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Abstract. Security analysts spend days or even weeks in trying to un-
derstand the inner workings of malicious software, using a plethora of
manually orchestrated tools. Devising automated tools and techniques
to assist and speed up the analysis process remains a major endeavor in
computer security. While manual intervention will likely remain a key
ingredient in the short and mid term, the recent advances in static and
dynamic analysis techniques have the potential to significantly impact
the malware analysis practice. In this paper we show how an analyst can
use symbolic execution techniques to unveil critical behavior of a remote
access trojan (RAT). Using a tool we implemented in the Angr frame-
work, we analyze a sample drawn from a well-known RAT family that
leverages thread injection vulnerabilities in the Microsoft Win32 API.
Our case study shows how to automatically derive the list of commands
supported by the RAT and the sequence of system calls that are activated
for each of them, systematically exploring the stealthy communication
protocol with the server and yielding clues to potential threats that may
pass unnoticed by a manual inspection.
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1 Introduction

The unprecedented spread of network-connected devices and the increasing com-
plexity of operating systems is exposing modern ICT infrastructures to malicious
intrusions by different threat actors, which can steal sensitive information, gain
unauthorized access, and disrupt computer systems. Attacks are often perpe-
trated in the context of targeted or broad-spectrum campaigns with different
scopes, including hacktivism, cyber warfare, cyber crime, and espionage. One of
the most common form of intrusion is based on malicious software, or malware,
which can exploit vulnerabilities in applications and operating systems to infect,
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take over, or disrupt a host computer without the owner’s knowledge and con-
sent. Sustained by the explosion of messaging applications and social networks,
malware can nowadays affect virtually any device connected to the Internet in-
cluding unconventional targets such as network printers, cooling systems, and
Web-based vehicle immobilization systems. Malware infections can cause poten-
tially significant harm by exfiltrating sensitive data, tampering with databases
and services, and even compromising critical infrastructures.

According to [17], malware is responsible for the most frequent and costly
attacks on public and private organizations. ICT infrastructures are not the only
targets: Kindsight Security reports that at least 14% of private home networks
were infected with malware in April-June 2012 [16]. One of the main vectors
of malware spreading remain emails and infected websites, where unsuspecting
users are daily hijacked by inadvertently opening seemingly benign attachments
or lured into browsing deceitful links or click-baits that stealthily download and
install malicious software. Malware scammers often resort to social engineer-
ing techniques to trick their victims and infect them with a variety of clever
approaches including backdoors, trojans, botnets, rootkits, adware, etc.

The job of a professional malware analyst is to provide quick feedback on
security incidents that involve malicious software, identifying the attack vectors
and the proper actions to secure and repair the infected systems. In many cases
involving critical compromised services, time is of the essence. Analysts seek clues
to the parts of the system that were disrupted and attempt to reconstruct and
document the chain of events that led to the attack. Often, intrusions are carried
out by variants of previously encountered malware. In other cases, malware is
based on zero-day vulnerabilities or novel attack strategies that may require days
or even weeks to be identified and documented. Analysts usually combine and
relate the reports generated by a wide range of dedicated static and dynamic
analysis tools in a complex manual process and are often required to sift through
thousands or even millions of lines of assembly code.

A skilled professional is able to glance over irrelevant details and follow the
high-level execution flow, identifying any stealthy API calls that can compromise
the system. However, some tasks may keep even the most experienced analysts
busy for days or even weeks. For instance, malware such as backdoors or trojans
provide a variety of hidden functionalities that are activated based on unknown
communication protocols with remote servers maintained by the threat actors.
Identifying the supported commands and reconstructing how the protocols work
may require exploring a wide range of possible execution states and isolating
the input data packets that make the execution reach them. While this can be
amazingly difficult without automated software analysis techniques, the state of
the art of modern binary reverse engineering tools still requires a great deal of
manual investigation by malware analysts.

Contributions. In this paper, we argue that the significant advances in soft-
ware analysis over the last decade can provide invaluable support to malware
analysis. In particular, we describe how symbolic execution [1], a powerful anal-
ysis technique pioneered in software testing, can be applied to malware analysis



by devising a prototype tool based on the Angr symbolic executor [26]. The tool
automatically explores the possible execution paths of bounded length starting
from a given entry point. The analysis is static and the code is not concretely
executed. As output, the tool produces a report that lists for each explored ex-
ecution path the sequence of encountered API calls and their arguments, along
with properties of the malware’s input for which the path is traversed, e.g., the
actual data values read from a socket that would trigger the path’s execution.

We evaluate our tool on a sample taken from a well-known family of remote
access trojans [31], showing how to automatically reconstruct its communication
protocol and the supported commands starting from initial hints by the malware
analysts on the portions of code to analyze. We estimate the reports our tools
generates to be worth hours of detailed investigation by a professional analyst.

Paper organization. This paper is organized as follows. In Section 2 we ad-
dress the background and the features of our case study. Section 3 discusses our
symbolic analysis tool and how we used it to analyze the sample. Section 4 puts
our results into the perspective of related work, while Section 5 concludes the
paper with final thoughts and ideas for further investigations.

2 Features of the RAT

In this section, we discuss the background and the features of the malware in-
stance we use as our case study. The RAT executable can be downloaded from
VirusTotal and its MD5 signature is 7296d00d1ecfd150b7811bdb010f3e58. It is
drawn from a family of backdoor malware specifically created to execute remote
commands in Microsoft Windows platforms.

Variants of this RAT date as far back as 2004 and have successfully com-
promised thousands of computers across more than 60 different countries. This
constantly morphing malware is known under different aliases such as Enfal and
GoldSun, and its instances typically contain unique identifiers to keep track of
which computers have been compromised by each campaign [31].

The RAT gathers information on the infected computer, and communicates
with a command-and-control (C&C) server. Once activated, the malware allows
a remote attacker to take over the infected machine by exchanging files with
the server and executing shell commands. It then copies itself in a number of
executable files of the Windows system folder and modifies the registry so that
it is automatically launched at every startup.

The malware uses thread injection to activate its payload in Windows Ex-
plorer. The payload connects to http://mse.vmnat.com, sending a sprintf-
formatted string with information on the system retrieved using the Netbios
API. At the core of the malware is a loop that periodically polls the server for
encrypted remote commands and decrypts them by applying a character-wise
XOR with the 0x45 constant. The malware version we analyzed supports 17
commands, which provide full control over the infected host by allowing remote
attackers to list, create, and delete directories, move, delete, send, and receive
files, execute arbitrary commands, terminate processes, and other more specific
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Fig. 1: Control flow graph of the RAT’s command processing thread.



tasks. Communication with the server is carried out over HTTP 1.1 on port 80,
user “reader”, and password “1qazxsw2”.

A high-level picture of the control flow graph of the command processing
thread, automatically reconstructed by the IDA disassembler, is shown in Fig-
ure 1. The thread code starts at address 0x402BB0 and spans over 4 KiB of
machine code, not including the code of the called subroutines.

3 Analyzing the RAT with Symbolic Execution

In this section, we report our experience in the analysis of our RAT sample
using Angr, a popular symbolic executor. After a brief description of symbolic
execution techniques, we discuss the practical challenges in using these tools for
the malware realm, and present a number of domain-specific optimizations we
adopted. We describe the setup we used to dissect the core of the sample, and
discuss our findings and their value from a malware analyst’s perspective.

3.1 Introducing Symbolic Execution

Symbolic execution is a popular program analysis technique for testing a prop-
erty in program against multiple execution paths at a time. Rather than execut-
ing a program on a specific input – thus exploring a single control flow path at
a time – symbolic execution can concurrently handle multiple paths that would
be exercised under different inputs.

In a nutshell, a program is allowed to take on symbolic rather than concrete
input values, while an execution engine collects across each explored path a set
of constraints that are combined into a formula describing the path. When an
assignment instruction is evaluated, the formula is simply updated to reflect it.
When a branching instruction is encountered and its outcome depends on one or
more symbolic values, the execution is forked by creating two states described
by two distinct formulas, derived from the current formula by adding to it the
branch condition or its negation, respectively. A constraint solver - typically one
suited for satisfiability modulo theories (SMT) - is used to evaluate expressions
involving symbolic values, as well as for generating concrete inputs that can be
used to run concretely the program along the desired path.

We have implemented our ideas in Angr [26], an open source framework for
symbolic execution developed at UC Santa Barbara. Angr ships as a collection
of Python libraries for binary analysis and dissection. It has been employed
in a number of research works [25,29], as well as by the Shellphish team from
UCSB that recently participated in the DARPA Cyber Grand Challenge, a two-
year competition seeking to create automatic systems for vulnerability detection,
exploitation, and patching in near real-time [26]. The simplicity of its Python
APIs and the support provided by the community make it an ideal playground
for prototyping research ideas in a powerful framework.



3.2 Addressing Challenges from the Malware Domain

Symbolic execution techniques have largely been employed in the software test-
ing domain, usually with the goal of automatically generating test inputs that
yield a high degree of code coverage. Albeit a few works have explored security
applications of these techniques (Section 4), the majority of currently available
symbolic executors are not well equipped for analyses in the malware realm.

Firstly, most research tools target Linux as a platform, while Windows is
by far the most malware-ridden platform. The few tools that support Windows
APIs such as BitBlaze [28] commonly resort to a concrete execution for API
calls, asking the constraint solver to provide a valid model for a path formula
when a symbolic argument is provided for a call. This concretization process
typically causes a loss of accuracy in the analysis; also, it does not solve scalability
problems that might arise when analyzing real-world malware [30].

Secondly, techniques and heuristics designed for software testing purposes
might not fit malware well. While in software testing it is profitable to explore
paths capturing behaviors unexpected for a standard usage session, such as sys-
tem or library call failures, in the malware domain an analyst is rather interested
in behaviors commonly exposed by a sample, provided that the right triggering
inputs (e.g., valid commands from a C&C server) are received and/or the envi-
ronmental conditions (e.g., a specific version of Windows) are met.

Extending Angr. To make the dissection of the RAT possible, we had to
devise a number of extensions to the original Angr framework, tackling both
of the above-mentioned problems. In order to support Windows APIs, we had
to implement 57 models of commonly used functions, such as GetProcAddress,
LoadLibrary, HttpOpenRequest, and CreateFile. A model is a summary for a
function that simulates its effects by propagating symbolic data in the same way
that the original function would have [3], requiring a significantly shorter amount
of time than in a symbolic exploration. Models are commonly employed in sym-
bolic executors when dealing with the environment (e.g., to simulate filesystem
and network I/O) and also to speed up the analysis of classes of functions, such
as those for string manipulation. The lack of models for Win32 APIs in Angr
was thus the first obstacle we had to overcome, along with the missing support
for the stdcall calling convention employed by these APIs.

Writing a model can be a time-consuming and error-prone task [2]. We thus
developed a tool that fetches API prototypes from Windows header files and
retrieves from the MSDN documentation not only a description of the function’s
behavior, but also of the directional attribute (i.e., in, out, or both) of each
argument. The output of the tool is thus an Angr model stub annotated with
the input-output relationships, so that a developer can more easily encode the
logic of the function in terms of symbolic data manipulation.

Domain-specific Optimizations. We then had to assess the practicality of
our methodology with respect to the so-called path explosion problem, which
haunts every symbolic execution implementation and can prevent it from scal-
ing to real-world software. Indeed, as a symbolic executor may fork states at



every input-dependent branch, the total number of paths to explore might be
exponential. This impacts both space and time, and a common approach is to
employ search strategies that can limit the exploration to a subset of paths that
look appealing for a given goal (e.g., identifying null-pointer dereferences).

The adoption of domain-specific optimizations and search heuristics can mit-
igate the path explosion problem in the analysis of malicious binaries, making
their symbolic analysis feasible. A recent work [30] explores this approach for
binaries packed with sophisticated code packers that reveal pages only when
about to execute code in them. We thus devised a number of heuristics aim-
ing at revealing information useful to an analyst for the dissection, discarding
instead from the exploration paths that are unlikely to.

For a number of models, we restricted the number of possible outcomes by dis-
carding error paths, or put a limit on the length of the symbolic buffer returned
by a method. For instance, in our case study we found fairly reasonable to assume
that having Win32 methods such as HttpSendRequest or InternetReadFile to
succeed should fairly reflect the run-time behavior expected for a malware. Shall
an adversary put a number of faulty function invocations in the code as a de-
coy, the analyst can still revert the model to an exhaustive configuration (either
at specific call sites or for any invocation) and restart the symbolic execution.
Exploring error-handling paths might become necessary for malware, especially
nation-state APTs, that conceals interesting behavior for the security research
to explore, e.g., attempting to spread the infection to other computers until In-
ternet access is found on one of them. Selectively enabling error-handling paths
provides the analyst with the flexibility needed to explore such scenarios as well.

Limiting the length of symbolic buffers is a common practice in symbolic
executors, as exploring all possible lengths would quickly lead to the path explo-
sion phenomenon [1]. We devised an optimization that targets symbolic buffers
originating in Win32 models and processed by tight loops. A tight loop is a code
sequence ending in a conditional backward jump within a short reach; for our
setting we empirically chose a 45-byte threshold. When the loop trip count de-
pends on the content of a symbolic buffer originating in a Win32 model, we do
as follows: if the loop has not already exited within k iterations, we force it to.

The rationale behind this heuristic is that while such buffers are typically
large, the amount of data they usually contain is much smaller. For instance,
in the analysis of our RAT sample we found out that most buffers have length
0x1000 but are filled only for the first few bytes. Tight loops for string processing
are quite frequent in the sample, especially in the form of REP instructions.
We also provided an optimization for Angr that speeds up the processing of
REP when the trip count can be determined statically: rather than symbolically
iterating over the loop, we compute its effects and update the state at once.

Finally, we encoded a simple iterative deepening search (IDS) strategy to dis-
criminate which alternative should be explored first when a branching instruction
is encountered (Section 3.1). As our goal is to reconstruct which strings exercise
the different commands supported by a RAT and possibly discover any depen-
dencies between them, exploring sequences of commands of increasing length



might provide insights to an analyst in a timely manner. We also favored IDS
over breadth-first search (BFS) for its lower memory consumption. In fact, Angr
currently lacks a mature checkpointing mechanism to automatically suspend the
exploration for a set of states and release their resources when too many paths
are being concurrently explored. While this might not be an issue when executing
the framework on a cluster, an analyst might also want to perform a preliminary
analysis on commodity hardware such as the laptop we used in our experiments.

3.3 Dissecting the RAT with Angr

In this section, we provide an overview of how the dissection of the RAT sample
can be carried out in our tool for Angr.

When a malware analyst first disassembles the executable, they can deter-
mine from the inspection of the WinMain method that the RAT - after running
a number of checks and collecting preliminary information about the attacked
machine (such as the Windows version and the locale in use) - resorts to the
Win32 CreateRemoteThread function to inject and run three threads in the vir-
tual address space of explorer.exe. A quick look at their code reveals that the
first thread carries out the command-and-control logic and executes the remote
commands (Figure 1), while the remaining two do not reveal any interesting
behavior and can be discarded from the analysis for the moment.

Execution Context. Ideally, an analyst would like to set the symbolic entry
point (SEP) to the entry point of the thread and start the symbolic execution
from there. Angr treats as symbolic any data fetched from uninitialized memory
locations during the exploration. We thus define the execution context as the
set of memory location holding a value initialized when reaching SEP from the
program’s entry point, and that any path starting at SEP might then need later1.

Providing the engine with information on the context can be profitable de-
pending on the application being analyzed. For instance, one might employ sym-
bolic execution to find out how the context should look like in order for the exe-
cution to reach a specific instruction (e.g., to discover which input string defuses
a logic bomb). For other applications, however, a fully symbolic context might
quickly lead to an explosion of the paths, as too little information is available
when dealing with assignments and branching instructions.

In our case study, the execution context for the command processing thread
consists of a large array provided as argument to the thread. This array con-
tains gathered information describing the attacked machine, the addresses of the
LoadLibrary and GetProcAddress functions in the address space of the process
to inject, and a number of strings describing the names of the Win32 APIs that
will be used in the thread. In fact, when executing in the injected process the
RAT will solve the address of each Win32 function it needs to invoke in a block of
code, constructing on the stack a minimal import table for the block on demand.

1 A context can formally be defined in terms of live variables, i.e., the set of locations
that execution paths starting at SEP might read from before writing to.



It is unrealistic to think that in general a constraint solver can guess which
API a malware writer requires at specific points in the program. The analyst
in this scenario is thus expected to provide the symbolic executor with portions
of the context, i.e., the API-related strings added to the argument array in the
early stage of a concrete execution. This should not be surprising for an analyst,
as they often have to fix the program state when manipulating the stack pointer
in a debugger to advance the execution and skip some code portions.

We have explored two ways to perform this task. The first is to take a memory
dump of a concrete execution of the program right before it reaches the starting
point SEP for the symbolic execution. A script then processes it and fills the
context for the execution with concrete values taken from the dump. Optionally,
portions of the context can be overridden and marked as symbolic: for instance,
turning into symbolic a buffer containing the IP address or the Windows version
for the machine can reveal more execution paths if a malware discriminates its
behavior according to the value it holds.

The problem with a dump-based approach is that in some cases it might
not be simple for an analyst to have a concrete execution reach the desired
SEP. A more general alternative is to employ symbolic execution itself to fill a
portion of the context, by moving the SEP backward. In our RAT case study
we symbolically executed the instructions filling the argument array, obtaining
a context analogous to what we extracted from a memory dump.

We believe that in general a combination of the two approaches might help
an analyst reconstruct the context for even more sophisticated samples, if it is
required by the executor to produce meaningful results. Additionally, reverse
engineering practitioners that use symbolic execution often perform simple ad-
justments on an initial fully symbolic context in order to explore complex por-
tions of code. We believe this approach can effectively be applied to samples
from the malware domain as well. In fact, such adjustments are common in the
Angr practice as part of a trial-and-error process, and do not require intimate
knowledge of the inner workings of the framework.

Starting the Exploration. Our RAT dissection tool ships as an Angr script
that we devise in two variants: one takes on a concrete instantiation of the
argument array for the thread, while the other constructs it symbolically. Never-
theless, once the entry point of the injected thread is reached, their behavior is
identical: from here on we will thus use the term script to refer to both of them.

From the thread’s entry point the symbolic execution follows a single exe-
cution path until a while cycle is reached. As we will discuss in the next sec-
tion, this cycle is responsible for command processing. The analyst would then
observe in the run-time log of the script that a symbolic buffer is created and
manipulated in Internet-related Win32 API calls (e.g., InternetReadFile), and
different execution paths are then explored depending on its content.

The analyst can ask the tool to display how the branch condition looks like.
The language used for expressing the condition is the one used by the Z3 SMT
solver employed by Angr. If the condition is hardly readable by the analyst,
the script can also query the constraint solver and retrieve one or more concrete



...
[0x4030a0] InternetOpenA(<BV32 0x0>, <BV32 0x0>, <BV32 0x0>, <BV32 0x0>, <BV32 0x0>)

=> <BV32 hInternet_39_32>
[0x4030bc] InternetOpenUrlA(<BV32 hInternet_39_32>, <BV32 0xabcd161c>,

<BV32 0x0>, <BV32 0x0>, <BV32 0x84000100>, <BV32 0x0>,
’http://mse.vmnat.com/httpdocs/mm/$machine_host_name:$mac_address/Cmwhite’)
=> <BV32 hInternet_url_40_32>

[0x4030d5] InternetReadFile(<BV32 hInternet_url_40_32>, <BV32 0x7ffd4c00>,
<BV32 0x1000>, <BV32 0x7ffd4a60>) => <BV32 0x1>
SO: <BV32768 InternetReadFile_buffer_41_32768> @ 0x7ffd4c00
SO: <BV32 InternetReadFile_buffer_written_42_32> @ 0x7ffd4a60

[0x4030dc] InternetCloseHandle(<BV32 hInternet_url_40_32>) => <BV32 0x1>
[0x4030df] InternetCloseHandle(<BV32 hInternet_39_32>) => <BV32 0x1>
...

Fig. 2: Fragment of detailed report automatically generated for one execution
path in the RAT’s command processing thread.

instances that satisfy the condition. Our sample initially checks whether the first
two bytes in a symbolic buffer are equal to a constant that when subsequently
XOR-ed with the encryption key yields the sequence “@@”.

As the exploration proceeds, paths in which the condition is not satisfied will
quickly return to the beginning of the while cycle. This might suggest that the
constraints on the content of the symbolic buffer do not match the syntax of the
command processing core, which would then wait for a new message.

The analyst can also employ similar speculations or findings to speed up the
symbolic execution process. In particular, Angr allows users to mark certain ad-
dresses as to avoid, i.e., the engine will not follow paths that bring the instruction
pointer to any of them. For the sample we dissected this was not a compelling
issue: the number of paths that our iterative deepening search (IDS) strategy
would explore would still be small. Nonetheless, this optimization can become
very valuable in a scenario where the number of paths is much larger due to a
complex sequence of format controls. A direct consequence of the optimization
is that paths spanning sequences with at least one invalid command in it are not
reported to the analyst. We believe that such paths would not normally reveal
valuable insights into the command processing logic and protocol, and thus can
safely be discarded.

While attempting to dissect the command processing loop, the IDS strategy
used for path exploration (Section 3.2) has proved to be very convenient. In
fact, an IDS allows us to explore possible sequences of commands of increasing
length k, which also corresponds to the number of times the first instruction
in the while cycle is hit again. The script will produce a report every time a
sequence of k commands is fully explored, and once all possible sequences have
been analyzed the symbolic executor proceeds by exploring a sequence of k + 1
commands, producing in turn incremental reports for the updated length.

As the number of iterations of a command processing loop is typically un-
bounded, the analyst has to explicitly halt the exploration once they have gained
sufficient insights for the objective of the analysis. For our sample, all the ac-
cepted commands were already revealed for k = 3.



3.4 The RAT Dissected

The reports generated from our tool capture a number of relevant and useful facts
to an analyst regarding each execution path. Each report is a polished version of
the execution trace revealing the sequence of Win32 API invocations performed
inside each x86 subroutine in the sample. A report also captures control flow
transfers across subroutines, showing their call sites and return addresses along
with the API calls they perform in between.

Figure 2 shows an excerpt from a report. For each API the call site, the list
of arguments and the return value are shown. Constant string arguments are
printed explicitly, while for other data types we resort to the BVxx notation,
which in the Angr domain describes a bitvector (i.e., a sequence of consecutive
bits in memory) of xx bits. BV32 objects occur frequently on a 32-bit architecture
as they can hold pointers or primitive data types. When a bitvector holds a
concrete value, the value is explicitly listed in the report. For symbolic values a
string indicating a data type (e.g., hInternet url) or the name of the API that
created the buffer (e.g., InternetReadFile buffer) is displayed, followed by a
suffix containing a numeric identifier for the buffer and the buffer size in bits.
Observe that while the contents of a bitvector can be symbolic, it will normally
be allocated at a concrete address: when such an address is passed as argument
to an API, the report will contain a row starting with SO: that describes the
symbolic buffer the address points to.

We remark that the sequence of Win32 API calls performed by a malware
typically provides valuable information in the malware analysis practice, as the
analyst can find out which are the effects of a possible execution path in a
black-box fashion. We will further discuss this aspect in Section 4.

Further insights can be revealed once the constraint solver produces for the
report instances of symbolic buffers matching the path formula (Section 3.1),
i.e., inputs can steer the execution across the analyzed path. For instance, this
allowed us to find out which strings were required to exercise the 17 commands
accepted by our sample (Figure 1).

Dependencies between commands can instead surface from the analysis of
sequences of increasing length k. We found that each valid sequence of commands
should always start with two invocations of the 01 command, used to implement
a handshaking protocol with the command and control server.

From a concrete instantiation of the symbolic buffers we then found out the
RAT checks for the presence of a magic sequence in the server’s response dur-
ing the handshaking phase. In particular, the response has to contain “8040$(”
starting at byte 9 in order for the malware to update its state correctly and even-
tually unlock the other commands. Constraint solving techniques thus proved to
be valuable in the context of message format reconstruction.

Sequences of three commands reveal sufficient information for an analyst to
discover all the commands accepted by the RAT. Due to the particular structure
of the handshaking protocol, our tool explored (and thus reported) as many
paths as supported commands. Figure 3 provides a compact representation of
the logic of the command processing thread that we could infer from the reports.



The sample starts by creating a mutex to ensure that only one instance of the
RAT is running in the system. The internal state of the malware, represented
by the two variables c1 and c2, is then initialized.

The subroutine starting at address 0x4048A0 is invoked to collect further
information on the machine (specifically, the presence of two files), and a con-
nection is established with the server in order to transmit the identity of the
infected machine. This step is performed twice, resulting in different increments
to c1 and c2. Edges between code blocks have been annotated with the condi-
tions on the symbolic bytes in the response from the server that should be met
in order to make the transitions possible.

Once c1=2 and c2=1, the whole set of commands for the sample is unlocked.
Figure 3 reports a high-level description of two commands: namely, command
05 executes the cmd application on the machine, while command 03 spawns
a thread to transmit a file to the server. Both command handlers end with a
sequence that notifies the server of the reception of the command. We extracted
from the reports the sequence of Win32 API calls performed in each command,
thus identifying all the actions available to the attackers.

4 Related Work

Malware Detection. Anti-malware vendors receive every day thousands of
samples, many of which are unknown. A large body of works have explored
automatic techniques to determine whether a sample is malicious and, if so,
whether it is a variation of a previously analyzed threat or it requires a closer
inspection from a malware analyst. Solutions based on static techniques analyze
the code without actually executing it, with the advantage of covering it in its
entirety. For instance, [8] relies on model checking to defy simple obfuscations
employed by malicious code writers to subvert detection tools such as anti-virus
products. [9] extends this technique by supporting a wider range of morphing
techniques common in polymorphic and metamorphic malware.

The major weakness of static solutions is that they can be defeated by re-
sorting to self-modifying code, as in packer programs, or to techniques designed
to foil static disassembly. Dynamic solutions are thus a necessary complement to
static detection techniques [18]. Dynamic techniques typically execute a sample
in a contained environment and verify the action it performs, providing ana-
lysts with a report. For instance, GFI Sandbox [33] and Norman Sandbox [27]
are popular tools among security professionals. Dynamic analyses can monitor
a number of aspects including function calls and their arguments, information
flow, and instruction traces. We refer the interested reader to [12] for a recent
survey of this literature. The main drawbacks of dynamic solutions are that
only a single program execution is observed, and that a malware might hide its
behavior once it detects it is running in a contained environment.

Automatic Code Analysis. A few works have attempted to automatically ex-
plore multiple execution paths for a malware sample. In [18] Moser et al. present



cmd 03

[0x403052] CreateMutexA('RMTCURR')

[0x4030bc] InternetOpenUrlA('http://mse.vmnat.com/httpdocs/mm/$machine_host_name:$mac_address/Cmwhite')
[0x4030d5] InternetReadFile(&B1, 0x1000)
call 0x4048A0:
    [0x404bdf] hFile = CreateFileA('C:\\WINDOWS\\system32\\sys32time.ini')
    [0x404bef] GetFileSize(hfile)
    [0x404c7a] hFile = CreateFileA('C:\\WINDOWS\\system32\\ipop.dll')
    [0x404da2] InternetConnectA(host='mse.vmnat.com', port=80, user='reader', pw='1qazxsw2')
    [0x404dcc] HttpOpenRequestA(POST, '/cgi-bin/Owpq4.cgi', 'HTTP 1.1')
    [0x404e53] HttpSendRequestA("$machine_host_name:$mac_address/t|wkts}ktktHO0+.+*2+HOtwpw\x7 ...
[0x403222] InternetConnectA(host='mse.vmnat.com', port=80, user='reader', pw='1qazxsw2')
[0x40324b] HttpOpenRequestA(POST, '/cgi-bin/Clnpp5..cgi', 'HTTP 1.1')
[0x40325e] HttpSendRequestA(&B2) -- B2 = "$machine_host_name:$mac_address/Cmwhite"

[0x403bc0] InternetConnectA(host='mse.vmnat.com', port=80, user='reader', pw='1qazxsw2')
[0x403be9] HttpOpenRequestA(POST, '/cgi-bin/Rwpq1.cgi', 'HTTP 1.1')
[0x403c15] HttpSendRequest(hinternet_3, &B3) -- B3 = "$machine_host_name:$mac_address/\x05\x05DF"

B1[0] = 5, B1[1] = 5, B1[2] = 68, B1[9:] = "8040$("

[0x4030bc] InternetOpenUrlA('http://mse.vmnat.com/httpdocs/mm/$machine_host_name:$mac_address/Cmwhite')
[0x4030d5] InternetReadFile(&B1, 0x1000)
[0x403222] InternetConnectA(host='mse.vmnat.com', port=80, user='reader', pw='1qazxsw2')
[0x40324b] HttpOpenRequestA(POST, '/cgi-bin/Clnpp5..cgi', 'HTTP 1.1')
[0x40325e] HttpSendRequestA(&B2) -- B2 = "$machine_host_name:$mac_address/Cmwhite"

c1 = c2 = 0

c1 = 1, c2 = 0 c1 = 2, c2 = 1

[0x403575] WinExec(cmd) -- cmd = B1[10:]
[0x403bc0] InternetConnectA(host='mse.vmnat.com', 
                    port=80, user='reader', pw='1qazxsw2')
[0x403be9] HttpOpenRequestA(POST, 
                    '/cgi-bin/Rwpq1.cgi', 'HTTP 1.1')
[0x403c15] HttpSendRequest(&B2) -- 
                    B2 = "$machine_host_name:
                    $mac_address/EE"

[0x4034d8 create thread
   >> begin thread 0x403c80
   [0x403ef8] hFile = CreateFile (name, ...) -- name=B1[10:]
   [0x403f0d] GetFileSize(hFile)
   [0x403f56] InternetConnectA(host='mse.vmnat.com', port=80, 
                                                    user='reader', pw='1qazxsw2')
   [0x403f78] HttpOpenRequestA(POST, '/cgi-bin/Clnpp5.cgi', 'HTTP 1.1')
   [0x403f9b] HttpSendRequest(..., &B2, ...) --
                      B2 = "$machine_host_name:$mac_address/Dfwhite"
   [0x404013] ReadFile(hFile, &B3)
   [0x4040f8] InternetOpenUrlA(http://mse.vmnat.com/httpdocs/mm/
                      $machine_host_name:$mac_address/Dfwhite)
   [0x404114] InternetReadFile(&B4) -- B4 == "1234"
   [0x404195] Sleep(0x2a6)
   [0x4041d3] InternetConnectA(host='mse.vmnat.com', port=80, 
                       user='reader', pw='1qazxsw2')
   [0x404203] HttpOpenRequestA(POST, '/cgi-bin/Dwpq3.cgi', 'HTTP 1.1')
   [0x404223] HttpSendRequest(&B5) -- B5 = prefix + B3
	                      prefix = "$machine_host_name:$mac_address/1234 {...}"
   << end thread
[0x403bc0] InternetConnectA(host='mse.vmnat.com', port=80, 
                      user='reader', pw='1qazxsw2')
[0x403be9] HttpOpenRequestA(POST, '/cgi-bin/Rwpq1.cgi', 'HTTP 1.1')
[0x403c15] HttpSendRequest(hinternet_3, &B6)
                    B6 = "$machine_host_name:$mac_address/@@\x03\x02"

...

B1[0] = 5, B1[1] = 5

B1[2] = 64 B1[2] = 60 B1[2] = ...
cmd 05

cmd 01

Fig. 3: Compact report for the RAT’s command processing thread.



a system that can identify malicious actions carried out only when certain condi-
tions along the execution paths are met. Their results show that on a set of 308
real-world malicious samples many of them show different behavior depending
on the inputs from the environment. Brumley et al. [3,4] have designed similar
systems aiming at identifying trigger-based behavior in malware. In particular,
[3] discovers all commands in a few simple DDoS zombies and botnet programs.

These approaches employ mixed concrete and symbolic execution to explore
multiple paths, starting the execution from the very beginning of the program. In
this paper, we leverage symbolic execution to dissect a portion of a sample that
is of interest for an analyst, provided they have sufficient knowledge to set up a
minimal execution context for the exploration to start. Automatic systems suffer
from known limitations that hinder the analysis of complex malware, such as the
inherent cost of constraint solving and difficulties in handling self-modifying code
and obfuscated control flow [20]. They are thus not generally used for real-scale
malware analysis [30]. We believe manual symbolic execution as devised in this
work can help get around these issues, as an analyst can provide the engine with
insights to refine and guide the exploration (on a possibly limited scope compared
to a whole-code automatic analysis) as part of a trial-and-error process.

In [30] Ugarte-Pedrero et al. show that by leveraging a set of domain-specific
optimizations and heuristics multi-path exploration can be used to defeat com-
plex packers. They also present an interesting case study on Armadillo, which
is very popular among malware writers. Ad-hoc techniques and heuristics, in-
cluding even simple ones as those we describe in this paper, can indeed be very
effective in the malware domain.

Of a different flavor is the framework presented in [20]. X-Force is a binary
analysis engine that can force a binary to execute requiring no input or proper
environment. By trading precision for practicality, branch outcomes are forced
in order to explore multiple paths inconsistently, while an exception recovery
mechanism allocates memory and updates pointers accordingly. In one of the
case studies the authors discuss the discovery of hidden malicious behaviors
involving library calls.

Symbolic Execution. Symbolic execution techniques have been pioneered
in the mid ’70s to test whether certain properties can be violated by a piece
of software [15]. Symbolic techniques have been largely employed in software
testing, with the goal of finding inputs that exercise certain execution paths
or program points (e.g., [6,13]). A number of security applications have been
discussed as well, e.g., in [28,25,26,29]. The reader can refer to previous literature
(e.g., [23,1]) for a better understanding of the challenges that affect the efficiency
of symbolic execution and when it might become impractical.

To the best of our knowledge, symbolic execution tools are not commonly
employed yet by malware analysts. However, the 2013 DARPA announcement
regarding the Cyber Grand Challenge competition has raised a lot of interest
among security professionals. For instance, the 2016 Hex-Rays plugin contest for
IDA Pro was won by Ponce [14], which provides support for taint analysis [23]
and symbolic execution: Ponce allows the user to control conditions involving



symbolic registers or memory locations, in order to steer the execution as desired.
Symbolic execution is employed also in several open-source projects such as
Triton [22] for binary analysis, reverse engineering, and software verification.

Obfuscation. Obfuscation techniques can be used also with the specific goal
of thwarting symbolic execution. In particular, [24] discusses how to use crypto-
graphic hash functions to make it hard to identify which values satisfy a branch
condition in a malware, while [32] relies on unsolved mathematical conjectures
to deceive an SMT solver. [34] addresses the limitations of symbolic execution
in the face of three generic code obfuscations and describes possible mitigations.

Botnet Analysis. In this paper, we show how to derive the sequence of com-
mands for a specific RAT. Many works have tackled the more general problem of
automatic protocol reconstruction and message format reverse engineering (e.g.,
[5,10,11,7]). We refer the interested reader to [19] for a survey of protocol reverse
engineering techniques, and to [21] for a taxonomy of botnet research.

5 Conclusions

In this paper we have shown a successful application of symbolic execution tech-
niques to malware analysis. A prototype tool we designed based on Angr was
able to automatically derive the list of commands supported by a well-known
RAT and its communication protocol with the C&C server. To design our tool
we had to overcome a number of complex issues.

A primary requirement for symbolically executing a Windows binary is the
availability of API models. Unfortunately, the current release of Angr does
not provide any Win32 API model, forcing us to develop them when needed
for executing our RAT sample. An interesting research direction is how we can
extend our tool for generating API stubs in order to minimize the implementation
effort required to transform these stubs into working API models.

The most common issue when performing symbolic execution of a complex
binary is the well-known path explosion problem. Indeed, a large number of paths
could be generated during a program’s execution, making the analysis hardly
scalable. To mitigate this problem, we have implemented several domain-specific
optimizations as well as a variety of common-sense heuristics. Although these
tweaks may harm the efficacy of an automatic analysis by discarding potentially
interesting paths, they can be easily disabled or tuned by a malware analyst
whenever few useful reports are generated by our tool.

The case study presented in this paper has shown how communication proto-
cols used by RATs could be potentially nontrivial. In the examined RAT sample,
our tool was able to highlight that a specific handshaking phase is required to
activate the majority of commands. While an analyst may spend hours trying to
understand this protocol, our tool could reveal it without any manual interven-
tion. However, our prototype still lacks support for mining the reports. Ideally,
our tool should continuously evaluate the generated reports and provide the an-
alyst with a clear summary of the findings, possibly highlighting and clustering



reports based on common features. Visualizing the flow of concrete and symbolic
data across API calls would provide valuable information to analysts as well.

While our prototype has been tested only on a single RAT sample, we believe
our approach is rather general and replicable on other well-known RAT families.
We plan to address this topic in future work. One obstacle to a large-scale
validation is that each sample may need a different setup, i.e., a different symbolic
entry point and execution context. It remains an interesting open question how
to minimize the amount of manual intervention required for malware analysts.

Another challenging issue that is likely to emerge when approaching other
RAT samples is the use of strongly encrypted commands. Indeed, if a RAT
resorts to a robust crypto function to decrypt the command, the constraint solver
may be unable to provide a concrete model, i.e., break the encryption schema. In
this scenario, our tool may fail to fully reconstruct the communication protocol
of the RAT, but may still provide useful hints for the analyst. Although this
may seem a critical limitation of our tool, we remark that, when performing a
manual dissection, the analyst will face the same issue. Common crypto attacks,
such as dictionary-based and brute-force attacks, could be integrated in our tool
to attempt to defeat the encryption when the solver fails.
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