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ABSTRACT
Dynamic binary instrumentation (DBI) techniques allow for moni-

toring and possibly altering the execution of a running program up

to the instruction level granularity. The ease of use and flexibility of

DBI primitives has made them popular in a large body of research in

different domains, including software security. Lately, the suitabil-

ity of DBI for security has been questioned in light of transparency

concerns from artifacts that popular frameworks introduce in the

execution: while they do not perturb benign programs, a dedicated

adversary may detect their presence and defeat the analysis.

The contributions we provide are two-fold. We first present the

abstraction and inner workings of DBI frameworks, how DBI as-

sisted prominent security research works, and alternative solutions.

We then dive into the DBI evasion and escape problems, discussing

attack surfaces, transparency concerns, and possible mitigations.

We make available to the community a library of detection pat-

terns and stopgap measures that could be of interest to DBI users.
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• Security and privacy → Systems security; Intrusion/anomaly
detection and malware mitigation; Software reverse engineering; Soft-
ware security engineering.
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1 INTRODUCTION
Even before the size and complexity of computer software reached

the levels that recent years have witnessed, developing reliable and

efficient ways to monitor the behavior of code under execution

has been a major concern for the scientific community. Execution

monitoring can serve a great deal of purposes: to name but a few,

consider performance analysis and optimization, vulnerability iden-

tification, as well as the detection of suspicious actions, execution

patterns, or data flows in a program.

To accomplish this task users can typically resort to instrumen-

tation techniques, which in their simplest form consist in adding

instructions to the code sections of the program under observation.

One can think of at least two aspects that impact the instrumenta-

tion strategy that researchers can choose to support their analyses:

the availability of the source code for the objects that undergo obser-

vation and the granularity of information that should be gathered.

Additionally, a researcher may be interested in accessing instru-

mentation facilities that let them also alter the normal behavior of

the program when specific conditions are observed at run time.

A popular instrumentation paradigm is represented by dynamic
binary instrumentation. DBI techniques support the insertion of

probes and user-supplied analysis routines in a running software

for the sake of monitoring and possibly altering its execution up

to the instruction level granularity, without requiring access to

its source code or modifications to the runtime. The ease of use

and flexibility that characterize DBI techniques has favored their

adoption in an impressive deal of programming languages, software

testing, and security research over the years.

Lately, the suitability of using DBI for security applications has

been questioned in light of artifacts that popular DBI frameworks

introduce in the execution, which may let an adversary detect their

presence and cripple an analysis that hinges on them. This trend

of research originated in non-academic forums like REcon and

BlackHat where security researchers pointed out several attack

surfaces for DBI detection and escape (e.g., [17, 24, 31, 56]).

Among academic works, Polino et al. [46] proposed countermea-

sures for anti-instrumentation strategies found in packers, some of

which are specific to DBI. One year later Kirsch et al. [28] presented

a research that instead deems DBI unsuitable for security applica-

tions, presenting a case study on its most popular framework.

Contributions. In this work we try to approach the problem of

using DBI in software security research from a neutral stance, in

hopes of providing our readers with insights on when the results

of an analysis built on top of DBI should not be trusted blindly.

https://doi.org/10.1145/3321705.3329819
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We distill the DBI abstraction, discuss inner workings and primi-

tives of frameworks implementing it, and present a quantitative

overview of recent security literature that uses DBI to back a hetero-

geneous plethora of analyses. We then tackle the DBI evasion and

escape problems, discussing desired transparency properties and

architectural implications to support them. We categorize known

adversarial patterns against DBI engines by attack surfaces, and

discuss possible mitigations both at framework design level and

as part of user-encoded analyses. We collect instances of known

adversarial sequences and prototype a mitigation scheme in the

form of a high-level library that could be of interest to DBI users.

2 DYNAMIC BINARY INSTRUMENTATION
DBI systems have significantly evolved since the advent of DynInst [5]

as a post-compilation library to support tools that wanted to instru-

ment and modify programs during execution. In the following we

present characteristic traits of the DBI abstraction and its embodi-

ments, discussing popular frameworks and alternative technologies.

2.1 The DBI Abstraction
We can think of a DBI system as an application virtual machine that

interprets the ISA of a specific platform (usually coinciding with

the one where the system runs) while offering instrumentation

capabilities to support monitoring and altering instructions and

data from an analysis tool component written by the user:

Definition 2.1 (DBI System). A DBI system is an execution run-

time running in user space for process-level virtualization. An un-

modified compiled program executes within the runtime as would

happen in a native execution, with introspection and execution

control capabilities accessible to its users in a programmatic way.

The definition above is meant to capture distinctive traits of

most DBI embodiments used in research in the last two decades.

The components of a DBI runtime are laid out in the same address

space where program execution will take place, with the program’s

semantics being carried out alongside user-supplied code for its

analysis. Alternative designs recently proposed for moving the

runtime outside the process where the code under analysis executes

are discussed in Section 5.1 and Section 6.

Inner Workings of DBI Engines. A design goal for a DBI system

is to make it possible to observe—and possibly alter—the entire

architectural state of the program under analysis, including register

values, memory addresses and contents, and control flow transfers.

To this end, the approach followed by most popular DBI em-

bodiments is to recur to dynamic compilation: the original code

of the application is not executed directly, but rather analyzed, in-

strumented and compiled using a just-in-time (JIT) compiler. An

instruction fetcher component reads the original instructions in the

program as they are executed for the first time, offering the engine

the opportunity to instrument them before undergoing compilation.

The compilation unit is typically a trace, defined as a straight-line
sequence of instructions ending in an unconditional transfer and

possibly with multiple side exits representing conditional branches.

Compiled traces are placed in a code cache, while a dispatcher

component coordinates transfers among compiled traces and new

fetches from the original code. Similarly as in tracing JIT compilers

for language VMs, a trace exit can be linked directly to its target to

bypass the dispatcher when a compiled version is available, while

inline caching and code cloning strategies can be used to optimize

indirect control transfers. Special care is taken for instructions that

should not execute directly, such as those for system call invoca-

tions, as they get handled by an emulator component in a similar

way to how privileged instructions are dealt with in virtual machine

monitors for whole-system virtualization [20].

From the user’s perspective, analysis code builds on instrumen-

tation facilities exposed through an API interface, with the DBI

backend taking care of program state switching between analysis

routines and the code under observation.

The design space of a DBI engine accounts for different possibil-

ities. An alternative to JIT compilation is the probe-based approach

where the original program instructions are executed once they

have been patched with trampolines to analysis code. In this work

we deal with JIT-based engines only, as they can offer better perfor-

mance for fine-grained instrumentation and are intuitively more

transparent. Another choice is whether to operate on a native in-

struction set or by lifting code to an intermediate representation:

the first choice typically can lead to faster compilation at the price of

an increased complexity for the backend, while the other generally

favors architectural portability.

Execution Correctness. One of the most critical challenges in the

design of a DBI system is to prevent the native behavior of an appli-

cation under analysis from inadvertently changing when executing

inside the system. Real-world applications can exercise a good

deal of introspective operations: common instances are retrieving

instruction pointer values and return addresses for function invoca-

tions, and iterating over loaded code modules. When the execution

environment orchestrated by the DBI runtime does not meet the

expected characteristics, an application might exercise unexpected

behaviors or most likely crash.

Bruening et al. [4] identify and discuss three broad categories

of transparency requirements related to correctness: code, data,

and concurrency. An example of code transparency when using JIT

compilation is having every address manipulated by the applica-

tion match the one expected in the original code: the DBI system

translates addresses for instance when the OS provides the con-

text for a signal or exception handler. Data transparency requires,

e.g., exposing the CPU state to analysis code as it would be in a

native execution (leaving the application’s stack unhindered as the

program may examine it) and not interfering with its heap usage.

Concurrency transparency prescribes, e.g., that the runtime does

not interfere by using additional locks or analysis threads.

Achieving these properties is difficult when handling generic

code, as a system should not make assumptions on how a program

has been compiled or how it manipulates registers, heap and stack:

for instance, some versions of Microsoft Office read data or execute

code located beyond the top of the stack, while aggressive loop

optimizations may use the stack pointer to hold data [4].

Primitives for Analysis. DBI systems offer general-purpose APIs

that can accommodate a wide range of program analyses, allowing

users to write clients (most commonly referred to as DBI tools) that
run interleaved with the code under analysis. One of the reasons

behind the vast popularity of DBI frameworks is that DBI architects

tried not to put too many restrictions on tool writers [4]: although
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sometimes users may miss the most effective way for the job, they

are not required to be DBI experts to implement their program anal-

yses. The runtime exposes APIs to observe the architectural state

of a process (e.g., memory and register contents, control transfers)

from code written in traditional programming languages such as

C/C++, often supporting the invocation of external libraries (e.g.,

for disassembly or constraint solving). A DBI system may also try

to abstract away idiosyncrasies of the underlying instruction set,

providing functions to intercept generic classes of operations such

as reading from memory or transferring control flow.

From the client perspective, a generic DBI system provides prim-

itives to handle at least the following elements and events:

• instructions in the original program to be instrumented;

• system call invocation, before and after a context switch;

• library function invocation, intercepted at the call site and

also on return when possible (think of, e.g., tail calls);

• creation and termination of threads and child processes;

• dynamic code loading and unloading;

• exceptional control flow;

• asynchronous control flow (e.g., callbacks, Windows APCs).

Instructions can be exposed to the client when traces are built

in the code cache, allowing it to iterate over the basic blocks that

compose them, or when code images are first loaded to memory, en-

abling ahead-of-time (AOT) instrumentation. AOT instrumentation

is useful for instance when analyzing libraries (e.g., to place hooks

at the beginning of some functions), but cannot access information

like basic-block boundaries that is revealed only at run time.

The capabilities offered to a client are not limited to execution

inspection, but include the possibility of altering the program behav-

ior. Common examples are overwriting register contents, replacing

instructions, and modifying the arguments and return values for a

function call or rewiring it to some user-defined function.

Sophisticated engines like Pin and DynamoRIO assist users in

tool creation by providing facilities for memory manipulation,

thread local storage, creation of analysis threads, synchronization,

and interaction with the OS (e.g., for file creation) that minimize

the possibility of interfering with the execution of the application.

The DBI abstraction can cope with sequences of code interleaved

with data, overlapping instructions, statically unknown targets for

indirect branches, and JIT code generation on the application side.

Another appealing feature is the possibility for some engines to

attach to a process and then release it just like a debugger; this

might come in handy, e.g., for large, long-running applications [34].

2.2 Popular DBI Frameworks
Pin [34], DynamoRIO [4] and Valgrind [39] are possibly the most

popularly known DBI frameworks, supporting different architec-

tures and operating systems. They have been extensively used in

countless academic and industrial projects, providing reliable foun-

dations for building performant and accurate analysis tools.

Pin provides robust support for instrumenting binary code run-

ning on Intel architectures. Its instrumentation APIs allow analysis

tools to register for specific statements (e.g., branch instructions) or

events (e.g., thread creation) callbacks to analysis routines that can

observe the architectural state of the program. A recurrent criticism

is related to its closed source nature as it limits possible extensions.

DynamoRIO is an open source project and unlike Pin it exposes

the entire instruction stream to an analysis tool, allowing users to

performmany low-level code transformations directly. The superior

performance level it can offer compared to Pin is still a popular

subject of discussion within the DBI community.

Sometimes the analysis code might be coupled too tightly with

details of the low-level binary representation. Valgrind and DynInst

approach this problem in different ways. Valgrind lifts binary code

to an architecture-independent intermediate representation: its de-

velopers could port it to many platforms to the benefit of analysis

tools based on it. However, this comes with performance penal-

ties that could make it inadequate in several application scenarios.

DynInst tries to provide high-level representations of the analyzed

program to the analysis tool: by exposing familiar abstractions such

as the control-flow graph, functions, and loops, DynInst makes it

easier to implement even complex analyses. However, the intrinsic

difficulties in the static analysis work required to back them may

lead DynInst to generate incomplete representations in presence

of, e.g., indirect jumps or obfuscated code sequences.

Frida [27] tries to ease DBI tool writing by letting users write anal-

ysis code in JavaScript, executing it within the native application

by injecting an engine. The framework targets quick development

of analysis code, aiming in particular at supporting reverse engi-

neering tasks. Due to its flexible design, Frida can support several

platforms and architectures, including for instance mobile ones, but

its intrusive footprint could be a source of concern.

While for most DBI frameworks guest and host architectures

coincide, Strata [51] uses software dynamic translation to support

different host and guest ISAs, requiring users to implement only

few guest and host-specific components. Valgrind could technically

support different ISAs, but its current implementation does not.

libdetox [40] featured the first DBI framework design concerned

with transparency for security uses. Originally used as a founda-

tion for a user-space sandbox for software-based fault isolation,

libdetox randomizes the location of the code cache and other in-

ternal structures, posing particular attention on, e.g., preventing

internal pointers overwriting and disabling write accesses to the

code cache when the program executes. At least for its publicly

released codebase, the framework is however vulnerable to some

of the attacks that we will describe throughout Section 4.

Although more DBI frameworks [37, 48, 49] appeared recently,

their designs did not introduce architectural changes relevant for

security uses: for this reason we opted for not covering them.

2.3 Alternative Technologies
Source code instrumentation. When the source code of a program

is available and the analysis is meaningful regardless of its com-

piled form
1
, instrumentation can take place at compilation time.

Analyses can thus be encoded using source-to-source transforma-

tion languages like CIL [38] or by resorting to compiler assistance.

The most common instance of the latter approach are performance

profilers, but in recent years a good deal of sanitizers have been

built for instance on top of the LLVM compiler.

Operating at source level offers a few notable benefits. Analysis

code can be written in an architecture-independent manner, also

1
There are cases where the source may not be informative enough (e.g., for side channel

detection) or Heisenberg effects appear if the source is altered (e.g., for memory errors).
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allowing it to access high-level properties of an application (e.g.,

types) that could be lost during compilation. Also, instrumentation

code undergoes compiler optimization, often leading to smaller

performance overheads. However, when the scope of the analysis

involves interactions with the OS or other software components

the applicability of source code instrumentation may be affected.

Static binary instrumentation. A different avenue to instrument

a program could be rewriting its compiled form statically. This

approach is commonly known as Static Binary Instrumentation

(SBI), and sometimes referred to as binary rewriting. While tech-

niques for specific tasks such as collecting instruction traces had

already been described three decades ago [16], it is only with the

ATOM [55] framework that a general SBI-based approach to tool

building was proposed. ATOM provided selective instrumentation

capabilities, with information being passed from the application

program to analysis routines via procedure calls. SBI generally pro-

vides better performance than DBI, but struggles in the presence

of indirect branches, anti-disassembly sequences, dynamically gen-

erated code (JIT compiled or self-modifying), and shared libraries.

ATOM was shortly followed by other systems (e.g., [29, 50, 67])

that gained popularity in the programming languages community

especially for performance profiling tasks before the advent of DBI.

Recent research [66] has shown how to achieve with SBI some of

the practical benefits of DBI, such as instrumentation completeness

along the software stack and non-bypassable instrumentation. Some

obfuscation techniques and self-modifying code remain however

problematic, causing execution to terminate when detected.

Cooperation on the runtime side. Another possibility is to move

the analysis phase on the runtime side, like the virtual machine for

managed languages or the operating system for executables. While

the former possibility has been explored especially in programming

languages research (e.g., using instrumentation facilities of Java

VMs), the latter has seen several uses in security, for example in

malware analysis to monitor API calls using a hooking component

in kernel space. Although finer-grained analyses like instruction

recording or information flow analysis are still possible with this

approach [15], the flexibility of an analysis component executing

in kernel mode is more limited compared to DBI and SBI.

Virtual machine introspection. In recent years a great deal of

research has adopted Virtual Machine Introspection (VMI) tech-

niques to perform dynamic analysis from outside the virtualized

full software stack in which the code under analysis runs. The

VMI approach has been proposed by Garfinkel and Rosenblum [20]

to build intrusion detection systems that retain the visibility of

host-based solutions while approaching the degree of isolation of

network-based ones, and became very popular ever since. Inspect-

ing a virtual machine from the outside enables scenarios such as

code analysis in kernel space that are currently out of reach of

DBI systems (an attempt is made in [65]). VMI is possible for both

emulation-based and hardware-assisted virtualization solutions,

allowing for different trade-offs in terms of execution speed and

flexibility of the analysis. Unlike DBI, VMI incurs a semantic gap
when trying to inspect high-level concepts of the guest system such

as API calls or threads. Recent research has thus explored ways

to minimize the effort required to build VMI tools, e.g., with auto-

matic techniques [14] or by borrowing components from memory

forensic frameworks [45]. While the ease of use of VMI techniques

has lately improved with the availability of scriptable execution

frameworks [57], performing analyses that require deep inspection

features or altering properties of the execution other than the out-

come of CPU instructions (say replacing a function call) remains

hard for a user, or at least arguably harder than in a DBI system. We

will return to this matter in Section 6 discussing also transparency.

3 DBI IN SECURITY RESEARCH
To provide the reader with a tangible perspective on the ubiquity

of DBI techniques in security research over the years, we have

reviewed the proceedings of flagship conferences and other popular

venues looking for works that made use of them. Although this list

may not be exhaustive, and a meticulous survey of the literature

could be addressed in a separate work, we identified 95 papers and

articles from the following venues: 18 for CCS, 7 for NDSS, 6 for

S&P, 14 for USENIX Security, 10 for ACSAC, 4 for RAID, 4 for ASIA

CCS, 2 for CODASPY, 9 for DIMVA, 7 for DSN, 3 for (S)PPREW, and

11 among ESSoS, EuroSys, ICISS, ISSTA, MICRO, STC, and WOOT.

Prominent applications. For the sake of presentation, we classify
these works in the following broad categories, reporting the most

common types of analysis for each of them:

• cryptoanalysis: identification of crypto functions and keys

in obfuscated code [30], obsolete functions replacement [2];

• malicious software analysis: e.g., malware detection and clas-

sification [36, 64], analysis of adversarial behavior [43], au-

tomatic unpacking [46];

• vulnerability analysis: e.g., memory errors and bugs [9, 59],

side channels [63], fuzzing [8], prioritization of code regions

for manual inspection [22], debugging [61];

• software plagiarism: detection of unique behaviors [60];

• reverse engineering: e.g., code deobfuscation [53], protocol

analysis and inference [6, 32], configuration retrieval [58];

• information flow tracking: design of taint analysis engines

and their optimization [25, 26];

• software protection: e.g., control flow integrity [47], detection

of ROP sequences [12], software-based fault isolation [41],

code randomization [23], application auditing [68].

This choice left out 3 works that dealt with protocol replay, code

reuse paradigms, and hardware errors simulation, respectively.

Categories can have different prevalence in general conferences:

for instance, 6 out of 14 USENIX Security papers deal with vul-

nerability detection, but only 2 of the 18 CCS papers fall into it.

For a specific category, works are quite evenly distributed among

venues: for instance, works in malicious software analysis (14) have

appeared in CCS (5), DIMVA (4), and five other conferences.

The heterogeneity of analyses built on top of DBI engines is

somehow indicative of the flexibility provided by the DBI abstrac-

tion to researchers for prototyping their analyses and systems. The

first works we surveyed date back to 2007, with 7 papers in that

year. The numbers for the past two years (9 works in 2017, 8 in 2018)

are lined up with those from four years before that (9 in 2013, 8 for

2014), hinting that DBI is still very popular in security research.

Usage of DBI primitives. For each work we then identify which

DBI system is used and what primitives are necessary to support the
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application domain

dbi primitives

worksinstructions system library threads & code exceptions

memory r/w calls/rets branches other calls calls processes loading & signals

Cryptoanalysis ✓ ✓ ✓ ✓ 7

Malicious Software Analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 14

Vulnerability Detection ✓ ✓ ✓ ✓ ✓ ✓ 22

Software Plagiarism ✓ ✓ 2

Reverse Engineering ✓ ✓ ✓ ✓ ✓ ✓ 9

Information Flow Tracking ✓ ✓ ✓ ✓ ✓ ✓ 8

Software Protection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 30

Table 1: Application domains and uses of DBI primitives in related literature.

proposed analysis. We grouped instrumentation actions required

by analyses in the following types:

• instructions, which we further divide in memory operations

(for checking every register or memory operand’s content),

call/ret (for monitoring classic calls to internal functions or

library code), branches ([in]direct and [un]conditional), and

other (for special instructions such as int and rdtsc);
• system calls, to detect low-level interactions with the OS;

• library calls, when high-level function call interception fea-

tures of the DBI engine (like the routine instrumentation of

Pin) are used to identify function calls to known APIs;

• threads and process, when the analysis is concerned with

intercepting their creation and termination;

• code loading, to intercept dynamic code loading events;

• exceptions and signals, to deal with asynchronous flows.

In Table 1 we present aggregate results for application domains,

where for each category we consider the union of the instrumen-

tation primitives used by the works falling into it. While such

information is clearly coarse-grained compared to a thorough anal-

ysis of each work, we observed important regularities within each

category. For instance, in the cryptoanalysis domain nearly every

considered work resorts to all the primitives listed for the group.

Tracing all kinds of instructions and operands seems fundamental

in the analysis of malicious software, while depending on the goal

of the specific technique it may be necessary to trace also context

switches or asynchronous flows. Observe that some primitives are

intuitively essential in some domains: this is the case of memory

accesses for information flow analysis, as well as of control transfer

instructions in software protection works.

Choices. We identify Pin as the most popular engine in the works

we survey with 57 uses, followed by Valgrind (19), libdetox (5),

DynamoRIO (4) and Strata (3); in some cases the engine was not re-

ported. Unsurprisingly, Valgrind is very popular in the vulnerability

detection domain with 9 uses, just behind Pin with 12.

An important design choice that emerged from many works is

related to when DBI should be used to back an online analysis or to

rather record relevant events and proceed with offline processing.

Other than obvious aspects related to the timeliness of the obtained

results (e.g., shepherding control flows vs. bug identification) and

nondeterministic factors in the execution, also the complexity of

the analysis carried out on top of the retrieved information may

play a role—this seems at least the case with symbolic execution.

A few research works [44, 68] aiming at mitigating defects in

software devise their techniques in two variants: one for when the

source code is available, and another based on DBI for software in

binary form, hinting at higher implementation effort and possible

technical issues in using SBI techniques in lieu of DBI.

4 ATTACK SURFACES
In light of the heterogenous analyses mentioned in the previous sec-

tion, it is legitimate to ask whether their results may be affected by

imperfections or lack of transparency of the underlying DBI engine.

We will deal with these issues throughout the present section.

4.1 Desired Transparency Properties
Existing literature has discussed the transparency of runtime sys-

tems for program analysis under two connotations. The first, which

is compelling especially for VM architects and dynamic translator

builders, implies that an application executes as it would in a non-

instrumented, native execution [4], and that interoperability with

native applications works normally [11]. To this end, Bruening et

al. [4] identify three guidelines to achieve the execution correctness

properties outlined in Section 2.1 when writing a DBI system:

[G1] leave the code unchanged whenever possible;

[G2] when change is unavoidable, ensure it is imperceivable to

the application;

[G3] avoid resource usage conflicts.

The authors explain how transparency has been addressed on

an ad-hoc basis in the history of DBI systems, as applications were

found to misbehave due to exotic implementation characteristics

with respect to code, data, concurrency, or OS interactions.

DBI architects are aware that absolute transparency may be

unfeasible to obtain for certain aspects of the execution, or that im-

plementing a general solution would cause a prohibitive overhead.

In the words of Bruening et al. [4]: “the further we push transparency,
the more difficult it is to implement, while at the same time fewer
applications require it”. In the end, the question boils down to see-

ing whether a presumably rare corner case may show up in code

analyzed by the users of the DBI system.

A second connotation of transparency, which is compelling for

software security research, implies the possibility of adversarial

sequences that look for the presence of a DBI system and thwart any

analyses built on top of it.We defer the discussion of the DBI evasion

and escape problems to the next section, as in the following we will

revisit from the DBI perspective general transparency properties

that authors of seminal works sought in analysis runtimes they

considered for implementing their approaches.

For an IDS, Garfinkel and Rosenblum [20] identify three capabil-

ities required to support good visibility into a monitored system

while providing significant resistance to both evasion and attack:

• isolation: code running in the system cannot access or modify

code and data of the monitoring system;

• inspection: the monitoring system has access to all the state

of the analyzed system;
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• interposition: the monitoring system should be able to inter-

pose on some operations, like uses of privileged instructions.

The last two properties are simplymet by the design goals behind

the DBI abstraction. Supporting the first property in the presence

of a dedicated adversary seems instead hard for a DBI engine: as the

runtime shares the same address space of the code under analysis,

the possibility of covert channels is real. Actually, by subverting

isolation an attacker might in turn also foil the inspection and

interposition capabilities of a DBI system [28].

The authors of the Ether malware analyzer [13] present a sim-

ple abstract model of program execution where transparency is

achieved if the same trace of instructions is observed in an environ-

ment with and without an analyzer component present. As they use

hardware virtualization, the model is later generalized to account

for virtual memory, exception handling, and instruction privilege

levels. The requirements identified for a system that wants to hide

memory and CPU changes caused by its own presence are:

• higher privilege: the analyzer runs at a privilege level higher
than the highest level a program can achieve;

• privileged access for side effects: if any, side effects can be seen
only at a privilege level that the program cannot achieve;

• same basic instruction semantics: aside from exceptions, the

semantics of an instruction is not involved in side effects;

• transparent exception handling: when one occurs, the ana-

lyzer can reconstruct the expected context where needed;

• identical timing information: access to time sources is trapped,

so that query results can be massaged consistently.

For an analysis runtime operating in user space, fulfilling all

these requirements simultaneously is problematic, and oftentimes

unfeasible. While DBI systems preserve instruction semantics and

can capture exceptions, current embodiments operate at the same

privilege level of the code under analysis. Values retrieved from

timing sources can be massaged as in [46] to deal with specific

detection patterns, but general strategies for manipulating the time

behavior of a process with realistic answers may be intrinsically

difficult to conceive or computationally too expensive [19].

For a fair comparison, we observe that similar problems affect

to some extent also other other analysis approaches whose design

seems capable of accommodating such requirements in a robust

manner. Let us consider VMI techniques: Garfinkel in [19] describes

several structural weaknesses in virtualization technology that an

attacker may leverage to detect its presence, concluding that build-

ing a transparent monitor “is fundamentally infeasible, as well as
impractical from a performance and engineering standpoint”. Attacks
to VMI-based analyses are today realistic: for instance, performance

differences can be observed due to TLB entry eviction [3], and the

falsification of timing information can be imperfect [42].

In the next sections we will present the reader with practical

attack surfaces that a dedicated adversary may use to detect a DBI

system, and discuss how analyses running on one can be impacted.

4.2 DBI Evasion and Escape
The imperfect transparency of DBI systems has led researchers to

design a plethora of detection mechanisms to reveal the presence

of a DBI framework from code that undergoes dynamic analysis.

Once an adversary succeeds, the code can either execute misleading

actions to deceive the analysis, or attempt to carry out execution

flows that go unnoticed by the engine. These scenarios are popularly

known as the DBI evasion and escape problem, respectively.

Definition 4.1 (DBI Evasion). A code is said to evade DBI-based

analysis when its instruction and data flows eventually start di-

verging from those that would accompany it in a native execution,

either as a result of a decision sequence that revealed the presence

of a DBI engine, or because of translation defects on the DBI side.

We opted for a broad definition of the evasion problem for the

following reason: alongside techniques that actively fingerprint

known artifacts of a DBI engine and deviate the standard control

flow accordingly, DBI systems suffer from translation defects that

are common in binary translation solutions and cause the analysis

to follow unfeasible execution paths. The most prominent example

is the use of self-modifying code, which is used both in benign

mainstream programs [4] (resulting in an unintended evasion, and

possibly in a program crash) and as part of implicit evasion mecha-

nisms to cripple dynamic analysis by yielding bogus control flows.

Definition 4.2 (DBI Escape). A code is said to escape DBI-based

analysis when parts of its instruction and data flows get out of

the DBI engine’s control and execute natively on the CPU, in the

address space of the analysis process or of a different one.

An attacker aware of the presence of a DBI engine may try to

hijack the control transfers that take place under the DBI hood,

triggering flows that may never return under its control. The typical

scenario involves leaking an address inside the code cache and

patching it with a hijacking sequence, but more complex schemes

have been proposed. As for the second part of the definition, DBI

frameworks can provide special primitives to follow control flows

carried out in other processes on behalf of the code under analysis:

for instance, Pin can handle child processes, injected remote threads,

and calls to external programs. Implementation gaps are often the

main reason for which such attempts could go unnoticed.

4.3 Artifacts in Current DBI Embodiments
In Section 1 we have mentioned several scientific presentations

and academic research highlighting flaws in DBI systems. While

some of them characterize the DBI approach in its generality, others

leverage implementation details of a specific engine, but can often

be adapted to others that follow similar implementation strategies.

In hopes of providing a useful overview of the evasion problem

to researchers that wish to use DBI techniques in their works, we

propose a categorization of the techniques that are known to date

to detect the presence of a DBI system. We will refer to Pin on

Windows in many practical examples, as the two have received

significantly more attention than any other engine/OS in the DBI

evasion literature. We will discuss the following attack surfaces that

we identified in such research: time overhead, leaked code pointers,
memory contents and permissions, DBI engine internals, interactions
with the OS, exception handling, and translation defects.

Time overhead. The process of translating and instrumenting the

original instructions in traces to be placed in cache and eventually

executed introduces an inevitable slowdown in the execution. This

slowdown grows with the granularity of the required analysis: for
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example, tracing memory accesses is significantly more expensive

than monitoring function calls. An adversary may try generic time

measurement strategies for dynamic analyses that compare the

execution of a code fragment to one in a reference system and

look for significant discrepancies. There are peculiarities of DBI

that could be exploited as well: for instance, the time required to

dynamically load a library from user code can be two orders of

magnitude larger [17] under DBI due to the image loading process.

Similarly, effects of the trace compilation process can be exploited

by observing fluctuations in the time required to take a branch in

the program from the first time it is observed in the execution [28].

Leaked code pointers. A pivotal element in the execution trans-

parency of DBI is the decoupling between the real instruction

pointer and the virtual one exposed to the code. There are however

subtle ways for an adversary to leak the real IP and compare it

against an expected value. One way inspired by shellcode writing

is to use special x87 instructions that are used to save the FPU state

(e.g., for exception handling) in programs: an adversary executes

some x87 instruction (like pushing a number to the FPU stack) and

then uses fstenv, fsave, or one of their variants to write the FPU

state to memory. The materialized structure will contain the EIP

value for the last performed FPU instruction, which DBI engines

typically do not mask: a check on its range will thus expose DBI [17].

Another way in 32-bit Windows is the int 2e instruction normally

used to enter kernel mode on such systems: by clearing EAX and

EDX before invoking it, the real IP is leaked to EDX [46].

Memory contents and permissions. Amajor source of transparency

concerns is that a DBI engine shares the same address space of the

analyzed code without provisions for isolation. The inspection of

the address space can reveal additional sections and unexpected

exported functions from the runtime [17]; the increased memory

usage could be an indicator of the presence of DBI as well [31].

An adversary may look for recurrent patterns that are present in

the code components (the runtime and the user’s analysis code) of

the DBI system and in their data, or in heap regions used for the

code caching mechanism [17]. Another issue could be the duplicate

presence of command-line arguments in memory [17].

Also the memory layout orchestrated and exposed by the DBI

engine to the application under analysis can be stressed for consis-

tency by adversarial sequences. For instance, Pin and DynamoRIO

miss permission violations when the virtual IP falls into code pages

for which access has been disabled (PAGE_NOACCESS) or guarded

(PAGE_GUARD) by the application [24]. Similarly, an engine may

erroneously process and execute code from pages that were not

granted execution permissions [28].

DBI engine internals. While the CPU context exposed to the ap-

plication under analysis is masked by the DBI abstraction, some

changes applied to the execution context to assist a DBI runtime

are not. One instance is represented by Thread Local Storage slots:

developers can use TLS to maintain thread-specific storage in con-

current applications, but for the sake of efficiency DBI engines

may occupy slots with internal data [56]. Another attack surface is

represented by DLL functions that are altered by the engine: while

the vast majority of library code goes unhindered through the DBI

engine, in special cases trampolines should be inserted at their head.

In the case of Pin on Windows systems ntdll is patched for [52]:

• KiUserExceptionDispatcher, to distinguish exceptions in

the running code from internal (engine/analysis code) ones;

• KiUserApcDispatcher and KiUserCallbackDispatcher,
as the Windows kernel can deliver asynchronous events;

• LdrInitializeThunk, to intercept user thread creation.

Interactions with the OS. DBI engines are concerned with the

transparency of the execution space of an application, but as they

are userspace VMs their presence can be revealed by interacting

with the OS. A classic example is to check for the parent process [17,

31] or the list of active processes to reveal Pin or DynamoRIO.

Handles can reveal the presence of a DBI engine too, for instance

when fewer than expected are available for file manipulation [31] or

when their names give away the presence of, e.g., Pin [17].We found

out that Pin may be revealed also by anti-debugging techniques

based on NtQueryInformationProcess and NtQueryObject.

Exception handling. DBI engines have capabilities for hooking
exceptional control flow: for instance, this is required to provide

SEH handlers with the same information that would accompany the

exception in a native execution [52]. There are however cases that

DBI embodiments may not deal with correctly. For instance, we

found out that Pin may not handle properly single-step exceptions

and int 2d instructions used in evasive malware, with the sample

not seeing the expected exception.

Translation defects. Analysis systems that base their working

on binary translation are subject to implementation defects and

limitations: this is true for DBI but also for full system emulators

like QEMU. A popular example is the enter instruction that is not

implemented in Valgrind [28]. DBI architects may decide to not

support rarely used instructions; however, some instructions are

intrinsically challenging for DBI systems: consider for instance far

returns, which in Pin are allowed only when within the same code

segment. Similarly, Pin cannot run “Heaven’s gate code” to jump

into a 64-bit segment from a 32-bit program by altering the CS

selector. DynamoRIO does not detect the change, paving the way to

the Xmode code evasion [56] that uses special instructions having

the same encoding and disassembly on both architectures to yield

different results due to the different stack operations size.

We put in this category also uses of self-modifying code (SMC):

intuitively, SMC should always lead to invalidation of cached trans-

lated code, but implementations may miss its presence. In 2010

Martignoni et al. reported: “the presence of aggressive self-modifying
code prevents [...] from using efficient code emulations techniques,
such as dynamic binary translation and software-based virtualiza-
tion” [35]. Detecting SMC sequences affecting basic blocks other

than the current is nowadays supported bymanyDBI engines, while

SMC on the executing block complicates the picture: DynamoRIO

handles it correctly, while Pin has caught up from its 3.0 release

providing a strict SMC policy option to deal with such cases.

4.4 Escaping from Current DBI Embodiments
To the best of our knowledge, the first DBI escape attack has been

described in a 2014 blog post by Cosmin Gorgovan [21]: the au-

thor investigated how weaknesses of current DBI implementations

highlighted in evasion-related works could pave the way to DBI

escape. Intuitively, an avenue is represented by having code cache

locations readable and writable also by the code under analysis.
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Instead of leveraging a leaked pointer artifact, the author sug-

gests encoding a fairly unique pattern in a block that gets executed

and looking it up in the code cache once the latter’s randomized lo-

cation is determined by querying the OS memory map. The pattern

gets overwritten with a trampoline, and when execution reaches the

block again the code escapes. Gorgovan also explains how to make

execution gracefully return under the control of the DBI system.

The code cache is not the only region that can be tampered with:

escape attacks involving internal data, callbacks, and stack that

are specific to a DBI engine are described in [56]. More recently,

[28] describes a complex data-only attack for COTS applications

running in Pin that uses a knownmemory corruption bug to escape,

leveraging relative distances between regions that host, e.g., the

libc and the code cache that are predictable in some Linux releases.

5 COUNTERMEASURES
In the following we investigate how transparency problems of DBI

can be mitigated by revisiting the design space of engines, and

when stopgap measures shipped with user code could be helpful.

5.1 Design Space of DBI Frameworks
The design of general-purpose embodiments of the DBI abstrac-

tion has historically been driven by the necessity of preserving

execution correctness while obtaining an acceptable performance

level. While general techniques for dynamic code generation and

compilation have dramatically improved in the past two decades

in response to the ever-growing popularity of languages for man-

aged runtimes, DBI architects have to face additional, compelling

execution transparency problems. They thus strove to improve the

designs and implementations of their systems as misbehaviors were

observed in the analysis of mainstream applications [4], backing

popular program analysis tools such as profilers, cache simulators,

and memory checkers.

The security research domain is however characterized by appli-

cation scenarios where the program under inspection may resort

to a plethora of generic or DBI-specific techniques to elude the

analysis or even tamper with the runtime. A researcher may thus

wonder how the design of a general-purpose DBI framework could

be adapted to deal with common categories of adversarial sequences.

In some cases the required changes could not be easy to be accom-

modated by a DBI framework with a wide audience of users from

different domains, but could be sustainable for an engine that is

designed with specific security applications in mind: one prominent

example is SafeMachine [24], a proprietary DBI framework used

by the Avast security firm for fine-grained malware analysis.

We will now revisit the attack surfaces from Section 4.3 from a

DBI architect’s perspective, referencing research works that have

dealt with specific aspects and discussing other viable options.

Time overhead. Dealing with the run-time overhead from a dy-

namic analysis is an old problem in research. The overhead of a

DBI system is not easy to hide, and it may not only be revealed

by adversarial measurement sequences, but as discussed in [4] can

also affect the correct execution of code sensitive to time changes.

Also, the time spent in analysis code might exceed the cost of mere

instrumentation depending on the type of analysis carried out.

Previous research in malware analysis has explored mechanisms

to alter the time behavior perceived by the process by faking the

results of time queries from different sources [46]. However, their

efficacy is mostly tied to detection patterns observed in a specific

domain. A general solution based on realistic simulations of the time

elapsed in executing instructions as if the cost of DBI were evicted is

believed impractical for dynamic analyses [19]. Also, such schemes

may be defeated by queries to other processes not running under

DBI or to external attacker-controlled time sources. Compared to

VMI solutions where one may patch the time sources of the entire

guest machine, DBI architects are thus left with (possibly much)

less wiggle room to face timing attacks.

Leaked code pointers. We have mentioned subtle ways to leak

code cache addresses through execution artifacts for specific code

patterns, namely FPU context saving instructions and context switch-

ing sequences for syscalls. While these leaks do not seem to bother

the execution of classic programs under DBI, at the price of an

increased overhead a framework could be extended to patch them

as soon as they become visible to user code
2
.

Memory contents and permissions. Presenting the code under

analysis with a faithful memory state as in a native execution is

inherently difficult for a DBI system, as it operates at the same

privilege level and in the same address space of the program. We

identify three aspects that matter in how memory gets presented

to the code under analysis.

The first aspect is correctness. As we have seen, memory permis-

sions mirroring a native execution may not be enforced faithfully,

resulting in possibly unfeasible executions. For instance, a DBI sys-

tem may not detect when the virtual instruction pointer reaches a

region that is not executable, continuing the instruction fetching

process rather than triggering an exception. This may result in, e.g.,

reviving classic buffer overflow attacks as shown in [28]. Similarly,

failing to reproduce guard page checks may be problematic when

dealing with programs like JIT compilers that use them. Adding

these checks may introduce unnecessary overhead for many ana-

lyzed applications, so they could be made available on demand.

The second aspect is escaping. When an adversary gets a pointer

inside the code cache, injection attacks become a possibility. This

problem is shared with general-purpose JIT engines [54], such as

those used in browsers for running Javascript code efficiently. One

possibility could be to use read-only code caches as in the mobile

version of Safari, incurring a performance penalty by switching it

to writable non-executable when modifications are made by the

engine; during a transition however legit accesses from concurrent

threads could fail, and proper handling would be needed.

Keeping thread-specific code caches mitigates the problem at the

price of increased memory occupancy
3
and is available as an option

for instance in DynamoRIO. This solution is however still subject

to race conditions attacks as shown in [54]. The authors propose

a mechanism where a writable code cache is moved to another

process, and its pages shared with the process under analysis with

read-only privileges. Their approach incurs a small performance

overhead on Strata and on the V8 JavaScript engine.

2
https://github.com/dynamorio/dynamorio/issues/698.

3
This may however even let instrumentation code run faster when thread-specific.

https://github.com/dynamorio/dynamorio/issues/698
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The third aspect is evasion. Due to the shared address space, an

adversary may simply register an exception handler and scan the

memory looking for unexpected contents, such as the presence of

the code cache or internal structures and code from the runtime.

Shepherding all memory accesses would solve the evasion problem,

but the overhead could increase dramatically [4].

One mitigation proposed in Strata is to use metamorphism to

alter the contents of the code cache, hindering evasion and escape

attacks based on pattern recognition. This could be paired with

guarded pages and mechanisms to move the location of the code

cache (and possibly internal structures) periodically during the

execution, triggering however the invalidation of all compiled code

as if the engine were detached and reattached to the process.

These countermeasures would still not be sufficient against at-

tackers with code reading capabilities. Consider the case of a loop

trying to read the page containing its own instructions in the cache:

such an access cannot be denied on the x86 architecture. An answer

to the problem may come from recent research on non-readable ex-

ecutable memory (XnR) [1] to prevent disclosure exploits for code

reuse attacks. While the default XnR setting does not support our

“in-page” reading loop scenario, follow-up techniques can be used

to handle it: in particular, [62] shows how to achieve an effective

separation between read and execution capabilities using Extended

Page Tables on a thin hypervisor layer. Further hardware assis-

tance could ease both the implementation and deployment effort:

for instance, the ARMv8 processor provides facilities to support

this mechanism at kernel level [62], while the Intel Skylake x86

architecture has introduced Memory Protection Keys to control

memory permissions in user space that could be used to achieve

executable-only memory as described in [33].

DBI engine internals. Changes to the execution context may be

necessary for the sake of performance, for instance to keep internal

data structures of the runtime quickly accessible using TLS mech-

anisms. An engine may attempt to randomize the TLS slot in use

and hide its presence to queries from the application, but when an

adversarial sequence tries to allocate all the slots the engine can

either abort the execution (similarly as in what happens when the

memory occupied by the engine prevents further heap allocation

by the program) or resort to a less efficient storage mechanism.

The presence of trampolines on special DLL functions could be

hidden using the same techniques for protecting the code cache,

providing the original bytes expected in a read operation as in [46].

Write operations are instead more difficult, as the attacker may

install a custom trampoline that either returns eventually to the

original function (which still needs to be intercepted by the engine)

or simply alter the standard semantics for the call in exotic ways.

Interactions with the OS. DBI frameworks can massage the pa-

rameters and output values of some library and system calls in

order to achieve the design guideline G2, that is, hiding unavoidable

changes from the program (Section 4.1). For instance, DynamoRIO

intercepts memory query operations to its own regions to let the

program think that such areas are free [4]. While allocations in such

regions could be allowed in principle by moving the runtime in

other portions of the address space, resource exhaustion attacks are

still possible on 32-bit architectures, and are not limited to memory

(for instance, file descriptors are another possibility). As system

call interposition can incur well-known traps and pitfalls [18], DBI

architects implement such strategies very carefully. Observe that

remote memory modifications carried out from another process

could be problematic as well, but a kernel module could be used to

capture them [4].

Exception handling. A DBI system has to present a faithful con-

text to the application in the presence of exceptions and signals.

DBI architects are faced with different options in when (if an in-

terruption can be delayed) and how the context translation has to

take place; also, there are cases extreme enough for mainstream

applications that can be handled loosely [4]. Systems like Valgrind

that work like emulators by updating the virtual application state at

every executed instruction are not affected by this problem. How-

ever, they incur a higher runtime overhead compared to others (e.g.,

Pin, DynamoRIO) that reconstruct the context only when needed.

Translation defects. Instruction errata and alike defects can be

brought under two main categories: implementation gaps and de-

sign choices. Apart from challenging sequences such as 32-to-64

switches, errata from the first category can be addressed through

implementation effort for code domains where they are problematic.

On the other hand, defects may arise due to design choices aimed

at supporting efficient execution of general programs: this is the

case with self modifying code within the current basic block, which

as we said can be detected in Pin with an optional switch at the

price of an increased overhead.

To conclude our discussion, we would like to mention the possi-

bility of having user-supplied analysis code pollute the transparency

of the execution, for instance in its context reconstruction process.

Frameworks like Pin that support registering analysis callbacks

might be slightly easier to use for analysis writers compared to oth-

ers like DynamoRIO that let users manipulate statements directly,

but DBI systems may hardly avoid leaving part of the responsibility

for transparency in the hands of their users.

5.2 Mitigations at Analysis Code Level
While revisiting architectural and implementation choices behind a

DBI system can bring better transparency by design, some research

has explored how user-provided analysis code can mitigate artifacts

of mainstream DBI systems and defeat evasive attempts observed

in some applications domains. This approach has been proposed by

PinShield [46] and adopted in the context of executable unpacking

in the presence of anti-instrumentation measures.

We have designed a high-level DBI library that could run in prin-

ciple in existing analysis systems to detect and possibly counter

DBI evasion and escape attempts. We revisited the design of Pin-

Shield to achieve better performance when shepherding memory

accesses, and introduced protective measures to cope with mem-

ory permission consistency (e.g., to enforce NX policies and page

guards), pointer leaks using FPU instructions, inconsistencies in

exception handling, and a number of detection queries to the OS

(e.g., for when the DBI engine is revealed a debugger).

For a prototype implementation we chose the most challenging

setting for user-provided stopgap measures: we target the popular

combination of Pin running on Windows. Unlike DynamoRIO, Pin

does not rewrite the results of basic fingerprinting operations that

can give away its presence like OS queries about memory. As it is
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Figure 1: Performance impact of user-provided mitigations.

closed source, it cannot be inspected or modified to ease the imple-

mentation of mitigations, and using Windows makes immediate

cooperation on the OS side (e.g., via a kernel driver) more difficult.

Approach. We pursued a design for the library that could be

portable to other frameworks and Linux, avoiding uses of specific

primitives or choices that could tie it to Pin’s underpinnings.

To shepherd memory accesses, we maintain a shadow page table

as an array indexed by the page number for the address. Wemonitor

basic RWX permissions and page guard options using 4 bits in a

1-byte element per page
4
. For 32-bit Windows, this yields a table of

512 kbytes for the 2-GB user address space, with recently accessed

fragments likely to be found in the CPU cache for fast retrieval.

We update the table in presence of code loading events and every

time the program (or Windows components on its behalf) allocates,

releases, or changes permissions for memory, hooking system calls

and events that may cause such changes to the address space. When

a violation is detected, we create an exception for the application
5
.

Possible code pointer leaks from FPU instructions are intercepted

as revealing instructions get executed: we replace the address from

the code cache with the one in the original code. For this operation

one can either resort to APIs possibly offered by an engine to

convert addresses, or monitor the x87 instructions that cause the

FPU instruction pointer to change with a shadow register. Although

more expensive, we opted for the second approach for generality.

Exception handling inconsistencies may be unrelated to memory:

this is the case with the single-step exception and int 2d attacks
found in malware and executable protectors. We intercept such

sequences and forge exceptions where needed.

Due to lack of space, we refer the reader to our source code

for mitigations made of punctual countermeasures, such as pointer

leaks with int 2e attacks and detections based on debugger objects.

Overhead. The mitigations presented above can have a signifi-

cant impact on the baseline performance level offered by an engine

running an empty analysis code. Shepherding memory accesses is

a daunting prospect for DBI architects [4], let alone when imple-

mented on top of the engine. However, it may be affordable for a

user-defined analysis that already has to track such operations such

as taint analysis. Similarly, conformance checking on NX policy

slows down the execution as it requires that target of branches

be checked, but may be acceptable for code that already validates

transfers, for instance to support CFI or other ROP defenses.

We conducted a preliminary investigation on the SPEC CPU2006

benchmarks commonly used to analyze DBI systems [4, 34]. We

consider different protection levels: pointer leaks, NX and page

guard checks on indirect transfers, denying RW access to DBI re-

gions, the three strategies together, and a paranoid variant
6
. We

also consider a popular taint analysis library for byte-level tracking

granularity in its default configuration with 1-byte tags. Due to lack

of space (a more complete discussion is provided in Appendix A)

we report figures for a subset of benchmarks in Figure 1.

Tracking x87 instructions for leaks has a rather limited impact

on execution time. Enforcing NX and page guard protection on indi-

rect transfers seems cheap as well. Shepherding memory read/write

accesses incurs a high slowdown, but smaller than the one intro-

duced by the heavy-duty analysis of libdft. High overheads were

expected, but we do not find these figures demoralizing: while some

performance can be squeezed by optimizing the integration with

the backend and with analyses meant to run on top of it, we be-

lieve a fraction of this gap can be reduced if countermeasures get

implemented inside the engine. We used evasive packer programs

to stress the implementation, and we were able to run code packed

with PELock that [46] based on PinShield could not handle properly.

Discussion. Mitigating artifacts using user-level code is a slippery

road. As we mentioned in Section 5.1, there are aspects in system

call interposition that if overlooked can lead security tools to easily

be circumvented: one of them is incorrectly replicating OS seman-

tics. We follow the recommendations from [18] by querying the OS

to capture the effects of system calls that manipulate regions of the

address space: this helped us in dealing with occasional inconsisten-

cies between the arguments or output parameters for such calls and

the effects observed on the address space. Our library pursues at

analysis code level the DBI system design guideline G2 on making

discrepancies imperceivable to the monitored program (Section 4.1),

and its performance impact could be attenuated if cooperation oc-

curs on the DBI runtime side, for instance by supporting automatic

(optimized) guard insertion during trace compilation.

6 WRAP-UP AND CLOSING REMARKS
In the previous sections we have illustrated structural weaknesses

of the DBI abstraction and its implementations when analyzing code

in a software security setting, and discussed mitigations to make

DBI frameworks more transparent—at the price of performance

penalties—in the form of adjustments to their design or stopgap

measures inside analysis tools. We conclude by discussing implica-

tions for researchers that want to use DBI for security with respect

to instrumentation capabilities and to the relevance of the eva-

sion and escape problems, putting into the equation the attacker’s

capabilities and what is needed to counter adversarial sequences.

Choosing DBI in the first place. As we have seen in Section 3, the

flexibility of DBI primitives has supported researchers in developing

a great deal of analysis techniques over the years. Especially when

the source code of a program is not available, there are essentially

two options that could be explored other than DBI: SBI and VMI

techniques. Although tempting to make a general statement on

when one approach should be preferred, we believe the picture

is not so simple, and thorough methodological and experimental

comparisons would be required for different application domains.

4
We leave 4 bits to encode more policies or host data from upper analysis layers.

5
PinShield in such cases allows the access but rewires it to another region. We can

still use their approach for instance to protect ntdll trampolines.

6
For when ESP holds data or EIP flows into a page with inconsistent permissions via

hard-wired jump offsets or branchless sequences that cross page boundaries [24].



SoK: Using Dynamic Binary Instrumentation for Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

We can however elaborate on three aspects that could affect a

researcher’s choice. The first aspect is related to the instrumentation

capabilities of each technology. SBI can instrument a good deal

of program behaviors as long as static inference of the necessary

information is possible. On the other hand, VMI can capture generic

events at whole-system level regardless of the structure of the code,

using libraries that bridge the semantic gap to determine which

events belong to the code under analysis. However, current VMI

systems cannot make queries or execute operations using the APIs

provided by the OS, unlike DBI systems that naturally let their users

to. A 2015 work proposed with PEMU [65] a new design to move

DBI instrumentation out of VM, providing a mechanism called

forwarded guest syscall execution to mimic the normal functioning

of a DBI engine; however, the public codebase the authors made

available seems no longer under active development.

The second aspect is related to the deployability of the analysis

system runtime. In the case of SBI, the requirements are typically

limited as the original binary gets rewritten. For the DBI abstrac-

tion, the use of process virtualization paves the way for building

tools that operate on a single application in a possibly lightweight

manner, enabling their use also in production systems, e.g., when

legacy binary are involved [4]. For VMI technology, bringing up an

emulated or virtualized environment may very well be a daunting

prospect or a natural choice depending on the application scenario.

The third aspect is related to whether the analysis should not

only monitor, but also alter the execution when needed. To this end,

DBI and VMI are both capable of detecting and altering specific

instructions also when generated at run time. VMI technology is

currently lackluster in aspects that involve replacing entire calls or

sequences in the text of a program; on the other hand, system call

authorization can be dealt with as context switches occur.

Dealing with adversarial code. A fourth aspect, possibly the most

appealing for our readers, can be added to the technological discus-

sion: adversarial sequences. We should distinguish between general

detection techniques, which may affect more technologies at once,

and ad-hoc detection patterns, sometimes for a specific runtime.

For example, code very sensitive to time variations is likely

to deviate from the normal behavior when executing under DBI

or other in-guest dynamic analysis systems: consider for instance

time-based anti-analysis strategies in evasive malware. On the other

hand, code checksumming sequences give away several analysis

systems, but DBI ones are normally not bothered by them.

A crucial issue is related to the characteristics of the code that un-

dergoes analysis, that is, if there is the possibility for an attacker to

embed adversarial patterns specific to DBI. This is particularly (but

not only) the case of research focused on malicious code analysis

and reverse engineering activities. Such code can clearly challenge

massaged results and other mitigations for transparency issues put

in place by the engine or the analysis tool.

When the adversary does not have arbitrary memory read ca-

pabilities, mitigating leaked code pointers is already sufficient in

most cases to hide the presence of extra code regions, and different

attack surfaces should be tried, such as exhaustion or prediction

attacks for memory allocations. When the adversary cannot write

to arbitrary memory locations and leaked pointers have already

been dealt with, escaping attempts are essentially contained, while

the execution of unfeasible flows from inconsistencies in enforcing

NX policies can be avoided by shepherding control transfers.

What really raises the bar for DBI engines is coping with an

attacker that can register exception handlers and force memory

operations also on regions marked as unallocated in massaged OS

queries. The runtime overhead of shepherding everymemory access

is intrinsically high for current DBI designs, but technologies like

executable-only memory may come to the rescue in the future.

One may also wonder whether the popularity of an analysis

technique can eventually lead to the diffusion of ad-hoc adversarial

sequences in the code it is meant to analyze. In the history of DBI

we are aware of ad-hoc evasions against Pin in some executable

packers [10], as simple DBI-based unpacking schemes from a few

years ago were effective against older generations of packers. On

the contrary, there is a possibility that even when an attack surface

is well known and not particularly hard to exploit, as in the case of

implicit flows against taint analysis [7], adversaries may focus their

attention elsewhere for anti-analysis sequences: for the proposed

example, malware authors in late years seem rather to have con-

centrated their efforts on escaping sandboxing technologies and

hindering code analysis with obfuscation strategies such as opaque

predicates and virtualization. We thus find it hard to speculate on

an arms race that could involve DBI evasion in the near future.

Finally, as we mentioned in Section 4.1 also approaches like

VMI that are more transparent by design can become fragile in the

presence of a dedicated adversary. Every technology has its own

trade-offs between transparency and aspects like performance or

instrumentation capabilities. In the case of SBI, the approach can

offer better performance than DBI, but its transparency is more frag-

ile than DBI and VMI: for instance, even recent SBI embodiments

cannot offer protection against introspective sequences when these

are not identified in the preliminary static code analysis phase.

Closing remarks. In this work we attempted to systematize exist-

ing knowledge and speculate on a problem that recently received a

good deal of attention in the security community, with opinions

sometimes at odds with one another. We think that using DBI for

security is not a black and white world, but is more about how the

DBI abstraction is used once the user is aware of its characteristics

in terms of execution transparency, understood not only as a se-

curity problem, but sometimes also as a correctness one. Hoping

that other researchers may benefit from it, we make available our

library of detection patterns and mitigations for Pin at:

https://github.com/season-lab/sok-dbi-security/
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A COMPLETE EXPERIMENTAL RESULTS
In the following we describe the experimental setup used for a

preliminary assessment of the performance impact of the stopgap

measures we implemented as a high-level library for analysis tools,

and present complete results for the corpus of C/C++ benchmarks

in the SPEC CPU2006 suite (Table 2) that we used to measure it.

We use Pin 3.5 running on a Windows 7 SP1 32-bit machine

with negligible background activity. For each experiment we use a

clean virtual machine with 1 CPU core and 3 GB of RAM hosted on

VirtualBox 5.2.6 running on a serverwithDebian 9.6 Stretch and two

Intel Xeon E5-4610 processors. Both the library and the benchmarks

are compiled using Visual Studio 2010 in Release configuration. We

consider the average value for 9 trials of each configuration.

For integer benchmarks we can see from Figure 2 that the impact

of the mitigation for pointer leaks is small, with a slowdown in

the worst case as high as 1.09x compared to an execution under

Pin with no instrumentation and analysis code. The overhead orig-

inates from spilling the x87 instruction pointer to a tool register

at every non-control FPU instruction, with the JIT compiler of Pin

taking care of register reallocation. The impact of the NX miti-

gation, which protects instruction fetching from non-executable

or guarded
7
pages, is intuitively related to the number of indirect

transfers (call, ret, and jump operations) in the program, with a

peak of 1.17x for benchmark omnetpp (417). The overhead from

shepherding every read/write memory access to protect the code

cache and other regions of the runtime ranges from 2.31x to 5.02x.

Combining the three mitigations in the full configuration incurs

an overhead very similar to the one from RW, which unsurprisingly

is by far the most expensive on these benchmarks. However in

some cases the overhead of full might be slightly lower than having

the sole RW mitigation active. Once we ruled out noise in time

measurements, we believe the cause might lie in how the quality

of the JIT-ted code is affected by the guards inserted for NX and

RW as well as by the register re-allocation caused by spilling tool

registers in the implementation of the leak and RW mitigations.

The paranoid mode is clearly more expensive as it shepherds

every instruction fetch to enforce NX and page guard protection on

code that crosses the border of two pages with different permissions

with no intervening jumps, and verifies read/write permissions for

push and pop operations for when the stack pointer may be used

as a general-purpose register.

For floating-point benchmarks we can observe similar trends

as for the integer ones with two notable exceptions: namd (444)

and sphinx3 (482). We can see that for these two benchmarks the

NX mitigation incurs a overhead considerably higher than in the

other programs from the CINT and CFP sets. A first inspection of

the execution profiles seems to suggest that both programs make

a high usage of indirect control transfers, and the insertion of

guards for such transfers may affect the trace linking process inside

Pin or other aspects of the JIT compilation process. Unfortunately

we could not verify this claim by monitoring the code generation

process due to the closed-source nature of Pin.

Compared to the original implementation of PinShield
8
, the RW

mitigation from our library was at least one order of magnitude

7
Pin by design already handles page guards for read and write operations correctly.

8
https://github.com/Phat3/PINdemonium/.

Suite ID Name

CINT

400 perlbench

401 bzip2

403 gcc

429 mcf

445 gobmk

456 hmmer

458 sjeng

464 h264ref

471 omnetpp

473 astar

CFP

433 milc

444 namd

450 soplex

453 povray

470 lbm

482 sphinx3

Table 2: Integer and floating-point C/C++ benchmarks.

0

1

2

3

4

5

6

7

8

9

10

400 401 403 429 445 456 458 464 471 473

S
lo

w
d
o

w
n

 w
.r

.t
. 

P
in

SPEC CPU2006 CINT benchmarks

leak nx rw full paranoid

1
.0

1

1
.0

1
.0

3

1
.0

9

1
.0

1

1
.0

0

1
.0

2

1
.0

1
.0

9

1
.0

2

1
.1

1

1
.0

3

1
.1

5

1
.0

6

1
.1

1
.0

1

1
.0

6

1
.0 1
.1

7

1
.0

5

3
.8

2

2
.9

5

3
.6

6

2
.3

1

3
.5

2

5
.0

2

2
.7

3
.7

4

4
.3

9

2
.6

1

3
.9

1

2
.9

8

3
.7

3

2
.2

5

3
.5

5

5
.0

2
.7

3
.7

9

4
.6

2

2
.5

9

7
.0

2

5
.9

2

6
.6

2

4
.4

3

6
.4

2

8
.0

5

5
.8

5
.8

7

7
.2

5

4
.9

5

Figure 2: Slowdown for integer benchmarks.
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Figure 3: Slowdown for floating-point benchmarks.

faster in the tests we conducted: while the guards we insert incur a

O(1) lookup inside an array, PinShield scans a linked list of known

memory ranges for every memory read or write access. As we

mentioned in Section 5.2, pointer leaks via x87 instructions and

NX/page guard conformance checking are not handled by PinShield.

https://github.com/Phat3/PINdemonium/
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