Viterbi 568 6 383 8
namd ComputeNonbondedUtil::calc_

pair_energy_fullelect
1737 159 1636 224

perlbench S_regmatch 5574 305 5001 355
sjeng std_eval 1940 93 1540 105

soplex SPxSteepPR::entered4X 195 2 154 2
bullet btGjkPairDetector::getClosest

PointsNonVirtual
587 24 553 42

dcraw vng_interpolate 590 37 545 49
ffmpeg decode_cabac_residual_internal 618 34 462 40

fhourstones ab 288 29 284 39
vp8 vp8_full_search_sadx8 334 41 299 60

Benchmark Added Deleted Hoisted Sunk RAUWI RAUWC RAUWA

bzip2 16 77 12 3 71 0 2
h264ref 9 105 4 21 102 0 0
hmmer 2 187 13 1 187 0 0
namd 68 169 36 73 145 17 0

perlbench 86 667 96 28 627 0 0
sjeng 13 413 20 34 412 1 0

soplex 0 41 2 4 41 0 0
bullet 26 60 37 3 51 1 0
dcraw 13 58 25 6 58 0 0
ffmpeg 11 168 9 17 52 51 0

fhourstones 14 20 3 0 14 2 0
vp8 19 54 17 34 54 0 0

Tab. 5.6. Details on the IR manipulations on the hottest function of each benchmark. For
each function we report the number of instructions |π| (|φ| of which represent φ-nodes)
for both the base and the opt version. We then report the number of primitive actions for
code manipulations tracked across the applied transformations. RAUW{A,C,I} is used to
indicate replace_all(O, N) actions performed for some N having Argument, Constant,
or Instruction type in LLVM.
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Fig. 5.21. Fraction of program points that are OSR-feasible (from base to opt).
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|χ| ← live(e) |χ| ← alias |χ| ← avail |Kavail |
Benchmark Avg Max Avg Max Avg Max Avg Max

bzip2 4.29 14 4.3 14 4.73 13 3.6 8
h264ref 1.94 2 2.9 5 3.37 5 1.02 2
hmmer 3.3 5 16.11 23 16.63 24 4.02 7
namd 18.48 28 18.61 28 17.82 28 3.38 6

perlbench 46.29 57 46.12 57 45.82 57 1.24 12
sjeng 9.51 21 9.72 21 18.52 32 4.2 12

soplex 5.08 7 5.02 7 4.38 7 2.34 4
bullet 16.79 46 16.69 46 15.93 46 6.15 17
dcraw 7.72 15 7.6 15 7.32 15 1.97 7
ffmpeg 5.22 8 5.05 8 4.03 8 1.85 3

fhourstones 4.64 6 4.5 6 4.98 6 1.7 2
vp8 9.6 16 10.51 16 10.13 17 2.35 6
Avg 11.07 18.75 12.26 20.50 12.81 21.50 2.82 7.17

Tab. 5.7. Average and peak size |χ| of the compensation code generated by the live(e),
alias, and avail versions of algorithm reconstruct. |Kavail | is the size of the set of variables
that we should artificially keep alive in order to make program points represented by
white bars in Figure 5.21 feasible for an OSR from base to opt.

ers (e.g., h264ref, namd). The enhancements introduced in the live(e)
version are effective for some benchmarks (e.g., namd, sjeng), while
aliasing information exploited in the alias version increases the number
of feasible OSR points for all benchmarks. For 9 out of 12 of them, it is
possible in fact to build a compensation code using only live variables
at the OSR source for more than 60% of potential OSR points.

When in the avail version reconstruct is allowed to extend the
liveness range of an “available” variable, the percentage of feasible OSR
points grows to nearly 100%. We observed for bullet that a specific φ-
node needs to be reconstructed at nearly 20% of feasible OSR points: this
node takes as incoming values a number of φ-nodes that in turn all yield
the same value. While LLVM’s built-in method for detecting trivially
constant φ-nodes does not cover this case, our recursive heuristic present
in the live(e) version is able to identify and use the value directly.

In Table 5.7 we report the average and peak size of the compensation
code χ generated by the live(e), alias, and avail variants of reconstruct
across feasible OSR points. Figures for live are not reported as they
would not add much to the discussion. Note also that average values
have been calculated for different sets of program points, although the
set of a version includes the set of the previous version.

The assignment step of reconstruct (line 9 in Algorithm 9 on page
76) generates an average number of instructions typically smaller than
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Fig. 5.22. Fraction of program points that are OSR-feasible (from opt to base).

20, with the notable exception of perlbench. Observe that perlbench’s
hottest function S_regmatch is highly amenable to CSE: we found out
that no less than 583 out of its 667 deleted instructions (thus about 10%
of the base function, whose size is reported in Table 5.6) are removed by
this optimization, and we believe that local CSE would shrink the OSR
entry block of the continuation function f ′ as well. However, we would
like to remark that the size of φ is unlikely to affect the performance of f ′

for a hot method, as compensation code will be located at the beginning
of the function and executed only once.

The last two columns of Table 5.7 report the average and peak num-
ber of variables that are not live at the source location, but for which the
avail version of reconstruct would artificially extend liveness to sup-
port OSR at more program points (i.e., those represented by the white
portions of the bars in Figure 5.21). We observe that the average number
of values to spill on the stack is less than 3 for 9 out of 12 benchmarks,
with a maximum of 6.16 for bullet. avail by default will extend the
liveness of an available value only if it is not possible to reconstruct it:
we implemented this strategy using a simple backtracking algorithm.

5.4.3. OSR to Base Version
Figure 5.22 reports the fraction of OSR points eligible for opt to base

deoptimization. We observe that the fraction of locations that can fire an
OSR with an empty χ varies significantly from benchmark to benchmark,
suggesting a dependence on the structure of the original program.

For 9 out of 12 benchmarks, compensation code can be built using
only live variables for more than 50% of potential OSR points. When the
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avail version is used, the percentage of feasible OSR points is greater
than 90% on all benchmarks and nearly 100% for 9 out of 12 of them.

Results for the alias version of reconstruct are not reported, as they
do not improve those of live(e). Indeed, aliasing information is useful
when a variable to set at the destination is aliased by multiple variables
at the source, which we do not expect to happen in an optimized code.

In Table 5.8 we report the average and peak size of the compensation
code χ generated by the live(e) and avail variants of reconstruct across
feasible OSR points, along with the average and peak number of available
variables for which avail artificially extends liveness to support OSR at
program points represented by white bars in Figure 5.22. We observe
that compared to the base-to-opt case, the size of the compensation code
is much smaller, suggesting that shorter portions of executions need to
be reconstructed when “OSR-ing” to less optimized code.

Note that the 0 values reported for fhourstones in the live(e) sce-
nario do not imply that state compensation is not required. In fact, the
algorithm detected that each variable v to assign at the OSR landing
pad for which no live counterpart was available at the source location,
could be initialized with the value of either a (non-live) function argu-
ment or some live variable when v is a constant φ-node. In LLVM IR
assignments of the form x := y are not allowed, since all uses of x can
simply be replaced with uses of y: for this reason, a RAUW(x, y) operation
is performed on the body of the continuation function f ′, where y is a
live value transferred as argument for f ′, and no instruction is added to
the OSR entry block of f ′.

5.4.4. Discussion
We have seen that common compiler transformations can signifi-

cantly affect the live state of a program across its locations. The four
versions of algorithm reconstruct that we have implemented can gen-
erate compensation code automatically by recursively reassembling
portions of the state for the target function.

OSR is enabled almost everywhere by the avail version of the algo-
rithm. Figures reported in Tables 5.7 and 5.8 suggest that the size of
the set of virtual registers to preserve for an OSR from all supported
locations is small: a compiler may thus spill available values that are not
already located on the stack. When reconstruct can resort only to live
variables, it enables OSR at more than a half of the program locations.
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|χ| ← live(e) |χ| ← avail |Kavail |
Benchmark Avg Max Avg Max Avg Max

bzip2 1.55 4 1.77 4 1.47 4
h264ref 4.46 9 2.82 9 1.45 7
hmmer 1 1 1 1 1.02 2
namd 1.5 2 5.93 15 4.74 18

perlbench 4.09 12 4.22 12 1.37 11
sjeng 1.29 2 1.67 11 4.09 14

soplex 3.3 4 3.3 4 1.00 1
bullet 1 1 1.26 3 1.14 2
dcraw 1.68 2 3.84 6 4.06 8
ffmpeg 1.94 5 1.95 6 1.08 4

fhourstones 0 0 1.12 4 1.42 4
vp8 5.74 13 5.51 13 1.18 5
Avg 2.30 4.58 2.87 7.33 2.00 6.67

Tab. 5.8. Average and peak size |χ| of the compensation code generated by the live(e) and
avail versions of algorithm reconstruct. |Kavail | is the size of the set of variables that we
should artificially keep alive in order to make program points represented by white bars
in Figure 5.22 feasible for an OSR from opt to base.

We observed that the reconstruction would often fail on an available
value coming from a memory load: we thus believe that the algorithm
may significantly benefit from a simple alias analysis to identify safely
repeatable load instructions.

5.5. Conclusions
The experimental studies presented in this chapter suggest that the

ideas from Chapters 3 and 4 can be efficiently implemented in pro-
duction systems, yielding promising performance results for popular
benchmarks. Our performance profiling techniques incur a low run-
time overhead that makes them amenable to be used in an adaptive
optimization system. OSRKit can insert OSR points in both optimized
and unoptimized code with a hardly noticeable overhead. We discuss
in Section 6.2 an example of effective adaptive optimization enabled by
it. The build_comp algorithm for automatic compensation code genera-
tions allowed OSR to be performed at a very large fraction of program
locations in our experiments. Section 6.3 illustrates a case study on an
use of the algorithm to improve optimized code debugging.





6. Case Studies

In this chapter we discuss three case studies to explore the end-to-end
utility of the techniques proposed in Chapter 3 and Chapter 4. In the
first case study, we show an example of profile-driven optimization
based on our multi-iteration path profiling techniques. In particular,
we show that the code of a masked convolution filter used for image
processing can be adapted to exploit the characteristics of the workload,
achieving two-digit speedups in our experiments. We also discuss a
possible application of multi-iteration path profiles to trace schedulers.

The second case study, which was repeated and endorsed by the joint
Artifact Evaluation process of CGO-PPoPP 2016, presents an example of
adaptive type specialization enabled by OSRKit. The flexibility offered
by its compensation code abstraction allowed us to implement a dynamic
optimization for a higher-order construct of the MATLAB language that
significantly advances the state of the art compared to prior approaches,
nearly matching the performance of code optimized by hand.

Finally, in the third case study we show that our OSR (On-Stack Re-
placement) compensation code algorithms also provide useful novel
building blocks to integrate in optimized code debuggers. On promi-
nent C benchmarks, the reconstruct algorithm is able to recovery the
expected source-level values for the vast majority of user variables that
become endangered due to the effects of classic compiler optimizations.

6.1. Multi-iteration Path Profiling
In this section we consider examples of applications where k-iteration

path profiling can reveal optimization opportunities or help developers
comprehend relevant properties of a piece of software by identifying
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structured execution patterns that would be missed by an acyclic-path
profiler. Our discussion is based on idealized examples found in real
programs of the kind of behavior that can be exploited using multi-
iteration path profiles. Since our methodology can be applied to different
languages, we addressed both Java and C applications1.

6.1.1. Masked Convolution Filters in Image Processing
As a first example, we consider a classic application of convolution

filters to image processing, addressing the problem of masked filtering
that arises when the user applies a transformation to a collection of
arbitrary-shaped subregions of the input image. A common scenario is
face anonymization, illustrated in the example of Figure 6.3. The case
study discussed in this section shows that k-iteration path profiling with
large values of k can identify regular patterns spanning multiple loop
iterations that can be effectively exploited to speed up the code.

Figure 6.1 shows a C implementation of a masked image filtering
algorithm based on a 5 × 5 convolution matrix2. The function takes as
input a grayscale input image (8-bit depth) and a black and white mask
image that specifies the regions of the image to be filtered. Figure 6.3
shows a sample input image (top), a mask image (center), and the output
image (bottom) generated by the code of Figure 6.1 by applying a blur
filter to the regions of the input image specified by the mask. Notice that
the filter code iterates over all pixels of the input image and for each pixel
checks whether the corresponding mask is black (zero) or white (non-
zero, i.e., 255). If the mask is white, the original grayscale value is copied
from the input image to the output image; otherwise, the grayscale value
of the output pixel is computed by applying the convolution kernel to
the neighborhood of the current pixel in the input image. To avoid
expensive boundary checks in the convolution operation, the mask is
preliminarily cropped so that all values near the border are white (this
operation takes negligible time).

Figure 6.2 shows a portion of the 10-IPF forest containing the trees
rooted at the BL path IDs that correspond to: the path entering the
loop (ID=0), the copy branch taken in the loop body when the mask

1 We profiled Java programs using the k-BLPP tool described in Section 5.2.1 and C
programs with manual source code instrumentation based on a C implementation
of the algorithms and data structures of Section 3.2.3, available at http://www.diag.
uniroma1.it/~demetres/kstream/.

2 The source code of our example is provided at the same url of the footnote above.
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#define NEIGHBOR(m,i,dy,dx,w) (*((m)+(i)+(dy)*(w)+(dx)))

#define CONVOLUTION(i) do { \
val = NEIGHBOR(img_in, (i), -2, -2, cols)*filter[0]; \
val += NEIGHBOR(img_in, (i), -2, -1, cols)*filter[1]; \
...
val += NEIGHBOR(img_in, (i), +2, +2, cols)*filter[24]; \
val = val*factor+bias; \
img_out[i] = (unsigned char) \

(val < 0 ? 0 : val > 255 ? 255 : val); \
} while(0)

void filter_conv(unsigned char* img_in,
unsigned char* img_out,
unsigned char* mask,
char filter[25],
double factor, double bias,
int rows, int cols) {

int val;
long n = rows*cols, i;
for (i = 0; i < n; i++)

if (mask[i]) img_out[i] = img_in[i];
else CONVOLUTION(i);

}

Fig. 6.1. Masked image filtering code based on a convolution matrix.

is non-zero (ID=1), and the convolution branch taken in the loop body
when the mask is zero (ID=2). We generated the 10-IPF on the workload
of Figure 6.3 and pruned it by removing all nodes whose counters are
less than 0.01% of the counter of their parents or less than 0.01% of the
counter of their roots. For each node v in the forest, if v has a counter
that is X% of the counter of its parent and is Y% of the counter of the
root, then the edge leading to v is labeled with “X%(Y%)”. A visual
analysis of the forest shows that:

• the copy branch (1) is more frequent than the convolution one (2);
• 98.9% of the times a copy branch (1) is taken, it is repeated consec-

utively at least 10 times, and only 0.1% of the times is immediately
followed by a convolution branch;

• 95% of the times a convolution branch (2) is taken, it is repeated
consecutively at least 10 times, and only 0.6% of the times is im-
mediately followed by a copy branch.

This entails that both the copy and the convolution operations are
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Fig. 6.2. 10-IPF forest of the code of Figure 6.1 on the workload of Figure 6.3.

repeated along long consecutive runs. The above properties are typical
of masks used in face anonymization and other common image ma-
nipulations based on user-defined selections of portions of the image.
The collected profiles suggest that consecutive iterations of the same
branches may be selectively unrolled as shown in Figure 6.4. Each itera-
tion of the outer loop, designed for a 64-bit platform, works on 8 (rather
than 1) pixels at a time. Three cases are possible:

1. the next 8 mask entries are all 255 (white): the 8 corresponding
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Fig. 6.3. Masked blur filter example: original 3114× 2376 image (top), filter mask (center),
filtered image (bottom).

input pixel values are copied to the output image at once with a
single assignment instruction;

2. the next 8 mask entries are all 0 (black): the kernel is applied
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for (i = 0; i < n-7; i += 8) {

if (*(long*)(mask+i) == 0xFFFFFFFFFFFFFFFF)
*(long*)(img_out+i) = *(long*)(img_in+i);

else if (*(long*)(mask+i) == 0) {
CONVOLUTION(i);
CONVOLUTION(i+1);
CONVOLUTION(i+2);
CONVOLUTION(i+3);
CONVOLUTION(i+4);
CONVOLUTION(i+5);
CONVOLUTION(i+6);
CONVOLUTION(i+7);

}

else for (j = i; j < i+8; j++)
if (mask[j]) img_out[j] = img_in[j];
else CONVOLUTION(j);

}

Fig. 6.4. Optimized 64-bit version of the loop of Figure 6.1.

sequentially to each of the next 8 input pixels;
3. the next 8 mask entries are mixed: an inner loop performs either

copy or convolution on the corresponding pixels.

Performance Analysis
To assess the benefits of the optimization performed in Figure 6.4,

we conducted several tests on recent commodity platforms (Intel Core 2
Duo, Intel Core i7, Linux and Mac OS X, 32 and 64 bit, gcc -O3), consid-
ering a variety of sample images and masks with regions of different
sizes and shapes. We obtained non-negligible speedups on all our tests,
with a peak of about 21% on the workload of Figure 6.3 (3114 × 2376
pixels) and about 30% on a larger 9265 × 7549 image with a memory
footprint of about 200 MB. In general, the higher the white entries in
the mask, the faster the code, with larger speedups on more recent
machines. As we expected, for entirely black masks the speedup was
instead barely noticeable: this is due to the fact that the convolution
operations are computationally demanding and tend to hide the benefits
of loop unrolling.



6. Case Studies 139

Discussion
The example discussed in this section shows that both the ability to

profile paths across multiple iterations, and the possibility to handle
large values of k, played a crucial role in optimizing the code. Indeed,
acyclic-path profiling would count the number of times each branch
is taken, but would not reveal that they appear in consecutive runs.
Moreover, previous multi-iteration approaches that only handle very
small values of k would not capture the long runs that make the proposed
optimization effective.

For the example of Figure 6.3, an acyclic-path profile would indicate
that the copy branch is taken 81.7% of the time, but not how branches
are interleaved. From this information, we would be able to deduce
that the average length of a sequence of consecutive white values in the
mask is ≥ 4. Our profile shows that 98.9% of the time the actual length
is at least 10, fully justifying our optimization that copies 8 bytes at a
time. The advantage of k-iteration path profiling increases for masks
with a more balanced ratio between white and black pixels: for a 50-50
ratio, an acyclic-path profile would indicate that the average length of
consecutive white/black runs is ≥ 1, yielding no useful information for
loop unrolling purposes.

The execution pattern where the same branches are repeatedly taken
over consecutive loop iterations is common to several other applications,
which may benefit from optimizations that take advantage of long re-
peated runs. For instance, the LBM_performStreamCollide function of
the lbm benchmark from the SPEC CPU2006 suite [74] iterates over a 3D
domain, simulating incompressible fluid dynamics based on the Lattice
Boltzmann Method. An input geometry file specifies obstacles that de-
termine a steady-state solution. The loop contains branches that depend
upon the currently scanned cell, which alternates between obstacles
and void regions of the domain, producing a k-IPF similar to that of
Figure 6.2 on typical workloads.

6.1.2. Instruction Scheduling
Young and Smith [147] showed that path profiles spanning multiple

loop iterations can be used to improve the construction of superblocks
in trace schedulers.

Global instruction scheduling groups and orders the instructions of a
program in order to match the hardware resource constraints when they
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Fig. 6.5. Superblock construction using cyclic-path profiles.

are fetched. In particular, trace schedulers rely on the identification of
traces (i.e., sequences of basic blocks) that are frequently executed. These
traces are then extended by appending extra copies of likely successors
blocks, in order to form a larger pool of instructions for reordering. A
trace that is likely to complete is clearly preferable, since instructions
moved before an early exit point are wasted work.

Superblocks are defined as sequences of basic blocks with a single
entry point and multiple exit points; they are useful for maintaining the
original program semantics during a global code motion. Superblock
formation is usually driven by edge profiles: however, path profiles
usually provide better information to determine which traces are worth-
while enlarging (i.e., those for which execution reaches the ending block
most of the time). Figure 6.5 shows how superblock construction may
benefit from path profiling information for two different behaviors of a
do . . . while loop characterized by the same edge profile.

Path profiling techniques that do not span multiple loop iterations
chop execution traces into pieces separated at back edges, hence the
authors of [147] collect execution frequencies for general paths [148],
which contain any contiguous sequences of CFG edges up to a limiting
path length; they use a path length of 15 branches in the experiments.
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Example
Phased and alternating behaviors as in Figure 6.5 are quite com-

mon among many applications, thus offering interesting optimization
opportunities. For instance, the convolution filter discussed in the
previous section is a clear example of phased behavior. An alternat-
ing behavior is shown by the checkTaskTag method of class Scanner
in the org.eclipse.jdt.internal.compiler.parser package of the
eclipse benchmark included in the DaCapo release 2006-10-MR2. In
Figure 6.6 we show a subtree of the 11-IPF generated for this method;
in the subtree we pruned all nodes with counters less than 10% of the
counter of the root. Notice that after executing the BL path with ID
38, in 66% of the executions the program continues with 86, and in
28% of the executions with BL path 87. When 86 follows 38, in 100%
of the executions the control flow takes the path 〈86, 86, 86, 755〉, which
spans four loop iterations and may be successfully unrolled to perform
instruction scheduling. Interestingly, sequence 〈38, 86, 86, 86, 755, 38,
86, 86, 86, 755, 38〉 of 11 BL path IDs, highlighted in Figure 6.6, accounts
for more than 50% of all executions of the first BL path in the sequence,
showing that sequence 〈38, 86, 86, 86, 755〉 is likely to be repeated con-
secutively more than once.

Discussion
The work presented in [147] focused on assessing the benefits of using

general paths for global instruction scheduling, rather than on how to
profile them. As we have seen in Section 3.2.5, compared to our approach
the technique proposed by Young [148] for profiling general paths scales
poorly for increasing path lengths both in terms of space usage and
running time. We believe that our method, by substantially reducing the
overhead of cyclic-path profiling, has the potential to provide a useful
ingredient for making profile-guided global instruction scheduling more
efficient in modern compilers.

6.2. Optimizing Higher-Order Functions in MATLAB
In this section we show how OSRKit can be used in a production VM

to implement aggressive optimizations for dynamic languages: in par-
ticular, we focus on MATLAB, a popular dynamic language for scientific
and numerical programming.

Introduced in the late ’70s mainly as a scripting language for perform-
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Fig. 6.6. Subtree of the 11-IPF of method org.eclipse.jdt.internal.compiler.
parser.Scanner.checkTaskTag taken from release 2006-10-MR2 of the DaCapo bench-
mark suite.

ing computations through efficient libraries, MATLAB has evolved over
the years into a more complex programming language with support for
high-level features such as functions, packages and object orientation. A
popular feature of the language is the feval construct, a built-in higher-
order function that applies the function passed as first parameter to the
remaining arguments (e.g., feval(g,x,y) computes g(x,y)). This fea-
ture is heavily used in many classes of numerical computations, such as
iterative methods for approximate solutions of an ordinary differential
equation (ODE) and simulated annealing heuristics to locate a good
approximation of a function’s global optimum in a large search space.

A previous study by Lameed and Hendren [89] shows that the over-
head of an feval call is significantly higher than the one of a direct
call, especially in JIT-based execution environments such as McVM [38]
and the proprietary MATLAB JIT accelerator by Mathworks. In fact,
the presence of an feval instruction can disrupt the results of intra and
inter-procedural level for type and array shape inference analyses, which
are key factors for efficient code generation. Furthermore, since feval
invocations typically require falling back to an interpreter, parameters
passed to an feval are usually boxed to make them more generic.
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Our case study presents a novel technique for optimizing feval in
the McVM virtual machine, a complex research project developed at
McGill University. McVM is publicly available [134] and includes: a
front-end for lowering MATLAB programs to an intermediate represen-
tation called IIR that captures the high-level features of the language;
an interpreter for running MATLAB functions and scripts in IIR format;
a manager component to perform analyses on IIR; a JIT compiler based
on LLVM for generating native code for a function, lowering McVM
IIR to LLVM IR; a set of helper components to perform fast vector and
matrix operations using optimized libraries such as ATLAS, BLAS and
LAPACK.

McVM implements a function versioning mechanism based on type
specialization, which is the main driver for generating efficient code [38]:
for each IIR representation of a function, different IR versions are gen-
erated according to the types of the arguments at each call site. The
number of generated versions per function is on average small (i.e., less
than two), as in most cases functions are always called with the same
argument types.

6.2.1. Current Approaches
Lameed and Hendren [89] proposed two dynamic techniques for

optimizing feval instructions in McVM: JIT-based and OSR-based special-
ization. Both attempt to optimize a function f that contains instructions
of the form feval(g, ...), leveraging information about g and the type of
its arguments observed at run time. The optimization produces a spe-
cialized version f ′ where feval(g, x, y, z, ...) instructions are replaced
with direct calls of the form g(x, y, z, ...).

The two approaches differ in the points where code specialization is
performed. In JIT-based specialization, f ′ is generated when f is called.
In contrast, the OSR-based method interrupts f as it executes, generates
a specialized version f ′, and resumes from it.

Another technical difference, which has substantial performance im-
plications, is the representation level at which optimization occurs in
the two approaches. When a function f is first compiled from MAT-
LAB to IIR, and then from IIR to IR, the functions it calls via feval are
unknown and the type inference engine is unable to infer the types
of their returned values. Hence, these values must be kept boxed in
heap-allocated objects and handled with slow generic instructions in
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the IR representation of f (suitable for handling different types).
The JIT method works on the IIR representation of f and can resort

to the full power of type analysis to infer the types of the returned values
of g, turning the slow generic instructions of f into fast, type-specialized
instructions in f ′. When g is one of the parameters of f , each call to f
can be redirected to a dispatcher that evaluates at run time the value
of the argument to use for the feval and executes either previously
compiled cached code or generates and JIT-compiles a version of the
function optimized for the current value.

On the other hand, OSR-based specialization operates on the IR
representation of f , which prevents the optimizer from exploiting type
inference. As a consequence, for f ′ to be sound, the direct call to g must
be guarded by a condition that checks whether the type of its parameters
remain the same as observed at the time when f was interrupted. If the
guard fails or the feval target g changes, the code falls back to executing
the original feval instruction.

JIT-based specialization is substantially faster than OSR-based spe-
cialization due to the benefits of type inference, but is less general as
it only works if the feval argument g is one of the parameters of f .
JIT-based specialization thus cannot be applied to scenarios where, e.g.:

• f is an inline or an anonymous function defined in g;

• f is the return value from a previous call in g to another function;

• f is retrieved from a data structure [89];

• f is a constant string holding the name of a user-defined function
(a rather common misuse of feval among MATLAB users [116]).

6.2.2. A New Approach
In this section we present a new approach that combines the flexibility

of OSR-based specialization with the efficiency of the JIT-based method,
answering an open question raised by Lameed and Hendren in [89].

The key idea is to lift the f -to- f ′ optimization performed by the
OSR-based specialization from IR to IIR level. This makes it possible
to perform type inference in f ′, generating much more efficient code.
The main technical challenge of this idea is that the program’s state in f
at the OSR point may be incompatible with the state of f ′ from which
execution continues. Indeed, some variables may be boxed in f and
unboxed in f ′. Hence, compensation code is needed to adjust the state
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by performing live variable unboxing during the OSR.

Implementation
We implemented our approach in McVM3, extending it with four

main components:

1. An analysis pass to identify optimization opportunities for feval
instructions in the IIR of a function.

2. An extension for the IIR compiler to track the variable map between
IIR and IR objects at feval sites.

3. An OSR inserter based on OSRKit to inject open OSR points in the
IR for IIR locations annotated during the analysis pass.

4. An feval optimizer triggered at OSR points, which uses:

(a) a profile-driven IIR generator to replace feval calls with di-
rect calls;

(b) a helper component to lower the optimized IIR function to
IR and construct a state mapping;

(c) a code caching mechanism to handle the compilation of the
continuation functions.

We remark that our implementation heavily depends on OSRKit’s
ability to handle compensation code.

Analysis Pass. The analysis pass, which is fully integrated in McVM’s
analysis manager, groups feval instructions whose first argument is
reached by the same definition, and for each group marks for instru-
mentation only those instructions that are not dominated by others, so
that the function can be optimized as early as possible at run time. It
also determines whether the value of the argument can change across
two executions of the same feval, and a runtime guard must thus be
inserted during the optimization phase.

IIR Compiler Extension. The extension operates when the IIR com-
piler processes an annotated feval instruction. It builds a variable map
between IIR and IR objects, and keeps track of the llvm::BasicBlock*

3 As a by-product of our project, we ported the MATLAB McVM virtual machine
from the LLVM legacy JIT to the new MCJIT toolkit. Our code is available at https:
//github.com/dcdelia/mcvm.
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b created for the feval in the IR code and of the llvm::Value* object g
used as its first argument.

OSR Inserter. The OSR inserter uses the b and g objects collected by
the IIR compiler extension respectively as basic block and val argument
for the open-OSR stub (Section 4.1.2) that invokes the feval optimizer.

Optimizer. The core of our optimization pipeline is the optimizer
module, which is called as gen function in the open OSR stub created
by the OSR inserter. It receives the IR version f IR of function f, the basic
block of f IR where the OSR was fired, and the native code address of
the feval target function g. As a first step, the optimizer looks up the
IR code of g by its address and checks whether a previously compiled
version of f specialized with g was previously cached. If not, a new
function f I IR

opt is generated by cloning the IIR representation f I IR of f
and by replacing all feval calls to g in f I IR

opt with direct calls.
As a next step, the optimizer asks the IIR compiler to lower f I IR

opt to
f IR
opt. During the process, the compiler stores the variable map between

IIR and IR objects at the direct call that replaces the feval instruction
that triggered the OSR.

Using this map and the one stored during the lowering of f I IR, the
optimizer constructs a state mapping between f IR and f IR

opt. In particular,
for each value in f IR

opt live at the continuation block we determine if we
can assign with it a live value passed at the OSR point, or a compensation
code is required to set its value.

Notice that since the type inference engine yields more accurate re-
sults for f I IR

opt compared to f I IR, the IIR compiler can in turn generate
efficient specialized IR code for representing and manipulating IIR vari-
ables. Compensation code is typically required to unbox or downcast
some of the live values passed at the OSR point, or to materialize as IR
object an IIR variable previously accessed through get/set methods
from McVM’s environment.

Once a state mapping has been constructed, the optimizer asks OS-
RKit to generate the continuation function for the OSR transition and
then executes it, also storing the address of the compiled function in the
internal code cache.

An example of compensation code is reported in Figure 6.7. In order
to correctly resume the execution at the first instruction in basic block
%31, the entry point of odeEuler’s continuation function executes a
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define void @odeEuler_OSR( 
  i64 %0, i64 %1, i8* %2, i8* %3, i8* %4,
  i64 %5, i8* %6, double %7,
  { i8*, i8*, i64 }* %8, i8* %9) {  

osr.entry:
  %castUNKtoMF64 = call double
      @"MatrixF64Obj::getScalarVal"(i8* %2)
  %castUNKtoMF64_2 = call double
      @"MatrixF64Obj::getScalarVal"(i8* %4)
  %envLookupFory = call i8*
      @"Environment::lookup"(i8* %9, i8* inttoptr
      (i64 32152960 to i8*))
  %10 = alloca [16 x i8]
  %11 = alloca [24 x i8]
  br label %31

Fig. 6.7. Compensation code for odeEuler benchmark. McVM-specific instructions are
highlighted in grey.

sequence of instructions that: 1) convert to double two live variables—
i.e., function arguments %2 and %4—that are represented as boxed values
in the unoptimized function, 2) look up in McVM’s environment at %9
the pointer to the object instantiated for the symbol description stored at
address 0x32152960, and 3) allocate on the stack two buffers of 16 and
24 bytes, respectively.

6.2.3. Performance Analysis
We now analyze the impact of our optimization technique for feval

on the running time of a few numeric benchmarks, namely odeEuler,
odeMidpt, odeRK4, and sim_anl. The first three benchmarks [117] solve
an ordinary differential equation for heat treating simulation using the
Euler, midpoint, and Range-Kutta method, respectively; the last bench-
mark minimizes the six-hump camel back function with the method of
simulated annealing [45].

We report the speedups enabled by our technique in Table 6.1, using
the running times for McVM’s feval default dispatcher as baseline.
As the dispatcher typically JIT-compiles the invoked function, we also
analyzed running times when the dispatcher calls a previously compiled
function. In the last column we show speedups from a modified version
of the benchmarks in which each feval call is replaced by hand with a
direct call to the function in use for the specific benchmark.

Unfortunately, we are unable to compute direct performance metrics
for the solution by Lameed and Hendren as its source code has not been
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Base Optimized Optimized Direct
Benchmark (cached) (JIT) (cached) (by hand)
odeEuler 1.046 2.796 2.800 2.828
odeMidpt 1.014 2.645 2.660 2.685
odeRK4 1.005 2.490 2.582 2.647
sim_anl 1.009 1.564 1.606 1.612

Tab. 6.1. Q4: Speedup comparison for feval optimization in McVM.

released. Figures in their paper [89] show that for the very same MAT-
LAB programs the speedup of the OSR-based approach is on average
within 30.1% of the speedup of hand-coded optimization (ranging from
9.2% to 73.9%); for the JIT-based approach, the average grows to 84.7%
(ranging from 75.7% to 96.5%).

Our optimization technique yields speedups that are very close to
the upper bound given from by-hand optimization; in the worst case
(odeRK4 benchmark) we observe a 94.1% when the optimized code is
generated on the fly, which becomes 97.5% when a cached version is
available. Compared to OSR-based approach of [89], the compensation
entry block is a key driver of improved performance, as the benefits
from a better type-specialized whole function body outweigh those from
performing a direct call using boxed arguments and return values in
place of the original feval.

For the sim_anl benchmark, OSRKit’s support for OSR point inser-
tion at arbitrary locations allowed our optimization pipeline to instru-
ment an feval instruction that occurs before the main loop and pollutes
type inference information for the rest of the code: in fact, the OSR-based
solution by Lameed and Hendren yielded a very limited performance
improvement for this benchmark.

6.2.4. Discussion
The ideas presented in this case study advance the state of the art

of feval optimization in MATLAB runtimes. Similarly to OSR-based
specialization, we do not place restrictions on the functions that can be
optimized. On the other hand, we work at IIR (rather than IR) level as
in JIT-based specialization, which allows us to perform type inference
on the code with direct calls. Working at IIR level eliminates the two
main sources of inefficiency of OSR-based specialization:

1. we can replace generic instructions with specialized instructions;
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2. the argument types for g do not need to be cached or guarded as
they are statically inferred.

These observations are confirmed in practice by experiments on a
number of typical benchmarks from the MATLAB community.

6.3. Source-level Debugging of Optimized Code
A source-level (or symbolic) debugger is a program development tool

that allows a programmer to monitor an executing program at the source-
language level. Interactive mechanisms are typically provided to the
user to halt/resume the execution at breakpoints, and to inspect the state
of the program in terms of its source language.

The importance of the design and use of these tools was already
clear in the ’60s [58]. In a production environment it is desirable to use
optimizations, and bugs can surface when optimizations are enabled,
as the debuggable translation of a program may hide them, or because
differences in timing behavior may cause the appearance of bugs due
to race conditions [1]. Also, optimizations may be absolutely necessary
to execute a program: for example, because of memory limitations,
efficiency reasons, or other platform-specific constraints.

As pointed out by Hennessy in his ’82 seminal paper [73], a classic
conflict exists between the application of optimization techniques and
the ability to debug a program symbolically. A debugger provides
the user with the illusion that the source program is executing one
statement at a time. On the other hand, optimizations preserve the
semantic equivalence between optimized and unoptimized code, but
normally alter the structure and the intermediate results of a program.

Two problems surface when trying to symbolically debug optimized
code [2, 78]. First, the debugger must determine the position in the
optimized code that corresponds to the breakpoint in the source code
(code location problem). Second, the user expects to see the values of
source variables at a breakpoint in a manner consistent with the source
code, even though the optimizer might have deleted or reordered in-
structions, or values might have been overwritten as a consequence of
register allocation choices (data location problem).

When attempting to debug optimized programs, debuggers may thus
give misleading information about the value of variables at breakpoints.
Hence, the programmer has the difficult task of attempting to unravel
the optimized code and determine what values the variables should
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have [73].
In general, there are two ways for a symbolic debugger to present

meaningful information about the debugged optimized program [144].
It provides expected behavior of the program if it hides the effect of the
optimizations from the user and presents a program state consistent
with what they expect from the unoptimized code. It provides instead
truthful behavior if it makes the user aware of the effects of optimizations
and warns them of possibly surprising outcomes.

In his PhD thesis Adl-Tabatabai observes that constraining optimiza-
tions or adding machinery during compilation to aid debugging do
not solve the problem of debugging the optimized translation of a pro-
gram, as the user debugs suboptimal code [1]. Source-level debuggers
thus need to implement techniques to recover expected behavior when
possible, without relying on intrusive compiler extensions.

6.3.1. Using build_comp for State Recovery
On-stack replacement has been pioneered in implementations of

the SELF programming language to provide expected behavior with
globally optimized code [76]. OSR shields the debugger from the effects
of optimizations by dynamically deoptimizing code on demand. Debug-
ging information is supplied by the compiler at discrete interrupt points,
which act as a barrier for optimizations, letting the compiler run unhin-
dered between them. Starting from the observation that our algorithms
for generating OSR mappings (Section 4.2.3.1) do not place barriers for
live-variable equivalent transformations, we investigated whether they
can also encode useful information for expected-behavior recovery in a
source-level debugger.
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As in most recent works on optimized code debugging, we focus on
identifying and recovering scalar source variables in the presence of
global optimizations. In LLVM debugging information is inserted by the
front-end as metadata attached to global variables, single instructions,
functions or entire IR modules. Debugging metadata are transparent to
optimization passes, do not prevent optimizations from happening, and
are designed to be agnostic about both the source language in which
the original program is written and the target debugging information
representation (e.g., DWARF, stabs). Two intrinsics are used to associate
IR virtual registers with source-level variables:

• llvm.dbg.declare typically associates a source variable with an
alloca4 buffer;

• llvm.dbg.value informs that a source variable is being set to the
value held by the virtual register.

We extended TinyVM to reconstruct this mapping and also to identify
which program locations in the unoptimized IR version fbase correspond
to source-level locations for a function, which can become user break-
points. An OSR mapping is then generated when OSR-aware transfor-
mation passes are applied to fbase to generate the optimized version
fopt. For each location in fopt that might correspond to (i.e., have as
OSR landing pad) a source-level location in fbase, we determine which
variables live at the destination are live also at the source (and thus they
yield the same value), and which instead need reconstruction. We rely
on the SSA form to identify which assignment(s) should be recovered
by reconstruct, as every value instance of a source-level variable is
represented by a specific virtual register. φ-nodes at control-flow merge
points can not be reconstructed, but our experimental results suggest
that this might not be a frequent issue in practice.

6.3.2. The SPEC CPU2006 Benchmarks
To capture a variety of programming patterns and styles from appli-

cations with different sizes, we have analyzed each method from each C
benchmark in the SPEC CPU2006 suite [74], applying the same sequence

4 alloca is used to allocate space on the stack of the current function to be automatically
released when the function returns. Front-ends are not required to generate code in
static single assignment (SSA) form, but they can manipulate local variables created
with alloca using load and store instructions. The SSA form can then be constructed
using mem2reg.



152 New Techniques for Adaptive Program Optimization

Functions
Total Optimized Endangered

Benchmark LOC |Ftot| |Fopt| |Fopt |
|Ftot |

|Fend| |Fend |
|Ftot |

|Fend |
|Fopt |

bzip2 8 293 100 66 0.66 24 0.24 0.36
gcc 521 078 5 577 3 884 0.70 1 149 0.21 0.30

gobmk 197 215 2 523 1 664 0.66 893 0.35 0.54
h264ref 51 578 590 466 0.79 163 0.28 0.35
hmmer 35 992 538 429 0.80 80 0.15 0.19

lbm 1 155 19 17 0.89 2 0.11 0.12
libquantum 4 358 115 85 0.74 9 0.08 0.11

mcf 2 658 24 21 0.88 11 0.46 0.52
milc 15 042 235 157 0.67 34 0.14 0.22

perlbench 155 418 1 870 1 286 0.69 593 0.32 0.46
sjeng 13 847 144 113 0.78 31 0.22 0.27

sphinx3 25 090 369 275 0.75 76 0.21 0.28

Tab. 6.2. Characteristics of the C benchmarks from the SPEC CPU2006 suite.

of OSR-aware optimization passes used in Section 5.4.1 to the baseline
IR version obtained with clang −O0 and post-processed with mem2reg.

Table 6.2 reports for each benchmark the code size, the total number
of functions in it, the number of functions amenable to optimization,
and, in turn, how many optimized functions report “endangered” user
variables from the source-level debugging perspective. We observe that
the fraction of functions that do not benefit from optimizations (i.e.,
1 − |Fopt|/Ftot|) ranges from one tenth to one third of the total number
of functions. For the optimized functions the fraction of those that
belong to Fend—defined as the set of functions that require recovery of
the expected behavior—ranges from 0.11 (libquantum) to 0.54 (gobmk).

Table 6.3 reports figures that we have collected for functions in Fend.
We observe that, on average, at more than one in every four program
points there is at least a user variable whose source-level value might
not be reported correctly by a debugger. For most functions in the
benchmarks, the average number of affected user variables at such points
ranges between 1 and 2, although for some benchmarks we observe
high peak values at specific points (e.g., 9 for gobmk and 14 for gcc and
h264ref).

To investigate possible correlations between the size of a function and
the number of user variables affected by source-level debugging issues,
we analyzed the corpus of functions for the three largest benchmarks in
our suite, namely gcc, gobmk, and perlbench. Figure 6.8 reports scatter
plots in which each point represents a function: the horizontal position
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Fraction of affected Endangered user vars
program points per affected point

Benchmark Avgw Avgu Avg σ Max
bzip2 0.17 0.12 1.22 0.55 5
gcc 0.25 0.22 1.13 0.31 14

gobmk 0.40 0.29 1.48 0.72 9
h264ref 0.45 0.55 1.69 1.23 14
hmmer 0.17 0.22 1.13 0.37 5

lbm 0.30 0.51 1.97 1.37 3
libquantum 0.13 0.10 1.06 0.17 2

mcf 0.35 0.32 1.00 - 1
milc 0.24 0.21 1.14 0.29 3

perlbench 0.37 0.35 1.16 0.36 8
sjeng 0.26 0.20 1.24 0.42 3

sphinx3 0.29 0.31 1.19 0.44 6
Mean 0.26 0.25 1.26 0.47 6.08

Tab. 6.3. Fraction of program points with endangered user variables, and number of
affected variables. The second and third column report weighted Avgg and unweighted
Avgu average, respectively, of the fraction of such points for functions in Fend. We use the
number of IR instructions in the unoptimized code as weight for computing Avgw, and
consider only IR program points corresponding to source-level locations. We then show
mean, std deviation, and peak number of endangered variables at such points.

is given by the number of IR instructions in the unoptimized code, while
the vertical position by the sum of the number of endangered user
variables across program points corresponding to source-level locations.

The log-log plots for gcc may suggest a trend line such that larger
functions would typically have a large number of affected variables.
However, this trend is less pronounced in perlbench and nearly absent
from gobmk. Linear plots can provide the reader with a better visualiza-
tion of what happens for larger functions and for functions with a higher
total number of affected variables. We can safely conclude that, although
larger functions might be more prone to source-level debugging issues,
these issues frequently arise for smaller functions as well.

6.3.3. Experimental Results
We evaluated the ability of build_comp to correctly reconstruct the

source-level expected value for the endangered user variables in the
SPEC CPU2006 experiments. For each function we measured the aver-
age recoverability ratio, defined as the average across all program points
corresponding to source-level locations of the ratio between recover-
able and endangered user variables for a specific point. Two versions of
reconstruct can be useful in this setting: live(e) and avail (Section 4.2.5).
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Fig. 6.8. Scatter plot of the total number of scalar user variables that are endangered by
optimizations across program points. The position on the horizontal axis is determined
by the number of instructions in each function’s unoptimized version. For each selected
benchmark we report both a log-log (left) and a linear (right) plot.

live(e) can be implemented in debuggers that can evaluate expres-
sions over the current program state, including gdb and LLDB5. In fact,
this version of reconstruct needs only to access the live state of the
optimized program at the breakpoint.

avail can be integrated in a debugger using invisible breakpoints to
spill a number of non-live available values before they are overwritten.
Invisible breakpoints are indeed largely employed in source-level debug-

5 As LLDB is tightly coupled with the rest of the LLVM infrastructure, it can also
utilize its JIT to run and evaluate arbitrary code. gdb can typically evaluate complex
expressions as well.
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Fig. 6.9. Global average recoverability ratio, defined as weighted average of each func-
tion’s average recoverability ratio. We used the number of LLVM IR instructions in the
unoptimized function version as weight.

gers (e.g., [149, 144, 78]). Using spilled values and the current live state,
expected values for endangered user variables can be reconstructed as
for live(e). Alternatively, in a virtual machine with a JIT compiler and an
integrated debugger, the runtime might decide to recompile a function
when the user inserts a breakpoint in it, artificially extending the liveness
range for the available values that would be needed by build_comp.

Figure 6.9 shows for each benchmark the global average recoverabil-
ity ratio achieved by live(e) and avail on the set of affected functions Fend.
To compute the global average, the average recoverability ratio for each
function has been weighted using the number of IR instructions in the
unoptimized function as weight. We observe that avail performs partic-
ularly well on all benchmarks, with a global ratio higher than 0.95 for
half of the benchmarks, and higher than 0.9 for 10 out of 12 benchmarks.
In the worst case (gobmk), we observe a global ratio slightly higher than
0.83. Results thus suggest that build_comp can recovery expected values
for the vast majority of source-level endangered variables.

To estimate how many values should be preserved—through either
invisible breakpoints or recompilation—to integrate avail in a debug-
ger, we collected for each function the “keep” set of non-live available
values to save to support deoptimization across all program points cor-
responding to source-level locations. We then computed the average
and the standard deviation for the size of this set on all functions in Fend.
Figures reported in Table 6.4 show that typically a third of the functions
in Fend do not require any values to be preserved. For the remaining
functions on average 2.91 values need to be preserved, with a peak of
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f rac 0.71 0.72 0.16 0.71 0.70 - 0.67 1.00 0.76 0.66 0.77 0.72 0.69
avg 3.24 2.77 2.31 4.90 2.79 - 3.00 1.82 2.19 4.76 1.88 2.31 2.91
σ 3.38 5.12 2.22 9.23 2.33 - 3.46 0.87 1.94 4.94 1.12 2.08 3.34

Tab. 6.4. Available values to preserve when using avail. For functions that require to
preserve at least one value, we report the fraction f rac of |Fend| they cumulatively account
for, the average number avg of values to preserve across such functions, and the associated
standard deviation σ.

4.90 observed for h264ref.
Notice that values in the keep set do not necessarily need to be all

preserved simultaneously or at all points: their minimal set can change
across function regions. Typically when debugging, what happens
is that values are saved using an invisible breakpoint before they are
overwritten, and deleted as soon as they are no longer needed [78]. For
the recompilation-based approach, on the other hand, numbers reported
in Table 6.4 should be interpreted as a pessimistic upper-bound for
register pressure increase.

6.3.4. Comparison with Related Work
In the previous sections we have seen that our techniques for au-

tomatic OSR mapping construction can be useful to restore expected
behavior in source-level debuggers. We now discuss the connections of
this approach with previous works.

In the debugging literature, we are aware of only one work that
supports full source-level debugging. TARDIS [16] is a time-traveling
debugger for managed runtimes that takes snapshots of the program
state at a regular basis, and lets the unoptimized code run after a snap-
shot has been restored to answer queries. Our solution is different in
the spirit, as we tackle the problem from the performance-preserving
end of the spectrum [1], and in some ways more general, as it can be
applied to the debugging of statically compiled languages such as C.

The debugging framework proposed by Wu et al. [144] selectively
takes control of the optimized program execution by inserting break-
points of four kinds, then performs a forward recovery process in a
complex emulator that executes instructions from the optimized pro-
gram mimicking their execution order at the source level. Their em-
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ulation scheme however cannot report values whose reportability is
path-sensitive. The FULLDOC debugger [78] makes a step further, as
it is able to provide truthful behavior for deleted values, and expected
behavior for the other values. The authors remark that FULLDOC can
be integrated with techniques for reconstructing deleted values, and
build_comp might be an ideal candidate.

In a seminal paper [73] Hennessy presented algorithms for recover-
ing values in locally optimized code, with weaker extensions to glob-
ally optimized code. These algorithms, however, can only work with
operand values that are user variables coming from memory, as they
ignore compiler temporaries or registers. Also because the assumptions
made by Hennessy need to be revised due to the advances in compiler
and debugging technology [43], these algorithms have not been imple-
mented in real debuggers. Adl-Tabatabai in his PhD thesis [1] presents
algorithms for recovering values in the presence of local and global
optimizations. In particular, the algorithms for global optimizations
identify compiler temporaries introduced by optimizations that alias en-
dangered source variables. This idea is captured by build_comp which
can also use facts recorded during IR manipulation (Section 4.2.5) when
recursively reconstructing portions of the state for the original program.

6.4. Conclusions
The series of case studies illustrated in this chapter give further evi-

dence of the utility of our performance profiling and continuous pro-
gram optimization techniques. Improved profile accuracy is useful to
enhance the program understanding and optimization process: multi-
iteration path profiles can reveal interesting optimization opportunities
that an acyclic profiler would miss. On-stack replacement is essential
technology for dynamic optimization and debugging: our abstraction of
OSR with compensation code enables transformations that change the
program state deeply, while our algorithms for automatic OSR mapping
construction can help source-level debuggers provide expected behavior
for an optimized program to the user.
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We are confident that the ideas presented in this thesis can contribute to
the advances in adaptive optimization technology for modern runtimes.

Collecting accurate profiling information with low overhead is a
crucial factor for making online complex optimizations practical. In
Chapter 3 we presented two analysis techniques that rely on elegant
algorithmic solutions to profile data coming at a high rate from a large
universe.

Our interprocedural profiling technique enables the identification of
most frequently encountered calling contexts without having to maintain
the whole calling context tree in main memory, which we show can be
impractical for real-world applications. We propose a compact data
structure, the Hot Calling Context Tree (HCCT), that can be constructed in
small space thanks to the adoption of efficient data streaming algorithms.
These algorithms provide us with strong theoretical guarantees on the
accuracy and the space requirements of the solution, and operate with
a constant per-item processing time.

Our intraprocedural profiling technique extends the well-known
Ball-Larus algorithm to cyclic-path profiles, in order to yield more opti-
mization opportunities. We show that cyclic paths can be represented
as concatenations of acyclic Ball-Larus paths, and that a prefix forest
can compactly encode them. We then introduce an intermediate data
structure, the k-slab forest (k-SF), that can be constructed online with a
constant per-item processing time and converted to a prefix forest on
demand.

The algorithms behind our two profiling techniques have been im-
plemented in mainstream systems and evaluated against prominent
benchmarks. Theoretical predictions are thus reinforced by promis-
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ing experimental results, showing that our techniques can be used in
practical scenarios where previous solutions failed.

In Chapter 4 we then focused our attention on a main player of
adaptive optimization cycles, On-Stack Replacement (OSR), which enables
runtimes to divert the execution to freshly generated optimized code
using profiling information, or to deoptimize to a different version of
the code when conditions change, e.g., when program behavior starts to
diverge from the profile significantly.

OSR is not only a great engineering problem, but also an intellectually
challenging endeavor. We thus tackle the problem from both a practical
and theoretical perspective. We present a new framework for on-stack
replacement that combines some of the best practices in the literature,
such as platform independence and the generation of highly optimized
continuation functions, with two novel features: the ability to perform
OSR at any program location, and a compensation code abstraction to
encode changes to the program state, thus increasing the flexibility the
OSR mechanism. Experimental results collected on classic benchmarks
for our OSRKit embodiment in the LLVM compiler toolchain suggest that
encoding OSR at intermediate representation level allows the compiler
to generate very efficient machinery with a hardly noticeable impact on
performance. As the ideas behind our OSR framework are general, we
do not foresee any limitation to its adoption in other runtimes as well.

In the second part of Chapter 4 we made a first attempt to prove
OSR transitions sound. To capture OSR in its full generality, we define
a notion of multi-program and let an oracle decide at each program
step in which version of the multi-program execution should continue.
We distill the essence of OSR to a simple imperative calculus with an
operational semantics. Using program bisimulation, we prove that an
OSR transition can correctly divert execution across program versions if
they have been generated using live-variable equivalent transformations.
We also present an algorithm that can relieve code optimizers from the
burden of generating all the glue machinery required to realign the state
during an OSR transition.

There is a trade-off between the number of points where OSR can be
fired correctly and the price to pay in terms of space and time in order to
support them. Our work lies at the performance-preserving end of the
spectrum, supporting OSR transitions in constant time and space: we do
not restrict optimizations, and do not require any state logging. To assess
the practical impact of this design choice, we analyze experimentally
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the fraction of program locations where OSR can be efficiently fired in
prominent benchmarks across several LLVM optimization passes. Our
experiments suggest that bidirectional OSR transitions between rather
different program versions can be supported almost everywhere in the
code under several classic optimizations.

Finally, we present a number of case studies to investigate the end-to-
end utility of the techniques described in this thesis. All of our code is
publicly available and, for k-BLPP and OSRKit, has been endorsed along
with the associated experiments in the Artifact Evaluation process of
known conferences on programming language research.

Future Work
The methodologies and ideas presented in this thesis leave a number

of interesting open questions that we hope to address in future work.
We believe that a careful use of data mining techniques has the poten-

tial benefit of enabling some previously impossible dynamic program
analysis tasks, which would otherwise be too costly. In particular, our
techniques could be applied to certain forms of path profiling: e.g.,
they could help leverage the scalability problems encountered when
collecting performance metrics about interprocedural paths (i.e., acyclic
paths that may cross procedure boundaries) [101]. It would also be in-
teresting to investigate whether streaming algorithms for weighted item
sets might be useful to solve space issues arising in other performance
profiling methodologies.

An interesting open question for our multi-iteration path profiling
technique is how to use sophisticated sampling techniques (e.g., [8, 152])
to further reduce the profiling overhead. We have seen that bursting is
effective in a context-sensitive profiling scenario. To capture even longer
paths, our technique might be extended with pruning heuristics that
trade accuracy for a smaller memory footprint in the k-SF construction.
We also remark that our approach, by decoupling path tracing from
profiling, is amenable to multi-core implementations by letting the pro-
filed code and the analysis algorithm run on separate cores using shared
buffers. A promising line of research is to explore how to partition the
data structures so that portions of the stream buffer can be processed in
parallel.

We have seen that our approach to OSR mapping generation relies on
the live-variable bisimilarity property for program versions. What are
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the limitations of our formalism in terms of existing compiler optimiza-
tions? What is involved in rethinking existing compiler optimizations in
terms of the presented model? Transformations that deeply change the
structure of a program, such as aggressive loop optimizations, are not
supported at the moment. Such transformations typically require entire
portions of state to be logged in order to support deoptimization, such
as in the loop tiling case [20]. Our work is just a scratch off the surface of
the fascinating problem of how to dynamically morph one program into
another. A deep understanding of the trade-offs between flexibility and
time/space requirements of OSR remains a compelling goal for future
work.

As a next step on the implementation side, we plan to extend OS-
RKit to generate continuation functions that can be shared by multiple
deoptimization points. By adding a dispatcher in the entry block that ex-
amines the current OSR source location in order to properly compensate
the state and jump to the associated landing pad, a single continuation
function might serve more than one deoptimization point. When trans-
ferring execution to less optimized code we should not worry about
a possibly reduced peak performance for the modified continuation
function: execution will likely not stay in it for long. Furthermore, in
the presence of frequent OSR transitions between pairs of versions this
solution would be very effective when deoptimization does not always
occur at the same locations.

We are aware that OSRKit is currently being used in a joint academic-
industrial research project for the optimization of the runtime for the R
language [139], and we hope to look at other systems that may do that
in the future.



Bibliography

[1] Adl-Tabatabai, A.-R., Source-Level Debugging of Globally Opti-
mized Code, Ph.D. thesis, Carnegie Mellon University, Pittsburgh,
PA, USA (1996), uRL http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.73.5762. Accessed: 2016-06-18.

[2] Adl-Tabatabai, A.-R., Gross, T., Source-level Debugging of Scalar
Optimized Code, in Proceedings of the ACM SIGPLAN 1996 Conference
on Programming Language Design and Implementation, PLDI ’96,
33–43, ACM, New York, NY, USA (1996), ISBN 0-89791-795-2,
doi:10.1145/231379.231388, URL http://doi.acm.org/10.1145/
231379.231388.

[3] Agrawal, H., Horgan, J. R., Dynamic Program Slicing, in Proceedings
of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation, PLDI ’90, 246–256, ACM, New York, NY,
USA (1990), ISBN 0-89791-364-7, doi:10.1145/93542.93576, URL
http://doi.acm.org/10.1145/93542.93576.

[4] Alpern, B., et al., The Jalapeño Virtual Machine, IBM Systems
Journal, 39 (2000), 211–238, doi:10.1147/sj.391.0211, URL http:
//dx.doi.org/10.1147/sj.391.0211.

[5] Ammons, G., Ball, T., Larus, J. R., Exploiting Hardware Performance
Counters with Flow and Context Sensitive Profiling, in Proceedings
of the ACM SIGPLAN 1997 Conference on Programming Language
Design and Implementation, PLDI ’97, 85–96, ACM, New York, NY,
USA (1997), ISBN 0-89791-907-6, doi:10.1145/258915.258924, URL
http://doi.acm.org/10.1145/258915.258924.



164 New Techniques for Adaptive Program Optimization

[6] Apiwattanapong, T., Harrold, M. J., Selective Path Profiling, in
Proceedings of the 2002 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, PASTE ’02,
35–42, ACM, New York, NY, USA (2002), ISBN 1-58113-479-7,
doi:10.1145/586094.586104, URL http://doi.acm.org/10.1145/
586094.586104.

[7] Arnold, M., Fink, S. J., Grove, D., Hind, M., Sweeney, P. F., A
Survey of Adaptive Optimization in Virtual Machines, Proceedings
of the IEEE, 93 (2005), 449–466, doi:10.1109/JPROC.2004.840305,
URL http://dx.doi.org/10.1109/JPROC.2004.840305.

[8] Arnold, M., Ryder, B. G., A Framework for Reducing the Cost of
Instrumented Code, in Proceedings of the ACM SIGPLAN 2001 Confer-
ence on Programming Language Design and Implementation, PLDI ’01,
168–179, ACM, New York, NY, USA (2001), ISBN 1-58113-414-2,
doi:10.1145/378795.378832, URL http://doi.acm.org/10.1145/
378795.378832.

[9] Arnold, M., Sweeney, P. F., Approximating the Calling Context Tree
Via Sampling, Technical Report RC 21789, IBM Research (2000).

[10] Ausiello, G., Demetrescu, C., Finocchi, I., Firmani, D., k-Calling
Context Profiling, in Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’12, 867–878, ACM, New York, NY, USA (2012), ISBN
978-1-4503-1561-6, doi:10.1145/2384616.2384679, URL http://
doi.acm.org/10.1145/2384616.2384679.

[11] Aycock, J., A Brief History of Just-In-Time, ACM Computing Surveys,
35 (2003), 97–113, doi:10.1145/857076.857077, URL http://doi.
acm.org/10.1145/857076.857077.

[12] Bacon, D. F., Sweeney, P. F., Fast Static Analysis of C++ Virtual Func-
tion Calls, in Proceedings of the 11th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’96, 324–341, ACM, New York, NY, USA (1996), ISBN
0-89791-788-X, doi:10.1145/236337.236371, URL http://doi.acm.
org/10.1145/236337.236371.

[13] Bala, V., Duesterwald, E., Banerjia, S., Dynamo: A Transparent
Dynamic Optimization System, in Proceedings of the ACM SIGPLAN



Bibliography 165

2000 Conference on Programming Language Design and Implemen-
tation, PLDI ’00, 1–12, ACM, New York, NY, USA (2000), ISBN
1-58113-199-2, doi:10.1145/349299.349303, URL http://doi.acm.
org/10.1145/349299.349303.

[14] Ball, T., Larus, J. R., Optimally Profiling and Tracing Programs,
ACM Transactions on Programming Languages and Systems, 16
(1994), 1319–1360, doi:10.1145/183432.183527, URL http://doi.
acm.org/10.1145/183432.183527.

[15] Ball, T., Larus, J. R., Efficient Path Profiling, in Proceedings of the 29th
Annual ACM/IEEE International Symposium on Microarchitecture,
MICRO 29, 46–57, IEEE Computer Society, Washington, DC, USA
(1996), ISBN 0-8186-7641-8, doi:10.1109/micro.1996.566449, URL
http://dl.acm.org/citation.cfm?id=243846.243857.

[16] Barr, E. T., Marron, M., TARDIS: Affordable Time-travel Debugging
in Managed Runtimes, in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA ’14, 67–82, ACM, New York, NY, USA (2014),
ISBN 978-1-4503-2585-1, doi:10.1145/2660193.2660209, URL http:
//doi.acm.org/10.1145/2660193.2660209.

[17] Bebenita, M., Brandner, F., Fahndrich, M., Logozzo, F., Schulte,
W., Tillmann, N., Venter, H., SPUR: A Trace-based JIT Compiler
for CIL, in Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA
’10, 708–725, ACM, New York, NY, USA (2010), ISBN 978-1-4503-
0203-6, doi:10.1145/1869459.1869517, URL http://doi.acm.org/
10.1145/1869459.1869517.

[18] Bell, J. R., Threaded Code, Communications of the ACM, 16 (1973),
370–372, doi:10.1145/362248.362270, URL http://doi.acm.org/
10.1145/362248.362270.

[19] Bernat, A. R., Miller, B. P., Incremental Call-Path Profiling, Con-
currency and Computation: Practice and Experience, 19 (2007),
1533–1547, doi:10.1002/cpe.v19:11, URL http://dx.doi.org/10.
1002/cpe.v19:11.

[20] Bhandari, A., Nandivada, V. K., Loop Tiling in the Presence of
Exceptions, in 29th European Conference on Object-Oriented Pro-
gramming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic,



166 New Techniques for Adaptive Program Optimization

124–148 (2015), doi:10.4230/LIPIcs.ECOOP.2015.124, URL http:
//dx.doi.org/10.4230/LIPIcs.ECOOP.2015.124.

[21] Blackburn, S. M., et al., The DaCapo Benchmarks: Java Benchmark-
ing Development and Analysis, in Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications, OOPSLA ’06, 169–190, ACM, New
York, NY, USA (2006), ISBN 1-59593-348-4, doi:10.1145/1167473.
1167488, URL http://doi.acm.org/10.1145/1167473.1167488.

[22] Bodík, R., Gupta, R., Sarkar, V., ABCD: Eliminating Array Bounds
Checks on Demand, in Proceedings of the ACM SIGPLAN 2000 Confer-
ence on Programming Language Design and Implementation, PLDI ’00,
321–333, ACM, New York, NY, USA (2000), ISBN 1-58113-199-2,
doi:10.1145/349299.349342, URL http://doi.acm.org/10.1145/
349299.349342.

[23] Bodík, R., Gupta, R., Soffa, M. L., Interprocedural Conditional
Branch Elimination, in Proceedings of the ACM SIGPLAN 1997 Confer-
ence on Programming language design and implementation, PLDI ’97,
146–158, ACM, New York, NY, USA (1997), ISBN 0-89791-907-6,
doi:10.1145/258915.258929, URL http://doi.acm.org/10.1145/
258915.258929.

[24] Bodík, R., Gupta, R., Soffa, M. L., Complete Removal of Redun-
dant Expressions, in Proceedings of the ACM SIGPLAN 1998 Con-
ference on Programming Language Design and Implementation, PLDI
’98, 1–14, ACM, New York, NY, USA (1998), ISBN 0-89791-987-4,
doi:10.1145/277650.277653, URL http://doi.acm.org/10.1145/
277650.277653.

[25] Bodík, R., Gupta, R., Soffa, M. L., Load-Reuse Analysis: Design
and Evaluation, in Proceedings of the ACM SIGPLAN 1999 Confer-
ence on Programming language design and implementation, PLDI ’99,
64–76, ACM, New York, NY, USA (1999), ISBN 1-58113-094-5,
doi:10.1145/301618.301643, URL http://doi.acm.org/10.1145/
301618.301643.

[26] Bodík, R., Gupta, R., Soffa, M. L., Complete Removal of Re-
dundant Expressions, SIGPLAN Notices, 39 (2004), 596–611,
doi:10.1145/989393.989453, URL http://doi.acm.org/10.1145/
989393.989453.



Bibliography 167

[27] Bond, M. D., Baker, G. Z., Guyer, S. Z., Breadcrumbs: Efficient
Context Sensitivity for Dynamic Bug Detection Analyses, in Proceed-
ings of the 2010 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’10, 13–24, ACM, New York,
NY, USA (2010), ISBN 978-1-4503-0019-3, doi:10.1145/1806596.
1806599, URL http://doi.acm.org/10.1145/1806596.1806599.

[28] Bond, M. D., McKinley, K. S., Continuous Path and Edge Profiling,
in Proceedings of the 38th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO 38, 130–140, IEEE Computer
Society, Washington, DC, USA (2005), ISBN 0-7695-2440-0, doi:10.
1109/MICRO.2005.16, URL http://dx.doi.org/10.1109/MICRO.
2005.16.

[29] Bond, M. D., McKinley, K. S., Practical Path Profiling for Dynamic
Optimizers, in Proceedings of the International Symposium on Code Gen-
eration and Optimization, CGO ’05, 205–216, IEEE Computer Society,
Washington, DC, USA (2005), ISBN 0-7695-2298-X, doi:10.1109/
CGO.2005.28, URL http://dx.doi.org/10.1109/CGO.2005.28.

[30] Bond, M. D., McKinley, K. S., Probabilistic Calling Context, in Pro-
ceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications, OOPSLA ’07, 97–
112, ACM, New York, NY, USA (2007), ISBN 978-1-59593-786-
5, doi:10.1145/1297027.1297035, URL http://doi.acm.org/10.
1145/1297027.1297035.

[31] Bull, J. M., Smith, L. A., Westhead, M. D., Henty, D. S., Davey,
R. A., A Methodology for Benchmarking Java Grande Applications,
in Proceedings of the ACM 1999 Conference on Java Grande, JAVA
’99, 81–88, ACM, New York, NY, USA (1999), ISBN 1-58113-161-5,
doi:10.1145/304065.304103, URL http://doi.acm.org/10.1145/
304065.304103.

[32] Chambers, C., The Design and Implementation of the SELF
Compiler, an Optimizing Compiler for Object-Oriented Program-
ming Languages, Ph.D. thesis, Stanford University (1992),
uRL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.30.1652. Accessed: 2016-06-18.

[33] Chambers, C., Ungar, D., Making Pure Object-oriented Lan-
guages Practical, in Conference Proceedings on Object-oriented Pro-



168 New Techniques for Adaptive Program Optimization

gramming Systems, Languages, and Applications, OOPSLA ’91,
1–15, ACM, New York, NY, USA (1991), ISBN 0-201-55417-8,
doi:10.1145/117954.117955, URL http://doi.acm.org/10.1145/
117954.117955.

[34] Chang, P. P., Mahlke, S. A., Chen, W. Y., Hwu, W.-m. W., Profile-
guided Automatic Inline Expansion for C Programs, Software: Practice
and Experience, 22 (1992), 349–369, doi:10.1002/spe.4380220502,
URL http://dx.doi.org/10.1002/spe.4380220502.

[35] Charikar, M., Chen, K., Farach-Colton, M., Finding Frequent Items
in Data Streams, in Proceedings of the 29th International Colloquium
on Automata, Languages and Programming, ICALP ’02, 693–703,
Springer-Verlag, London, UK, UK (2002), ISBN 3-540-43864-5, doi:
10.1007/3-540-45465-9_59, URL http://dl.acm.org/citation.
cfm?id=646255.684566.

[36] Chevalier-Boisvert, M., Feeley, M., Simple and Effective Type
Check Removal through Lazy Basic Block Versioning, in 29th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2015,
July 5-10, 2015, Prague, Czech Republic, 101–123 (2015), doi:
10.4230/LIPIcs.ECOOP.2015.101, URL http://dx.doi.org/10.
4230/LIPIcs.ECOOP.2015.101.

[37] Chevalier-Boisvert, M., Feeley, M., Interprocedural Type Specializa-
tion of JavaScript Programs Without Type Analysis, in Proceedings of the
30th European Conference on Object-Oriented Programming, ECOOP
’16 (2016), to appear.

[38] Chevalier-Boisvert, M., Hendren, L., Verbrugge, C., Optimizing
MATLAB Through Just-In-Time Specialization, in Proceedings of the
19th Joint European Conference on Theory and Practice of Software, Inter-
national Conference on Compiler Construction, CC’10/ETAPS’10, 46–
65, Springer-Verlag, Berlin, Heidelberg (2010), ISBN 3-642-11969-7,
978-3-642-11969-9, doi:10.1007/978-3-642-11970-5_4, URL http:
//dx.doi.org/10.1007/978-3-642-11970-5_4.

[39] Choi, J.-D., Gupta, M., Serrano, M., Sreedhar, V. C., Midkiff, S.,
Escape Analysis for Java, in Proceedings of the 14th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’99, 1–19, ACM, New York, NY, USA (1999),



Bibliography 169

ISBN 1-58113-238-7, doi:10.1145/320384.320386, URL http://doi.
acm.org/10.1145/320384.320386.

[40] Clarke, E. M., Emerson, E. A., Sistla, A. P., Automatic Verifica-
tion of Finite-state Concurrent Systems Using Temporal Logic Spec-
ifications, ACM Transactions on Programming Languages and
Systems, 8 (1986), 244–263, doi:10.1145/5397.5399, URL http:
//doi.acm.org/10.1145/5397.5399.

[41] Cooper, K. D., Hall, M. W., Kennedy, K., Procedure Cloning, in
Computer Languages, 1992., Proceedings of the 1992 International
Conference on, 96–105 (1992), doi:10.1109/ICCL.1992.185472, URL
http://dx.doi.org/10.1109/ICCL.1992.185472.

[42] Cooper, K. D., Simpson, L. T., Vick, C. A., Operator Strength Re-
duction, ACM Transactions on Programming Languages and Sys-
tems, 23 (2001), 603–625, doi:10.1145/504709.504710, URL http:
//doi.acm.org/10.1145/504709.504710.

[43] Copperman, M., McDowell, C. E., A Further Note on Hen-
nessy’s “Symbolic Debugging of Optimized Code”, ACM Transac-
tions Programming Languages and Systems, 15 (1993), 357–365,
doi:10.1145/169701.214526, URL http://doi.acm.org/10.1145/
169701.214526.

[44] Cormode, G., Hadjieleftheriou, M., Finding frequent items in data
streams, Proceedings of the VLDB Endowment, 1 (2008), 1530–
1541, doi:10.14778/1454159.1454225, URL http://dx.doi.org/
10.14778/1454159.1454225.

[45] Corte, H., Simulated Annealing Optimization, uRL http:
//www.mathworks.com/matlabcentral/fileexchange/
33109-simulated-annealing-optimization. Accessed: 2016-
03-26.

[46] Coutant, D. S., Meloy, S., Ruscetta, M., DOC: A Practical Approach
to Source-level Debugging of Globally Optimized Code, in Proceedings
of the ACM SIGPLAN 1988 Conference on Programming Language
Design and Implementation, PLDI ’88, 125–134, ACM, New York, NY,
USA (1988), ISBN 0-89791-269-1, doi:10.1145/53990.54003, URL
http://doi.acm.org/10.1145/53990.54003.



170 New Techniques for Adaptive Program Optimization

[47] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., Zadeck,
F. K., Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph, ACM Transactions on Programming
Languages and Systems, 13 (1991), 451–490, doi:10.1145/115372.
115320, URL http://doi.acm.org/10.1145/115372.115320.

[48] Dean, J., DeFouw, G., Grove, D., Litvinov, V., Chambers, C., Vor-
tex: An Optimizing Compiler for Object-oriented Languages, in Pro-
ceedings of the 11th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’96,
83–100, ACM, New York, NY, USA (1996), ISBN 0-89791-788-X,
doi:10.1145/236337.236344, URL http://doi.acm.org/10.1145/
236337.236344.

[49] D’Elia, D. C., Demetrescu, C., Ball-Larus Path Profiling Across Mul-
tiple Loop Iterations, in Proceedings of the 2013 ACM SIGPLAN In-
ternational Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA ’13, 373–390, ACM, New York,
NY, USA (2013), ISBN 978-1-4503-2374-1, doi:10.1145/2509136.
2509521, URL http://doi.acm.org/10.1145/2509136.2509521.

[50] D’Elia, D. C., Demetrescu, C., Flexible On-stack Replacement in
LLVM, in Proceedings of the 2016 International Symposium on Code
Generation and Optimization, CGO 2016, 250–260, ACM, New York,
NY, USA (2016), ISBN 978-1-4503-3778-6, doi:10.1145/2854038.
2854061, URL http://doi.acm.org/10.1145/2854038.2854061.

[51] D’Elia, D. C., Demetrescu, C., On-stack Replacement, Distilled,
in Proceedings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’18, 166–180,
ACM, New York, NY, USA (2018), ISBN 978-1-4503-5698-5, doi:
10.1145/3192366.3192396, URL http://doi.acm.org/10.1145/
3192366.3192396.

[52] D’Elia, D. C., Demetrescu, C., Finocchi, I., Mining Hot Calling
Contexts in Small Space, in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11, 516–527, ACM, New York, NY, USA (2011), ISBN 978-1-
4503-0663-8, doi:10.1145/1993498.1993559, URL http://doi.acm.
org/10.1145/1993498.1993559.



Bibliography 171

[53] D’Elia, D. C., Demetrescu, C., Finocchi, I., Mining Hot Calling
Contexts in Small Space, Software: Practice and Experience, doi:
10.1002/spe.2348, URL http://dx.doi.org/10.1002/spe.2348.

[54] Demetrescu, C., Finocchi, I., Algorithms for Data Streams, in Hand-
book of Applied Algorithms: Solving Scientific, Engineering, and
Practical Problems, volume 241, John Wiley & Sons (2007), doi:
10.1002/9780470175668.ch8, URL http://dx.doi.org/10.1002/
9780470175668.ch8.

[55] Deutsch, L. P., Schiffman, A. M., Efficient Implementation of
the Smalltalk-80 System, in Proceedings of the 11th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL
’84, 297–302, ACM, New York, NY, USA (1984), ISBN 0-89791-125-3,
doi:10.1145/800017.800542, URL http://doi.acm.org/10.1145/
800017.800542.

[56] Duboscq, G., Würthinger, T., Mössenböck, H., Speculation With-
out Regret: Reducing Deoptimization Meta-data in the Graal Com-
piler, in Proceedings of the 2014 International Conference on Princi-
ples and Practices of Programming on the Java Platform: Virtual Ma-
chines, Languages, and Tools, PPPJ ’14, 187–193, ACM, New York,
NY, USA (2014), ISBN 978-1-4503-2926-2, doi:10.1145/2647508.
2647521, URL http://doi.acm.org/10.1145/2647508.2647521.

[57] Duboscq, G., Würthinger, T., Stadler, L., Wimmer, C., Simon,
D., Mössenböck, H., An Intermediate Representation for Speculative
Optimizations in a Dynamic Compiler, in Proceedings of the 7th ACM
Workshop on Virtual Machines and Intermediate Languages, VMIL ’13,
1–10, ACM, New York, NY, USA (2013), ISBN 978-1-4503-2601-
8, doi:10.1145/2542142.2542143, URL http://doi.acm.org/10.
1145/2542142.2542143.

[58] Evans, T. G., Darley, D. L., On-line Debugging Techniques: A Sur-
vey, in Proceedings of the November 7-10, 1966, Fall Joint Computer
Conference, AFIPS ’66 (Fall), 37–50, ACM, New York, NY, USA
(1966), doi:10.1145/1464291.1464295, URL http://doi.acm.org/
10.1145/1464291.1464295.

[59] Feng, H. H., Kolesnikov, O. M., Fogla, P., Lee, W., Gong, W.,
Anomaly Detection Using Call Stack Information, in Proceedings of



172 New Techniques for Adaptive Program Optimization

the 2003 IEEE Symposium on Security and Privacy, SP ’03, 62–78,
IEEE Computer Society, Washington, DC, USA (2003), ISBN 0-
7695-1940-7, doi:10.1109/SECPRI.2003.1199328, URL http://dl.
acm.org/citation.cfm?id=829515.830554.

[60] Fink, S. J., Qian, F., Design, Implementation and Evaluation of Adaptive
Recompilation with On-Stack Replacement, in Proceedings of the Inter-
national Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, CGO ’03, 241–252, IEEE Com-
puter Society (2003), doi:10.1109/cgo.2003.1191549, URL http:
//dx.doi.org/10.1109/cgo.2003.1191549.

[61] Fisher, J. A., Trace Scheduling: A Technique for Global Microcode
Compaction, IEEE Transactions on Computers, 30 (1981), 478–
490, doi:10.1109/TC.1981.1675827, URL http://dx.doi.org/10.
1109/TC.1981.1675827.

[62] Fredkin, E., Trie Memory, Communications of the ACM, 3 (1960),
490–499, doi:10.1145/367390.367400, URL http://doi.acm.org/
10.1145/367390.367400.

[63] Froyd, N., Mellor-Crummey, J., Fowler, R., Low-overhead Call Path
Profiling of Unmodified, Optimized Code, in Proceedings of the 19th
Annual International Conference on Supercomputing, ICS ’05, 81–90,
ACM, New York, NY, USA (2005), ISBN 1-59593-167-8, doi:10.1145/
1088149.1088161, URL http://doi.acm.org/10.1145/1088149.
1088161.

[64] Fulgham, B., Gouy, I., The Computer Language Benchmarks Game,
uRL http://benchmarksgame.alioth.debian.org/. Accessed:
2016-03-25.

[65] Futamura, Y., Partial Evaluation of Computation Pro-
cess&Mdash;AnApproach to a Compiler-Compiler, Higher
Order and Symbolic Computation, 12 (1999), 381–391, doi:
10.1023/A:1010095604496, URL http://dx.doi.org/10.1023/A:
1010095604496.

[66] Gal, A., et al., Trace-based Just-in-Time Type Specialization for Dy-
namic Languages, in Proceedings of the 30th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI



Bibliography 173

’09, 465–478, ACM, New York, NY, USA (2009), ISBN 978-1-60558-
392-1, doi:10.1145/1542476.1542528, URL http://doi.acm.org/
10.1145/1542476.1542528.

[67] Graham, S. L., Kessler, P. B., Mckusick, M. K., Gprof: A Call Graph
Execution Profiler, in Proceedings of the 1982 SIGPLAN Symposium
on Compiler Construction, SIGPLAN ’82, 120–126, ACM, New York,
NY, USA (1982), ISBN 0-89791-074-5, doi:10.1145/800230.806987,
URL http://doi.acm.org/10.1145/800230.806987.

[68] Grove, D., Personal communication (2016).

[69] Guo, S.-y., Palsberg, J., The Essence of Compiling with Traces, in
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11, 563–574, ACM,
New York, NY, USA (2011), ISBN 978-1-4503-0490-0, doi:10.1145/
1926385.1926450, URL http://doi.acm.org/10.1145/1926385.
1926450.

[70] Hall, R. J., Call Path Refinement Profiles, IEEE Transactions on
Software Engineering, 21 (1995), 481–496, doi:10.1109/32.391375,
URL http://dx.doi.org/10.1109/32.391375.

[71] Hall, R. J., Goldberg, A. J., Call Path Profiling of Monotonic Pro-
gram Resources in UNIX, in Proceedings of the USENIX Summer
1993 Technical Conference on Summer Technical Conference - Volume
1, USENIX-STC ’93, 1:1–1:19, USENIX Association, Berkeley, CA,
USA (1993), ISBN 987-654-3333-22-1, URL http://dl.acm.org/
citation.cfm?id=1361453.1361454.

[72] Hauswirth, M., Sweeney, P. F., Diwan, A., Hind, M., Vertical
Profiling: Understanding the Behavior of Object-priented Applica-
tions, in Proceedings of the 19th Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA ’04, 251–269, ACM, New York, NY, USA
(2004), ISBN 1-58113-831-8, doi:10.1145/1028976.1028998, URL
http://doi.acm.org/10.1145/1028976.1028998.

[73] Hennessy, J., Symbolic Debugging of Optimized Code, ACM Transac-
tions on Programming Languages and Systems, 4 (1982), 323–344,
doi:10.1145/357172.357173, URL http://doi.acm.org/10.1145/
357172.357173.



174 New Techniques for Adaptive Program Optimization

[74] Henning, J. L., SPEC CPU2006 Benchmark Descriptions, SIGARCH
Computer Architecture News, 34 (2006), 1–17, doi:10.1145/
1186736.1186737, URL http://doi.acm.org/10.1145/1186736.
1186737.

[75] Hirzel, M., Chilimbi, T., Bursty Tracing: A Framework for
Low-Overhead Temporal Profiling, in In 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization, 117–126 (2001),
uRL http://research.microsoft.com/en-us/um/people/
trishulc/papers/bursts_fddo.pdf. Accessed: 2016-06-13.

[76] Hölzle, U., Chambers, C., Ungar, D., Debugging Optimized Code
with Dynamic Deoptimization, in Proceedings of the ACM SIGPLAN
1992 Conference on Programming Language Design and Implemen-
tation, PLDI ’92, 32–43, ACM, New York, NY, USA (1992), ISBN
0-89791-475-9, doi:10.1145/143095.143114, URL http://doi.acm.
org/10.1145/143095.143114.

[77] Hölzle, U., Ungar, D., Reconciling Responsiveness with Per-
formance in Pure Object-oriented Languages, ACM Transactions
on Programming Languages and Systems, 18 (1996), 355–400,
doi:10.1145/233561.233562, URL http://doi.acm.org/10.1145/
233561.233562.

[78] Jaramillo, C., Gupta, R., Soffa, M. L., FULLDOC: A Full Re-
porting Debugger for Optimized Code, in Proceedings of the 7th
International Symposium on Static Analysis, SAS ’00, 240–259,
Springer, Berlin, Heidelberg (2000), ISBN 978-3-540-45099-3,
doi:10.1007/978-3-540-45099-3_13, URL http://dx.doi.org/10.
1007/978-3-540-45099-3_13.

[79] Jikes RVM Research Archive, PEP: Continuous Path and Edge Pro-
filing, uRL http://jikesrvm.org/Research+Archive. Accessed:
2016-03-27.

[80] Joshi, R., Bond, M. D., Zilles, C., Targeted Path Profiling: Lower
Overhead Path Profiling for Staged Dynamic Optimization Systems, in
Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization, CGO ’04,
239–250, IEEE Computer Society, Washington, DC, USA (2004),
ISBN 0-7695-2102-9, doi:10.1109/CGO.2004.1281678, URL http:
//dl.acm.org/citation.cfm?id=977395.977660.



Bibliography 175

[81] Kalibera, T., Maj, P., Morandat, F., Vitek, J., A Fast Abstract
Syntax Tree Interpreter for R, in Proceedings of the 10th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution En-
vironments, VEE ’14, 89–102, ACM, New York, NY, USA (2014),
ISBN 978-1-4503-2764-0, doi:10.1145/2576195.2576205, URL http:
//doi.acm.org/10.1145/2576195.2576205.

[82] Kalvala, S., Warburton, R., Lacey, D., Program Transformations
Using Temporal Logic Side Conditions, ACM Transactions on Pro-
gramming Languages and Systems, 31 (2009), 14:1–14:48, doi:
10.1145/1516507.1516509, URL http://doi.acm.org/10.1145/
1516507.1516509.

[83] Korel, B., Laski, J., Dynamic Program Slicing, Information Process-
ing Letters, 29 (1988), 155–163, doi:10.1016/0020-0190(88)90054-3,
URL http://dx.doi.org/10.1016/0020-0190(88)90054-3.

[84] Kundu, S., Tatlock, Z., Lerner, S., Proving Optimizations Correct
Using Parameterized Program Equivalence, in Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’09, 327–337, ACM, New York, NY, USA (2009),
ISBN 978-1-60558-392-1, doi:10.1145/1542476.1542513, URL http:
//doi.acm.org/10.1145/1542476.1542513.

[85] Lacey, D., Jones, N. D., Van Wyk, E., Frederiksen, C. C., Proving
Correctness of Compiler Optimizations by Temporal Logic, in Proceed-
ings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’02, 283–294, ACM, New York, NY,
USA (2002), ISBN 1-58113-450-9, doi:10.1145/503272.503299, URL
http://doi.acm.org/10.1145/503272.503299.

[86] Lacey, D., Jones, N. D., Van Wyk, E., Frederiksen, C. C., Com-
piler Optimization Correctness by Temporal Logic, Higher-Order
and Symbolic Computation, 17 (2004), 173–206, doi:10.1023/B:
LISP.0000029444.99264.c0, URL http://dx.doi.org/10.1023/B:
LISP.0000029444.99264.c0.

[87] Lai, Z., Cheung, S. C., Chan, W. K., Inter-context Control-flow
and Data-flow Test Adequacy Criteria for nesC Applications, in Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, SIGSOFT ’08/FSE-16, 94–104,



176 New Techniques for Adaptive Program Optimization

ACM, New York, NY, USA (2008), ISBN 978-1-59593-995-1, doi:
10.1145/1453101.1453115, URL http://doi.acm.org/10.1145/
1453101.1453115.

[88] Lameed, N. A., Hendren, L. J., A Modular Approach to On-Stack Re-
placement in LLVM, in Proceedings of the 9th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’13,
143–154, ACM, New York, NY, USA (2013), ISBN 978-1-4503-1266-
0, doi:10.1145/2451512.2451541, URL http://doi.acm.org/10.
1145/2451512.2451541.

[89] Lameed, N. A., Hendren, L. J., Optimizing MATLAB Feval with
Dynamic Techniques, in Proceedings of the 9th Symposium on Dynamic
Languages, DLS ’13, 85–96, ACM, New York, NY, USA (2013), ISBN
978-1-4503-2433-5, doi:10.1145/2508168.2508174, URL http://
doi.acm.org/10.1145/2508168.2508174.

[90] Lattner, C., Adve, V., LLVM: A compilation framework for lifelong
program analysis & transformation, in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO ’04, 75–86, IEEE Computer Society,
Washington, DC, USA (2004), ISBN 0-7695-2102-9, doi:10.1109/
cgo.2004.1281665, URL http://dl.acm.org/citation.cfm?id=
977395.977673.

[91] Lerner, S., Millstein, T., Chambers, C., Automatically Proving the
Correctness of Compiler Optimizations, in Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and
Implementation, PLDI ’03, 220–231, ACM, New York, NY, USA
(2003), ISBN 1-58113-662-5, doi:10.1145/781131.781156, URL http:
//doi.acm.org/10.1145/781131.781156.

[92] Lerner, S., Millstein, T., Rice, E., Chambers, C., Automated Sound-
ness Proofs for Dataflow Analyses and Transformations via Local Rules,
in Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’05, 364–377, ACM, New
York, NY, USA (2005), ISBN 1-58113-830-X, doi:10.1145/1040305.
1040335, URL http://doi.acm.org/10.1145/1040305.1040335.

[93] Li, B., Wang, L., Leung, H., Liu, F., Profiling All Paths: A New Profil-
ing Technique for Both Cyclic and Acyclic Paths, Journal of Systems



Bibliography 177

and Software, 85 (2012), 1558–1576, doi:10.1016/j.jss.2012.01.046,
URL http://dx.doi.org/10.1016/j.jss.2012.01.046.

[94] Liblit, B., Aiken, A., Zheng, A. X., Jordan, M. I., Bug Isolation via
Remote Program Sampling, in Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation,
PLDI ’03, 141–154, ACM, New York, NY, USA (2003), ISBN 1-
58113-662-5, doi:10.1145/781131.781148, URL http://doi.acm.
org/10.1145/781131.781148.

[95] Lin, Z., Jiang, X., Xu, D., Zhang, X., Automatic Protocol Format
Reverse Engineering Through Context-Aware Monitored Execution,
in Proceedings of the 15th Annual Network and Distributed System
Security Symposium, NDSS ’08, San Diego, CA (2008), uRL
http://www.isoc.org/isoc/conferences/ndss/08/papers/
14_automatic_protocol_format.pdf. Accessed: 2016-06-13.

[96] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G.,
Wallace, S., Reddi, V. J., Hazelwood, K., Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation, in Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, 190–200, ACM, New York, NY,
USA (2005), ISBN 1-59593-056-6, doi:10.1145/1065010.1065034,
URL http://doi.acm.org/10.1145/1065010.1065034.

[97] Makris, K., Bazzi, R. A., Immediate Multi-threaded Dynamic
Software Updates Using Stack Reconstruction, in Proceedings
of the 2009 Conference on USENIX Annual Technical Con-
ference, USENIX’09, 31–44, USENIX Association, Berkeley,
CA, USA (2009), uRL http://static.usenix.org/legacy/
events/usenix09/tech/full_papers/makris/makris.pdf. Ac-
cessed: 2016-06-13.

[98] Manerikar, N., Palpanas, T., Frequent Items in Streaming Data:
An Experimental Evaluation of the State-of-the-art, Data & Knowl-
edge Engineering, 68 (2009), 415–430, doi:10.1016/j.datak.2008.11.
001, URL http://www.sciencedirect.com/science/article/
pii/S0169023X08001663.

[99] Manku, G. S., Motwani, R., Approximate Frequency Counts over Data
Streams, in Proceedings of the 28th International Conference on Very



178 New Techniques for Adaptive Program Optimization

Large Data Bases, VLDB ’02, 346–357, VLDB Endowment (2002), doi:
10.1016/b978-155860869-6/50038-x, URL http://dl.acm.org/
citation.cfm?id=1287369.1287400.

[100] Marr, S., Ducasse, S., Tracing vs. Partial Evaluation: Comparing Meta-
compilation Approaches for Self-Optimizing Interpreters, in Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2015, 821–839, ACM, New York, NY, USA (2015), ISBN 978-1-
4503-3689-5, doi:10.1145/2814270.2814275, URL http://doi.acm.
org/10.1145/2814270.2814275.

[101] Melski, D., Reps, T. W., Interprocedural Path Profiling, in Proceedings
of the 8th International Conference on Compiler Construction, Held As
Part of the European Joint Conferences on the Theory and Practice of
Software, ETAPS’99, CC ’99, 47–62, Springer-Verlag, London, UK,
UK (1999), ISBN 3-540-65717-7, doi:10.1007/978-3-540-49051-7_4,
URL http://dx.doi.org/10.1007/978-3-540-49051-7_4.

[102] Metwally, A., Agrawal, D., Abbadi, A. E., An Integrated Efficient
Solution for Computing Frequent and Top-k Elements in Data Streams,
ACM Trans. Database Syst., 31 (2006), 1095–1133, doi:10.1145/
1166074.1166084, URL http://doi.acm.org/10.1145/1166074.
1166084.

[103] Muthukrishnan, S., Data Streams: Algorithms and Applications,
Foundations and Trends in Theoretical Computer Science, 1 (2005),
117–236, doi:10.1561/0400000002, URL http://dx.doi.org/10.
1561/0400000002.

[104] Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M., Practical Dynamic
Software Updating for C, in Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’06, 72–83, ACM, New York, NY, USA (2006), ISBN 1-59593-
320-4, doi:10.1145/1133981.1133991, URL http://doi.acm.org/
10.1145/1133981.1133991.

[105] Necula, G. C., Translation Validation for an Optimizing Compiler, in
Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, PLDI ’00, 83–94, ACM, New
York, NY, USA (2000), ISBN 1-58113-199-2, doi:10.1145/349299.
349314, URL http://doi.acm.org/10.1145/349299.349314.



Bibliography 179

[106] Nethercote, N., Seward, J., Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation, in Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’07, 89–100, ACM, New York, NY, USA (2007),
ISBN 978-1-59593-633-2, doi:10.1145/1250734.1250746, URL http:
//doi.acm.org/10.1145/1250734.1250746.

[107] Nistor, A., Jiang, T., Tan, L., Discovering, Reporting, and Fix-
ing Performance Bugs, in Proceedings of the 10th Working Confer-
ence on Mining Software Repositories, MSR ’13, 237–246, IEEE
Press, Piscataway, NJ, USA (2013), ISBN 978-1-4673-2936-1, doi:
10.1109/MSR.2013.6624035, URL http://dl.acm.org/citation.
cfm?id=2487085.2487134.

[108] Paleczny, M., Vick, C., Click, C., The Java HotSpot™ Server Compiler,
in Proceedings of the 2001 Symposium on JavaTM Virtual Machine
Research and Technology Symposium - Volume 1, JVM’01, USENIX
Association, Berkeley, CA, USA (2001), URL http://dl.acm.org/
citation.cfm?id=1267847.1267848.

[109] Pall, M., LuaJIT 2.0 intellectual property disclosure and research oppor-
tunities, uRL http://lua-users.org/lists/lua-l/2009-11/
msg00089.html. Accessed: 2016-01-13.

[110] Pavlopoulou, C., Young, M., Residual Test Coverage Monitoring, in
Proceedings of the 21st International Conference on Software Engineer-
ing, ICSE ’99, 277–284, ACM, New York, NY, USA (1999), ISBN
1-58113-074-0, doi:10.1145/302405.302637, URL http://doi.acm.
org/10.1145/302405.302637.

[111] perf: Linux Profiling with Performance Counters, uRL https:
//perf.wiki.kernel.org/. Accessed: 2016-02-15.

[112] Phoronix Test Suite (PTS), uRL http://www.
phoronix-test-suite.com/. Accessed: 2016-03-27.

[113] Pizlo, F., Introducing the WebKit FTL JIT, uRL https://www.
webkit.org/blog/3362/. Accessed: 2016-01-09.

[114] Pnueli, A., Siegel, M., Singerman, E., Translation Validation, in Pro-
ceedings of the 4th International Conference on Tools and Algorithms for



180 New Techniques for Adaptive Program Optimization

Construction and Analysis of Systems, TACAS ’98, 151–166, Springer-
Verlag, London, UK, UK (1998), ISBN 3-540-64356-7, doi:10.1007/
bfb0054170, URL http://dx.doi.org/10.1007/bfb0054170.

[115] Ponder, C., Fateman, R. J., Inaccuracies in Program Profilers,
Software: Practice and Experience, 18 (1988), 459–467, doi:
10.1002/spe.4380180506, URL http://dx.doi.org/10.1002/spe.
4380180506.

[116] Radpour, S., Hendren, L., Schäfer, M., Refactoring MATLAB, in
Proceedings of the 22Nd International Conference on Compiler Construc-
tion, CC’13, 224–243, Springer-Verlag, Berlin, Heidelberg (2013),
ISBN 978-3-642-37050-2, doi:10.1007/978-3-642-37051-9_12, URL
http://dx.doi.org/10.1007/978-3-642-37051-9_12.

[117] Recktenwald, G., Numerical Methods with MATLAB: Implemen-
tations and Applications, Featured Titles for Numerical Analy-
sis Series, Prentice Hall (2000), ISBN 9780201308600, uRL http:
//web.cecs.pdx.edu/~gerry/nmm/. Accessed: 2016-06-18.

[118] Roy, S., Srikant, Y. N., Profiling k-Iteration Paths: A Generalization of
the Ball-Larus Profiling Algorithm, in Proceedings of the 7th Annual
IEEE/ACM International Symposium on Code Generation and Opti-
mization, CGO ’09, 70–80, IEEE Computer Society, Washington,
DC, USA (2009), ISBN 978-0-7695-3576-0, doi:10.1109/CGO.2009.
11, URL http://dx.doi.org/10.1109/CGO.2009.11.

[119] Santos, H. N., Alves, P., Costa, I., Quintao Pereira, F. M., Just-
in-Time Value Specialization, in Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
CGO ’13, 1–11, IEEE Computer Society, Washington, DC, USA
(2013), ISBN 978-1-4673-5524-7, doi:10.1109/CGO.2013.6495006,
URL http://dx.doi.org/10.1109/CGO.2013.6495006.

[120] Schneider, D., Bolz, C. F., The Efficient Handling of Guards in the
Design of RPython’s Tracing JIT, in Proceedings of the Sixth ACM
Workshop on Virtual Machines and Intermediate Languages, VMIL ’12,
3–12, ACM, New York, NY, USA (2012), ISBN 978-1-4503-1633-
0, doi:10.1145/2414740.2414743, URL http://doi.acm.org/10.
1145/2414740.2414743.



Bibliography 181

[121] Schneider, F. T., Payer, M., Gross, T. R., Online Optimizations Driven
by Hardware Performance Monitoring, in Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’07, 373–382, ACM, New York, NY, USA (2007),
ISBN 978-1-59593-633-2, doi:10.1145/1250734.1250777, URL http:
//doi.acm.org/10.1145/1250734.1250777.

[122] Serrano, M., Zhuang, X., Building Approximate Calling Context
from Partial Call Traces, in Proceedings of the 7th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO
’09, 221–230, IEEE Computer Society, Washington, DC, USA (2009),
ISBN 978-0-7695-3576-0, doi:10.1109/CGO.2009.12, URL http:
//dx.doi.org/10.1109/CGO.2009.12.

[123] Soman, S., Krintz, C., Efficient and General On-Stack Replacement
for Aggressive Program Specialization, in Proceedings of the 2006 In-
ternational Conference on Programming Languages and Compilers,
PLC’06, 925–932 (2006), uRL http://cs.ucsb.edu/~ckrintz/
papers/osr.pdf. Accessed: 2016-06-18.

[124] SPECjvm2008 Java Virtual Machine Benchmark, uRL https://
www.spec.org/jvm2008/. Accessed: 2016-03-27.

[125] Spivey, J. M., Fast, Accurate Call Graph Profiling, Software: Practice
and Experience, 34 (2004), 249–264, doi:10.1002/spe.562, URL
http://dx.doi.org/10.1002/spe.562.

[126] Standish, T. A., Data Structure Techniques, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1980),
ISBN 0201072564, URL http://dl.acm.org/citation.cfm?id=
539775.

[127] Suganuma, T., Yasue, T., Nakatani, T., A Region-based Compi-
lation Technique for Dynamic Compilers, ACM Transactions on
Programming Languages and Systems, 28 (2006), 134–174, doi:
10.1145/1111596.1111600, URL http://doi.acm.org/10.1145/
1111596.1111600.

[128] Sullivan, G. T., Bruening, D. L., Baron, I., Garnett, T., Amaras-
inghe, S., Dynamic Native Optimization of Interpreters, in Proceedings
of the 2003 Workshop on Interpreters, Virtual Machines and Emulators,



182 New Techniques for Adaptive Program Optimization

IVME ’03, 50–57, ACM, New York, NY, USA (2003), ISBN 1-58113-
655-2, doi:10.1145/858570.858576, URL http://doi.acm.org/10.
1145/858570.858576.

[129] Sumner, W. N., Zheng, Y., Weeratunge, D., Zhang, X., Precise
Calling Context Encoding, in Proceedings of the 32nd ACM/IEEE In-
ternational Conference on Software Engineering - Volume 1, ICSE ’10,
525–534, ACM, New York, NY, USA (2010), ISBN 978-1-60558-719-
6, doi:10.1145/1806799.1806875, URL http://doi.acm.org/10.
1145/1806799.1806875.

[130] Sumner, W. N., Zheng, Y., Weeratunge, D., Zhang, X., Precise
Calling Context Encoding, IEEE Transactions on Software Engi-
neering, 38 (2012), 1160–1177, doi:10.1109/TSE.2011.70, URL
http://dx.doi.org/10.1109/TSE.2011.70.

[131] Süsskraut, M., Knauth, T., Weigert, S., Schiffel, U., Meinhold,
M., Fetzer, C., Prospect: A Compiler Framework for Speculative Paral-
lelization, in Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’10, 131–140,
ACM, New York, NY, USA (2010), ISBN 978-1-60558-635-9, doi:
10.1145/1772954.1772974, URL http://doi.acm.org/10.1145/
1772954.1772974.

[132] Tallam, S., Zhang, X., Gupta, R., Extending Path Profiling Across
Loop Backedges and Procedure Boundaries, in Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’04, 251–264, IEEE
Computer Society, Washington, DC, USA (2004), ISBN 0-7695-
2102-9, doi:10.1109/cgo.2004.1281679, URL http://dl.acm.org/
citation.cfm?id=977395.977659.

[133] Tan, T., Li, Y., Zhang, Y., Xue, J., Program Tailoring: Slicing by
Sequential Criteria, in Proceedings of the 30th European Conference on
Object-Oriented Programming, ECOOP ’16 (2016), to appear.

[134] The McLab project, Sable McVM, uRL https://github.com/
Sable/mcvm. Accessed: 2016-01-13.

[135] Titzer, B. L., Personal communication (2016).

[136] Touati, S., Dinechin, B. D. d., Instruction Scheduling After Reg-
ister Allocation, 77–90, John Wiley & Sons, Inc. (2014), ISBN



Bibliography 183

9781118625446, doi:10.1002/9781118625446.ch5, URL http://dx.
doi.org/10.1002/9781118625446.ch5.

[137] Vaswani, K., Nori, A. V., Chilimbi, T. M., Preferential Path Profil-
ing: Compactly Numbering Interesting Paths, in Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’07, 351–362, ACM, New York, NY,
USA (2007), ISBN 1-59593-575-4, doi:10.1145/1190216.1190268,
URL http://doi.acm.org/10.1145/1190216.1190268.

[138] Villazon, A., Binder, W., Moret, P., Flexible Calling Context Reifi-
cation for Aspect-oriented Programming, in Proceedings of the 8th
ACM International Conference on Aspect-oriented Software Devel-
opment, AOSD ’09, 63–74, ACM, New York, NY, USA (2009),
ISBN 978-1-60558-442-3, doi:10.1145/1509239.1509249, URL http:
//doi.acm.org/10.1145/1509239.1509249.

[139] Vitek, J., Personal communication (2016).

[140] Weiser, M., Programmers Use Slices when Debugging, Communica-
tions of the ACM, 25 (1982), 446–452, doi:10.1145/358557.358577,
URL http://doi.acm.org/10.1145/358557.358577.

[141] Weiser, M., Program Slicing, IEEE Transactions on Software En-
gineering, SE-10 (1984), 352–357, doi:10.1109/TSE.1984.5010248,
URL http://dx.doi.org/10.1109/TSE.1984.5010248.

[142] Whaley, J., A Portable Sampling-based Profiler for Java Virtual Ma-
chines, in Proceedings of the ACM 2000 Conference on Java Grande,
JAVA ’00, 78–87, ACM, New York, NY, USA (2000), ISBN 1-58113-
288-3, doi:10.1145/337449.337483, URL http://doi.acm.org/10.
1145/337449.337483.

[143] Whaley, J., Partial Method Compilation Using Dynamic Profile In-
formation, in Proceedings of the 16th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’01, 166–179, ACM, New York, NY, USA (2001), ISBN
1-58113-335-9, doi:10.1145/504282.504295, URL http://doi.acm.
org/10.1145/504282.504295.

[144] Wu, L.-C., Mirani, R., Patil, H., Olsen, B., Hwu, W.-m. W., A New
Framework for Debugging Globally Optimized Code, in Proceedings



184 New Techniques for Adaptive Program Optimization

of the ACM SIGPLAN 1999 Conference on Programming Language
Design and Implementation, PLDI ’99, 181–191, ACM, New York,
NY, USA (1999), ISBN 1-58113-094-5, doi:10.1145/301618.301663,
URL http://doi.acm.org/10.1145/301618.301663.

[145] Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G.,
Humer, C., Richards, G., Simon, D., Wolczko, M., One VM to Rule
Them All, in Proceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming &
Software, Onward! 2013, 187–204, ACM, New York, NY, USA (2013),
ISBN 978-1-4503-2472-4, doi:10.1145/2509578.2509581, URL http:
//doi.acm.org/10.1145/2509578.2509581.

[146] Würthinger, T., Wöß, A., Stadler, L., Duboscq, G., Simon, D.,
Wimmer, C., Self-optimizing AST Interpreters, in Proceedings of the
8th Symposium on Dynamic Languages, DLS ’12, 73–82, ACM,
New York, NY, USA (2012), ISBN 978-1-4503-1564-7, doi:10.1145/
2384577.2384587, URL http://doi.acm.org/10.1145/2384577.
2384587.

[147] Young, C., Smith, M. D., Better Global Scheduling Using Path Profiles,
in Proceedings of the 31st Annual ACM/IEEE International Symposium
on Microarchitecture, MICRO 31, 115–123, IEEE Computer Society
Press, Los Alamitos, CA, USA (1998), ISBN 1-58113-016-3, doi:10.
1109/MICRO.1998.742774, URL http://dl.acm.org/citation.
cfm?id=290940.290968.

[148] Young, R. C., Path-based Compilation, Ph.D. thesis, Harvard Uni-
versity, Cambridge, MA, USA (1998), iSBN 0-591-74986-6. Or-
der Number AAI9822933. URL www.eecs.harvard.edu/hube/
publications/cyoung-thesis.ps. Accessed: 2016-06-18.

[149] Zellweger, P. T., An Interactive High-level Debugger for Control-flow
Optimized Programs, in Proceedings of the Symposium on High-level
Debugging, SIGSOFT ’83, 159–172, ACM, New York, NY, USA
(1983), ISBN 0-89791-111-3, doi:10.1145/1006147.1006183, URL
http://doi.acm.org/10.1145/1006147.1006183.

[150] Zeng, Q., Rhee, J., Zhang, H., Arora, N., Jiang, G., Liu, P., Delta-
path: Precise and scalable calling context encoding, in Proceedings
of Annual IEEE/ACM International Symposium on Code Generation



Bibliography 185

and Optimization, CGO ’14, 109:109–109:119, ACM, New York,
NY, USA (2014), ISBN 978-1-4503-2670-4, doi:10.1145/2544137.
2544150, URL http://doi.acm.org/10.1145/2544137.2544150.

[151] Zhang, X., Tallam, S., Gupta, R., Dynamic Slicing Long Running Pro-
grams Through Execution Fast Forwarding, in Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, SIGSOFT ’06/FSE-14, 81–91, ACM, New York, NY,
USA (2006), ISBN 1-59593-468-5, doi:10.1145/1181775.1181786,
URL http://doi.acm.org/10.1145/1181775.1181786.

[152] Zhuang, X., Serrano, M. J., Cain, H. W., Choi, J.-D., Accurate,
Efficient, and Adaptive Calling Context Profiling, in Proceedings of the
2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’06, 263–271, ACM, New York, NY, USA
(2006), ISBN 1-59593-320-4, doi:10.1145/1133981.1134012, URL
http://doi.acm.org/10.1145/1133981.1134012.



Il Comitato editoriale assicura una valutazione trasparente e indipendente delle opere 
sottoponendole in forma anonima a due valutatori, anch’essi anonimi. Per ulteriori 
dettagli si rinvia al sito: www.editricesapienza.it

Comitato Premio Tesi di Dottorato 2016

Coordinatore 

Giuseppe Ciccarone

Membri 

Beatrice Alfonzetti 
Gaetano Azzariti 
Andrea Baiocchi 
Maurizio Del Monte 
Silvia Mezi 
Vittorio Lingiardi



 Collana Studi e Ricerche

Per informazioni sui precedenti volumi in collana, consultare il sito:  
www.editricesapienza.it

80. «Pendono interrotte le opere» 
Antichi monumenti incompiuti nel mondo greco 
Massimiliano Papini

81. La disabilità tra riabilitazione e abilitazione sociale 
Il caso dei Gudat Akal a Mekelle e Wukro 
Virginia De Silva

82. I Consoli del Mare di Firenze nel Quattrocento 
Eleonora Plebani

83. Le categorie flessive nella didattica del tedesco  
Un confronto tra grammatiche Deutsch als Fremdsprache internazionali 
e per italofoni 
Claudio Di Meola e Daniela Puato

84. Il corpo degli altri 
a cura di Anna Belozorovitch, Tommaso Gennaro, Barbara Ronchetti,  
Francesca Zaccone

85. El largo viaje de los mitos 
Mitos clásicos y mitos prehispánicos en las literaturas latinoamericanas 
edición de Stefano Tedeschi

86. Analysis and Design of Antennas and Algorithms for Near-Field Sensing 
Davide Comite

87. Synthesis and biological evaluation of 1,5-diphenylpyrrole derivatives  
as COX-2 selective inhibitors and NO-releasing agents and development 
of a novel BRD9 chemical probe 
Sara Consalvi

88. New Techniques for Adaptive Program Optimization 
Daniele Cono D’Elia

89. La spiegazione delle disuguaglianze attraverso modelli generativi 
Un contributo alla comprensione della mobilità sociale nella prospettiva 
della sociologia analitica 
Pasquale di Padova

90. La dinamica degli opposti 
Ricerca letteraria, cultura mediatica e media in Georges Perec 
Loredana Fiorletta 



91. Seismic Performance of Masonry Cross Vaults 
Learning from historical developments and experimental testing 
Angelo Gaetani

92. What’s behind neuropathic pain? 
Neurophysiological diagnostic tests investigating mechanisms 
underlying neuropathic pain 
Caterina Maria Leone

93. Getting ready to act 
Neurocognitive aspects of action preparation 
Rinaldo Livio Perri

94. Trust e Impresa in Crisi 
Elena Signori





8888
Scienze e Tecnologie

Studi e RicercheStudi e Ricerche

L iving organisms are adapted to their environment. Modern 
compilers and runtime systems for computer software are no 

different: as part of a continuous optimization process, they can adapt 
the execution cycle of a program to the workload it operates on.

This thesis brings novel ideas to the software optimization domain. 
It illustrates methodological and practical contributions that ad-
vance the state of the art for performance profiling techniques 
and adaptive runtime designs, backed by promising experimental 
results on industrial-strength benchmarks. Part of the results has 
been presented in flagship programming language venues.

Daniele Cono D’Elia holds a Ph.D. in Engineering in Computer 
Science (2016). He is currently post-doc with Sapienza, working 
on software and systems security topics.

www.editricesapienza.it

Opera diffusa in modalità open access
e sottoposta a licenza Creative Commons

Attribuzione – Non commerciale
Non opere derivate (CC BY-NC-ND), 3.0 Italia

VINCITORE

DEL PREMIO

TTEESSI I DDII

DDOOTTTTOORRAATTOO

22001166

Winner of the Competition “Prize for PhD Thesis 2016”  
arranged by Sapienza University Press.


	Pagina vuota
	Pagina vuota

