
Hiding in the Particles: When Return-Oriented
Programming Meets Program Obfuscation

Pietro Borrello
Sapienza University of Rome

borrello@diag.uniroma1.it

Emilio Coppa
Sapienza University of Rome

coppa@diag.uniroma1.it

Daniele Cono D’Elia
Sapienza University of Rome

delia@diag.uniroma1.it

Abstract—Largely known for attack scenarios, code reuse
techniques at a closer look reveal properties that are appealing
also for program obfuscation. We explore the popular return-
oriented programming paradigm under this light, transforming
program functions into ROP chains that coexist seamlessly with
the surrounding software stack. We show how to build chains
that can withstand popular static and dynamic deobfuscation
approaches, evaluating the robustness and overheads of the
design over common programs. The results suggest a significant
amount of computational resources would be required to carry a
deobfuscation attack for secret finding and code coverage goals.

Index Terms—Code obfuscation, program protection, ROP

I. INTRODUCTION

Memory errors are historically among the most abused soft-
ware vulnerabilities for arbitrary code execution exploits [1].
Since the introduction of system defenses against code in-
jection attempts, code reuse techniques earned the spotlight
for their ability in reassembling existing code fragments of a
program to build the execution sequence an attacker desires.

Return-oriented programming (ROP) [2] is the most emi-
nent code reuse technique. Thanks to its rich expressivity, ROP
has also seen several uses besides exploitation. Researchers
have used it constructively, for instance, in code integrity
verification [3], or maliciously to embed hidden functionality
in code that undergoes auditing [4], [5]. Security firms have
reported cases of malware in the wild written in ROP [6].

Some literature considers ROP code bothersome to analyze:
humans may struggle with the exoticism of the representation,
and the vast majority of tools used for code understanding
and reverse engineering have no provisions for code reuse
payloads [7]–[10]. Automatic proposals for analyzing complex
ROP code started to emerge only recently [7], [9], [10].

We believe that the quirks of the ROP paradigm offer
promising opportunities to realize effective code obfuscation
schemes. In this paper we present a protection mechanism that
builds on ROP to hide implementation details of a program
from motivated attackers that can resort to a plethora of au-
tomated code analyses. We analyze what qualities make ROP
appealing for obfuscation, and address its weak links to make
it robust in the face of an adversary that can symbiotically
combine general and ROP-aware code analysis methods.

Motivation: From a code analysis perspective, we observe
that the control flow of a ROP sequence is naturally destruc-
tured. Each ROP gadget ends with a ret instruction that
operates like a dispatcher in a language interpreter: ret reads

from the top of the stack the address of the next gadget and
transfers control to it. The stack pointer RSP becomes a virtual
program counter for the execution, sidelining the standard
instruction pointer RIP, while gadget addresses become the
instructions supported by this custom language.

This level of indirection makes the identification of basic
blocks and of control transfers between them not immediate.
This challenges humans and classic disassembly and decompi-
lation approaches, but may not be an issue for dynamic deob-
fuscation approaches that explore the program state space sys-
tematically (e.g., symbolic execution [11]) or try to extricate
the original control flow from the dispatching logic (e.g., [7]),
nor for ROP-aware analyses that dissect RSP and RIP changes.
Protecting transfers is critical for program obfuscations to
withstand advanced deobfuscation methods, and we introduce
three ROP transformations that address this weak link.

Another benefit from using ROP for obfuscation is the code
diversity [12] it can bring. Obfuscations may randomize the
instructions emitted at specific points, but can incur a limited
transformation space [13]. We can use multiple equivalent
gadgets in the encoding to serve one same purpose in different
program points. But one gadget can also serve different
purposes in different points: the instructions in it that concur to
the program semantics will depend on the surrounding chain
portion, while the others are dynamically dead. This not only
complicates manual analysis, but helps also against pattern
attacks that may try to recognize specific gadget sequences to
deem the location of ROP branches and blocks in the chain.

Such attacks often complement an attacker’s toolbox [14]:
for instance, an adversary may heuristically look for distinctive
instructions in memory and try to patch away parts that hinder
semantic attacks. We identify a distinctive benefit of ROP:
the adversary only sees bytes that form gadget addresses or
data operands, and because of indirection needs to dereference
addresses to retrieve the actual instructions. With a careful
encoding we can induce gadget confusion that makes it harder
also to locate the position of gadget addresses in the chain.

Contributions: In this work we bring novel ideas to the
software protection realm, presenting a protection mechanism
that significantly slows down or deters current automated
deobfuscation attacks. We show how to transform entire pro-
gram functions into ROP chains that interact seamlessly with
standard code components, introducing novel natural encoding
transformations that raise the bar for general classes of attacks.

We evaluate our techniques over synthetic functions for two
common deobfuscation tasks, putting the computational effort
for succeeding into perspective with different configurations
of the prominent virtualization obfuscation [13]. We also
analyze their slowdowns on performance-sensitive code, and
their coverage on a heterogeneous real-world code base. In
summary, over the next sections we present:

• a rewriter that turns compiled functions into ROP chains;
• an analysis of ROP in the face of three attack surfaces

for general deobufscation, and three encoding predicates
that increase the resistance against such attacks;

• a resistance study for secret finding and code coverage
goals with symbolic, taint-driven, and ROP-aware tools;

• a coverage study where we transform 95.1% of the unique
functions composing the coreutils Linux suite.

In the hope of fostering further work in program protection,
we make our system available to researchers. Details for access
can be found at https://github.com/pietroborrello/raindrop/.

II. PRELIMINARIES

This section details key concepts from code obfuscation and
ROP research that are relevant to the ideas behind this paper.

A. Code Obfuscation

Software obfuscation protects digital assets [15] from mali-
cious entities that some literature identifies as MATE (man-at-
the-end) attackers [13]. Before a research community was even
born, in the ’80s these entities challenged and subverted anti-
piracy schemes from vendors, and shielded their own malware.

Today it represents an active research area, with hetero-
geneous protection mechanisms challenged by increasingly
powerful program analyses [16]. Data transformations alter the
position and representation of values and variables, while code
transformations affect the selection, orchestration, and arrange-
ment of instructions. Our focus are code transformations that
prevent an adversary from understanding the program logic.

The interpretation capabilities of an attacker can be syn-
tactic, semantic, or both. This distinction makes a great
impact: for instance, instruction substitution or the insertion of
spurious computations get in the way of syntax-driven attacks,
but may hardly affect a semantic interpretation as we discuss
in §III. When facing mixed capabilities, the most resilient
protection schemes are often heavy-duty transformations that
deeply affect the control flow and instructions of a program.

Such transformations commonly operate at the granularity
of individual functions [13]. Control-flow flattening [17], [18]
collapses all the basic blocks of the control-flow graph (CFG)
into a single layer, introducing a dispatcher block that picks
the next block to execute based on an augmented program
state. After the successful deobfuscation attack of [19], present
variants try to complicate the analysis of the dispatcher [20].

Virtualization obfuscation [13] completely removes the orig-
inal layout and instructions: it transforms code into instruc-
tions for a randomly generated architecture and synthesizes
an interpreter for it [21]. The instructions form a bytecode
representation in memory, and the interpreter maintains a

if-then:
test rax, rax
jne else
mov rdi, 0x1
jmp next
else:

mov rdi, 0x2
next:

rsp

0x0

and rsi, rcx; ret

add rsp, rsi; ret

neg rax; ret

pop rcx; ret

pop rsi; ret

0x18

adc rcx, rcx; ret

neg rcx; ret

pop rdi; ret

pop rsi; pop rbp; ret

pop rdi; ret

next

0x1

0x2

JNE

JMP

RDI = RA ? 2 : 1

(continues)

0x
18

 b
yt

es

Fig. 1: ROP chain with non-linear control flow. For readability
pointed-to instructions appear in place of gadget addresses.

virtual program counter over it: it reads each instruction
and dispatches an opcode handler function that achieves the
desired semantics for it. As its working resembles a virtual
machine, the transformation is also known as VM obfuscation.
This technique has lately monopolized the agenda of much
deobfuscation research in security conferences (e.g., [8], [22]–
[25]). VM obfuscation tools have three main strengths: com-
plex code used in opcode handlers to conceal their semantics,
obfuscated virtual program counter updates, and scarce reuse
of deobfuscation knowledge as the instruction set and the code
for opcode handlers are generated randomly for each program.

Best practices often use data transformations at strategic
points (e.g., VM dispatcher) in the implementation of a code
transformation. The most common instance are opaque predi-
cates [26]: expressions whose outcome is independent of their
constituents, but hard to determine statically for an attacker.
Opaque predicates can build around mathematical formulas
and conjectures, mixed boolean-arithmetic (MBA) expres-
sions, and instances of other hard problems like aliasing [27].

B. Return-Oriented Programming

ROP is a technique to encode arbitrary behavior in a
program by borrowing and rearranging code fragments, also
called gadgets, that are already in the program [2]. Each gadget
delivers a piece of the desired computation and terminates with
a ret instruction, which gives the name to the technique.
A ROP payload comprises a sequence of gadget addresses
interleaved with immediate data operands. The key to ignition
is a pivoting sequence that hijacks the stack pointer, so that on
a function return event the CPU fetches the instructions from
the first gadget. Each gadget eventually transfers execution to
the next using its own ret instruction, realizing a ROP chain.

Figure 1 features a chain that assigns register RDI with 1
when register RAX==0, and with 2 otherwise. The example
showcases exoticisms of the representation with branch en-
coding and path-dependent semantics of chain items. The first
gadget writes the immediate value 0x0 to RCX, and RSP
advances by 0x10 bytes for its pop and ret instructions.
The next two gadgets check if RAX is zero with neg rax:
the carry flag becomes 0 when RAX==0 and 1 otherwise, then
an addition with carry writes this quantity into RCX.

ROP control-flow branches are variable RSP addends com-
puted over a leaked CPU condition flag. The chain determines
whether to skip over the 0x18 byte-long portion that sets RDI

https://github.com/pietroborrello/raindrop/

to 1: it computes in RSI an addend that is equal to 0 when
RAX==0, and to 0x18 otherwise, using a two’s complement
and a bitwise AND on RCX. If the branch is taken, RSP
reaches a pop rdi gadget that reads and assigns 2 to RDI
as desired. When execution falls through, a similar sequence
sets RDI to 1, then unconditionally jumps over the alternative
assignment sequence: this time we find no RSP addition, but
a gadget disposes of the alternative 0x10 byte-long segment
by popping two junk immediates to RSI and RBP.

Attackers can find Turing-complete sets of gadgets in
mainstream software [2], [28]. While a few works address
automatic generation of ROP payloads [28], publicly avail-
able tools often produce incomplete chains in real-world
scenarios [29] or do not support branches. Reasons for this
failure are side effects from undesired code in found gadgets,
register conflicts during chaining [29], and unavailability of
“straightforward” gadgets for some tasks [30]. Albeit improved
tools continue to appear (e.g., [31]), no general solution for
automatic ROP code generation seems available to date.

ROP is the most popular but not the sole realization of code
reuse: jmp-ended gadgets (JOP) [32], counterfeit C++ objects
(COOP) [33], and other elements can be abused as well. But
most importantly, ROP today is no longer only a popular mean
to get around and disable code injection defenses.

Researchers and threat actors used its expressivity to create
userland [6], kernel [34], [35], and enclave [36] malware, and
to fool antivirus engines [5], [37] and application review [4].
The sophistication of these payloads went in some cases
beyond what a human analyst can manually investigate [9], and
researchers in the meantime explored automated approaches to
untangle ROP chains: we discuss these works in detail in §III.

III. ADVERSARIAL MODEL

This paper considers a motivated and experienced attacker
that can examine a program both statically and dynamically.
The attacker is aware of the design of the used obfuscation, but
not of the obfuscation-time choices made when instantiating
the approach over a specific program to be protected (e.g. at
which program locations we applied some transformation).

While the ultimate end goal of a reverse engineering attempt
can be disparate, we follow prior deobfuscation literature
(e.g., [14], [38], [39]) in considering two deobfuscation goals
that are sufficiently generic and analytically measurable:
G1 Secret finding. The program performs a complex com-

putation on the input, such as a license key validation,
and the attacker wishes to guess the correct value;

G2 Code coverage. The attacker exercises enough (obfus-
cated) paths to cover all reachable (original) program
code, e.g. to later analyze execution traces.

The attacker has access to state-of-the-art systems suitable
for automated deobfuscation and can attempt to symbiotically
combine them, using one to ease another. In the following
we describe the most powerful and promising approaches
available to attackers, and enucleate three attack surfaces for
general deobfuscation. Those will drive our ROP encoding
techniques to build chains that may withstand such attacks.

A. Principles behind Automated Deobfuscation

Banescu et al. [38] identify a common pre-requisite in
automated attacks perpetrated by reverse engineers: the need
for building a suite of inputs that exercise the different paths
a protected program can actually take. Achieving a coverage
as high as 100% represents G2 for our attacker, while for G1
depending on the specific function fewer paths may suffice but
also data dependencies should be solved. Slowing down the
generation of a “test suite” for the attacker is a first cut of the
effectiveness of an obfuscation [38], as it is a key step in most
deobfuscation pipelines for utterly disparate end goals.

By analyzing deobfuscation research, we abstract three gen-
eral attack surfaces that a “good” obfuscation shall consider:
A1 Disassembly. It should not be immediate for an attacker

to discover code portions using static analysis techniques;
A2 Brute-force search. Syntactic code manipulations such

as tracking and “inverting” the direction of control trans-
fers should not reveal new code, but further dependencies
must be solved in order to take valid alternate paths;

A3 State space. When an obfuscation makes provisions to
artificially extend the program state space to be explored,
analyses based on forward and backward dependencies
of program variables should fail to simplify them away.

In the next section we present eminent approaches for such
automated attacks, which we then consider in §VII to evaluate
our ROP obfuscation. How to transform an existing program
function into a ROP chain and make it robust against these
three attack types are the subject of §IV and §V, respectively.

B. State-of-the-art Deobfuscation Solutions

1) General Techniques: Deobfuscation attacks can draw
from static and dynamic program analyses. Several static
techniques are capable of reasoning about run-time properties
of the program, and may be the only avenue when the attacker
cannot readily bring execution to a protected program portion
or control its inputs. In this context, symbolic execution (SE)
reveals the multiple paths a piece of code may take by making
it read symbolic instead of concrete input values, and by
collecting and reasoning on path constraints over the symbols
at every encountered branch. Upon termination of each path,
an SMT solver generates a concrete input to exercise it [11].

Scalability issues often cripple static approaches, and dy-
namic solutions may try to get around them by leveraging facts
observed in a concrete execution. Dynamic symbolic execution
(DSE) interleaves concrete and symbolic execution, collecting
constraints at branch decisions that are now determined by the
concrete input values, and generates new inputs by negating
the constraints collected for branching decisions.

Obfuscators can however induce constraints that are hard
for a solver, or expand the program state space artificially.
Building on the intuition that these transformations are not part
of the original program semantics, taint-driven simplification
(TDS) tracks explicit and implicit flows of values from inputs
to program outputs, untangling the control flow of an obfus-
cation method apart from that of the original program [7].

TDS is a general, dynamic, and semantics-based technique:
it applies a selection of semantics-preserving simplifications
to a recorded trace and produces a simplified CFG. TDS
can operate symbiotically with DSE to uncover new code by
feeding DSE with the simplified trace: in [7] this symbiosis
turned out effective in cases that DSE alone could not handle.
TDS succeeded on code protected by state-of-the-art VM
obfuscators, as well as on four hand-written ROP programs.

We consider SE, DSE, and TDS as they represent powerful
tools available to adversaries, and embody concepts seen
also in attacks against specific obfuscations (e.g., [40]). Prior
literature [14], [38], [39] uses SE and DSE to evaluate and
compare obfuscation techniques on goals akin to G1 and
G2, as both approaches are powerful and driven only by the
semantics of the code (i.e., syntactic changes have little effect).

2) ROP-Aware Techniques: Expressing programs as ROP
payloads affects analysis techniques that account for the syn-
tactic representation of code. For instance, even commercial
disassemblers and decompilers are not equipped to deal with
this exotic representation and would fail to produce meaningful
outputs for ROP chains [41]. Currently researchers have come
up with two solutions to handle complex ROP code.

ROPMEMU [9] attempts dynamic multi-path exploration by
looking for sequences that leak condition flags from the CPU
status register, as they may take part in branching sequences
(§II-B): it flips their value and tries to generate alternate
execution traces that explore new code. ROPMEMU is not
the sole embodiment of this technique, seen in, e.g., crash-free
binary exploration [42] and malware unpacking [43] research
for RIP-driven code. ROPMEMU eventually removes the ROP
dispatching logic (i.e., the ret sequences) and performs
further simplifications, reconstructing a CFG representation.

ROPDissector [10] addresses shortcoming of ROPMEMU in
branch identification, with a data-flow analysis for identifying
sequences that build variable RSP offsets, so to flip all and
only the operations taking part in the process. ROPDissector
builds a ROP CFG highlighting branching points and basic
blocks in a chain, and operates as a static technique as it does
not require a valid execution context as starting point.

In our evaluation we will consider a combination of the two
approaches, speculating on extensions tailored to our design.

IV. PROGRAM ENCODING WITH ROP
We design a binary rewriter for protecting compiled pro-

grams: the user specifies one or more functions of interest
that the rewriter encodes as self-contained ROP chains stored
in a data section of the binary. Our implementation supports
compiler-generated, possibly stripped x64 Linux binaries. To
ensure compatibility between ROP chains and non-ROP code
modules, we intercept and preserve stack manipulations and
use a separate stack for the chain. This section details the
design of the rewriter (Figure 2), how it encodes generic
functions as self-contained chains, and its present limitations.

A. Geometry of a ROP Encoder
1) Gadget Sources: The first decision to face in the design

of a ROP encoder is where to find gadgets. These may

BinaryProgramINPUT
ObfuscatedProgramOUTPUT

CFGReconstructionLivenessAnalysisGadgetFinder
Translation

Chain Crafting
Materialization

ROP Encoder

Fig. 2: Architecture of the ROP rewriter.

be found in statically and dynamically linked libraries, in
program parts left unobfuscated, or in custom code added to
the program. We ruled out static libraries as a binary might not
have any, and dynamic ones to avoid dependencies on specific
library versions that must be present in any target system.

Exploitation research suggests that program code as small
as 20-100KB may already contain minimal gadget sets for
attacks [28]. Our scenario however is ideal: the possibility of
controlling and altering the binary grants us more wiggle room
compared to attack scenarios, as we can add missing gadgets—
and most importantly create diversified alternatives—as dead
code in the .text section of the program. We thus pick
gadgets from a pool of artificial gadgets combined with
gadgets already available in program parts left unobfuscated.

2) Rewriting: The second decision concerns deploying the
encoder as a binary rewriter (as we do) or a compiler pass. Bi-
nary rewriting can handle a larger pool of programs, including
proprietary software and programs with a custom compilation
toolchain, and builds on analyses that extract facts necessary
to assist the rewriting. A compiler pass has some such anal-
yses (e.g., liveness) already available during compilation, and
possibly more control over code shape. However, in order to
be able to rewrite an entire function, we believe a pass may
have to operate as last step (modifying or directly emitting
machine instructions) and/or constrain or rewrite several pieces
of upper passes (e.g., instruction selection, register allocation).
This would lead to a pass that is platform-dependent and that
faces similar challenges to a rewriter while being less general.

3) Control Transfers and Stack Layout: Obfuscated func-
tions get expressed in ROP, but may need to interact with
surrounding components, calling (or being called by) non-ROP
program/library functions or other ROP functions. In this re-
spect native code makes assumptions on the stack layout of the
functions, e.g., when writing return addresses or referencing
stack objects in the scope of a function and its callees.

Reassembleable disassembling literature [44]–[47] describes
known hurdles when trying to turn hard-coded stack references
into symbols that can be moved around. In our design we
instead preserve the original stack behavior of the program:
we place the chain in a separate region, and rewrite RSP
dereferences and value updates to use a other_rsp value
that mimics how the original code would see RSP (Figure 3).

This choice ensures a great deal of compatibility, and
avoids that calls to native functions may overwrite parts of
the ROP chain when executing. We keep other_rsp in
a stack-switching array ss that ensures smooth transitions
between the ROP and native domains and supports multiple
concurrently active calls to ROP functions, including (mutual)
recursion and interleavings with native calls.

We store the number of active ROP function instances in
the first cell of the array, making the last one accessible as
*(ss+*ss). When upon a call we need to switch to the
native domain, we use other_rsp to store the resumption
point for the ROP call site, and move its old value in RSP
so to switch stacks. Upon function return, a special gadget
switches RSP and other_rsp again (Figure 4).

4) Chain Embedding: Upon generation of a ROP chain,
we replace the original function body in the program with a
stub that switches the stack and activates the chain. We opt
for chains without destructive side effects, avoiding to have to
restore fresh copies across subsequent invocations. We place
the generated chains at the end of the executable’s .data
section or in a dedicated one.

B. Translation, Chain Crafting, and Materialization

This section describes the rewriting pipeline we use in the
ROP encoder of Figure 2. Although we operate on compiled
code, the pipeline mirrors typical steps of compiler architec-
tures [48]: we use a number of support analyses (yellow and
grey boxes) and translate the original instructions to a simple
custom representation made of roplets, which we process in
the chain crafting stage by selecting suitable gadgets for their
lowering and then allocating registers and other operands. A
final materialization step instantiates symbolic offsets in the
chain and embeds the output raw bytes in the binary.

1) Translation: The unit of transformation is the function.
We identify code blocks and branches in it using off-the-
shelf disassemblers (CFG reconstruction element of Figure 2):
Ghidra [49] worked flawlessly in our tests when analyzing
indirect branches, and we support angr [50] and radare2 [51]
as alternatives. We then translate one basic block at a time,
turning its instructions into a sequence of roplets.

A roplet is a basic operation of one of the following kinds:
• intra-procedural transfer, for direct branches and for

indirect branches coming from switch tables (see [52]);
• inter-procedural transfer, for calls to non-ROP and ROP

functions (including jmp-optimized tail recursion cases);
• epilogue, for handling instructions like ret and leave;
• direct stack access, when dereferencing and updating RSP

with dedicated read or write primitives (e.g., push, pop);
• stack pointer reference, when the original program reads

the RSP value as source or destination operand in an
instruction, or alters it by, e.g., adding a quantity to it;

• instruction pointer reference, to handle RIP-relative ad-
dressing typical of accesses to global storage in .data;

• data movement, for mov-like data transfers that do not
fall in any of the three cases above;

• ALU, for arithmetic and logic operations.
One roplet is usually sufficient to describe the major-

ity of program instructions. In some cases we break them
down in multiple operations: for instance, for a mov qword
[rsp+8], rax we generate a stack pointer reference and
a data movement roplet. To ease the later register allocation
step, we annotate each roplet with the list of live registers1

found for the original instruction via liveness analysis.

size
ss + size

other_rsp

ROP chain native stackret addressvar1rsp gadgets size ssvar1 (ss+size) ←
←* **

ss

Fig. 3: Reading a stack variable from top of native stack.

At this stage we parametrically rewire every stack-related
operation to use other_rsp, and transform RIP-relative
addressing instances in absolute references to global storage.

2) Chain Crafting: When the representation enters the
chain crafting stage, we lower the roplets in each basic
block by drawing from suitable gadgets for each roplet type
(using the gadget finder element of Figure 2). For instance,
to translate a conditional (left) or unconditional (right) intra-
procedural transfer we combine gadgets to achieve:

pop {reg1} ## L
mov {reg2}, 0x0
cmov{ncc} {reg1}, {reg2} pop {reg1} ## L
add rsp, {reg1} add rsp, {reg1}

where a gadget may cover one or more consecutive lines
(so we omit ret above). In both codes the pop gadget will
read from the stack an operand L (placed as an immediate
between the addresses of the first and second gadget) that
represents the offset of the destination block. L is a symbol
that we materialize once the layout of the chain is finalized,
similarly to what a compiler assembler does with labels.

Following the analogy, when choosing gadgets for roplets
we operate as when in the instruction selection stage of a
compiler [48], with {regX} representing a virtual register,
roplets the middle-level representation, and gadgets the low-
level one. When it comes to instruction scheduling, we follow
the order of the original instructions in the block.

Native function calls see a special treatment, as we have to
switch stacks and set up the return address in a way to make
another switch and resume the chain (§IV-A). For the call we
combine gadgets as in the following:

pop {reg1} ## ss
add {reg1}, qword ptr [{reg1}] ## step A ends
sub qword ptr [{reg1}], 0x8
mov {reg2}, qword ptr [{reg1}]
pop {reg3} ## addr. of return gadget
mov qword ptr [{reg2}], {reg3} ## step B ends
pop {reg2} ## function address
xchg rsp, qword ptr [{reg1}]; jmp {reg2} ## step C

where we pop from the stack the addresses of: the stack-
switching array, a function-return gadget, and the function to
call. Gadgets may cover one or more consecutive lines, except
for the last one which describes an independent single JOP
gadget (§II-B): xchg and jmp switch stacks and jump into
the native function at once. Figure 4 shows the effects of the
three main steps carried by the sequence.

1A backward analysis deems a register live if the function may later read
it before writing to it, ending, or making a call that may clobber it [53], [54].

C
 after

ss size
ss + size

other_rsp

rsprsprsp
initially

 after A
 after

AB func-ret gadget
C

 after rsp
 after C

var1ret address
CA B

ROP chain native stackrecover native rsp from other_rsp push addr of
 func-ret gadget swap (rsp, other_rsp)& jump to native func

B

 initially
B

caller frame(ROP func.)

Fig. 4: Call to a native function from ROP code.

The called native function sees as return address (top entry
of its stack frame) the address of the function-return gadget.
This is a synthetic gadget with a statically hard-wired ss
address that reads the RSP value saved by the xchg at call
time and swaps stacks again:

mov {reg1}, ss; add {reg1}, qword ptr [{reg1}];
xchg rsp, qword ptr [{reg1}]; ret

For space limitations we omit details on the lowering of
other roplet types: their handling becomes ordinary once we
translated RSP and RIP-related manipulations (§IV-B1).

Register allocation is the next main step: we choose among
candidates available for a desired gadget operation by taking
into account the registers they operate on and those originally
used in the program, trying to preserve the original choices
whenever possible. When we find conflicts that may clobber a
register, we use scratch registers when available (i.e., non-live
ones) or spill it to an inlined 8-byte chain slot as a fallback.
We then ensure a reconciliation of register bindings [55] at the
granularity of basic blocks: when execution leaves a block,
the CPU register contents reflect the expected locations for
program values that are live in the remainder of the function.

Another relevant detail is to preserve the status register if the
program may read it later. While most instructions alter CPU
flags, our liveness analysis points out the sole statements that
may concur to a later read: whenever in between we introduce
gadgets that pollute the flags, we spill and later restore them.

3) Materialization: At the end of the crafting stage a chain
is almost readily executable. As its branching labels are still
symbolic, we may optionally rearrange basic blocks: then
once we fix the layout the labels become concrete RSP-
relative displacements. We then embed the chain in the binary,
allocating space for it in a data section and replacing the
original function code with a pivoting sequence to the ROP
chain. The sequence extends the stack-switching array and
saves the native RSP value, then the chain upon termination
executes a symmetric unpivoting scheme (details in [52]).

C. Discussion
Our design makes limited assumptions on the input code:

it hinges on off-the-shelf binary analyses to identify intra-
procedural branch targets, and obliviously translates stack
accesses and dereferences to preserve execution correctness
when interacting with the surrounding software stack.

Our implementation could rewrite a large deal of real-world
programs (§VII-C1), even when we supplied it code already
protected by the control-flow flattening and/or (nested) VM
obfuscations of the Tigress framework [56]. We experimentally
observed (§VII-C1) that the analyses of Ghidra are remarkably
effective in recovering intra-procedural indirect branch targets,
which in several high-level languages derive from optimized
switch constructs. Whenever those may fail, one could couple
the rewriter with a dynamic tracer for recovering the intended
targets by running the original program using expected inputs.
Transfers to other functions via indirect calls or tail jumps are
instead straightforward, as the chain transfers control to the
prologue of the callee as it happens with direct calls.

A limitation of the design, shared with static rewriting and
instrumentation schemes [45], [57], is lastly the inability to
handle self-modifying and dynamically generated code.

As for register conflicts, the high number of x64 registers
give us wiggle room to perform register renaming within
blocks with modest spilling. An area larger than the 1-word
one we use may help with code with very high register
pressure cases (§VII-C) or 32-bit implementations; instruction
reordering and function-wide register renaming may also help.

The implementation incurs two main limitations that one
can address with moderate effort. The spilling slots and the
ss array area are not thread-private, but we may recur to
thread-local storage primitives. Rewritten binaries are com-
patible with address space layout randomization for libraries,
while the body of the program is currently loaded at fixed
addresses. To ship position-independent executables we may
add relocation information to headers so to have the loader
patch gadget addresses in the chains, or use the online patching
for chains from [5] to have the program itself do the update.

In terms of compatibility with ROP defenses of modern op-
erating systems, our context is different to an exploitation one
where the program stack gets altered and the choice of gadgets
is limited. On Windows, for instance, our stack switching upon
API calls would already comply with the RSP range checks
of StackPivot [58]; our liberty to synthesize gadgets would be
decisive against CallerCheck, which checks if the instruction
preceding an API’s return address is a call [58]. We refer
to prior work [5] for details. A potential issue, which may
require the user to whitelist the program, could be instead
coarse-grained defenses that monitor branches [59] or micro-
architectural effects [60]. However, those are yet to become
mainstream as they face robustness and accuracy issues.

Finally, our readers may question if the use of ROP in-
troduces obvious security risks. An attacker needs a write
primitive pointing to a chain in order to alter it. In our
protected programs, ROP-encoded parts use write operations
only for spilling slots, and those cannot go out of bounds. Non-
ROP parts never reference chains in write (or read) operations:
an attacker would thus have to search for an arbitrary memory
write primitive in such parts. Its presence, however, would be
an important source of concern even for the original program.
Our implementation also supports the generation of read-only
chains, which use a slightly longer spilling machinery.

V. STRENGTHENING ROP PROGRAMS

In the furrow of prior works (e.g., [7]–[9]) that highlighted
the hindrances from the ROP paradigm to reverse engineering
attempts, one could anticipate that the design of §IV may chal-
lenge manual deobfuscation and code understanding attempts.
The common thread of their observations is that the exoticism
of the representation—ROP defines a weird machine [61]—
disturbs humans when compared to native code. The rewriter
makes use of all motivating factors for ROP that we outlined
in §I, such as destructured control flow and diversity and reuse
of gadgets (including gadget confusion that we describe next).

Quantifying the effectiveness of an obfuscation is however
a difficult task, as it depends not only on the available tools,
but also on the knowledge of the human operating them [38].
A well-established practice in the deobfuscation literature is to
measure the resilience to automated deobfuscation techniques,
which in most attack scenarios are the fulcrum of reverse engi-
neering attempts and ease subsequent manual inspections [16].

ROP encoding alone is not sufficient for obfuscation. We
find control transfers between basic blocks to be its weak link.

Even when diversifying the used gadget instances, an
attacker aware of the design may follow the ROPMEMU
approach (§III-B) to spot in an execution trace what gadgets
add variable quantities to RSP (thus exposing basic blocks),
untangle ret instructions from the original control flow of the
program, and assemble a dynamic CFG from multiple traces.

Protecting control transfers is equally critical in the face of
the most effective general-purpose semantics-aware techniques
like SE, DSE and TDS, which try to reason on the parts es-
sential for program functionality while sifting out the irrelevant
obfuscation constructs and instructions [7], [38], such as side
effects and dynamically dead portions from gadgets.

One way to hinder the automated approaches of §III-B
would be to target weaknesses of each technique individually.
For instance, researchers proposed hard-to-solve predicates for
SE (e.g. MBA expressions [62], cryptographic functions [63]),
and code transformations that impact concolic variants like
DSE too [22]. But an experienced attacker can symbiotically
combine methods to defeat this approach, for instance using
TDS or similar techniques (e.g., program synthesis for MBA
predicates [62]) to feed DSE with tractable traces as in [7].

In this section instead we present three rewrite predicates,
naturally meshed with RSP update actions, that bring protec-
tion against generic, increasingly powerful automated attacks
that cover the principled classes A1-2-3 from §III-A. We then
introduce gadget confusion and share some general reflections.

A. Predicate P1: Anti-ROP-Disassembly

Our first predicate uses an array of opaque values [64] to
hide branch targets (A1). The array contains seemingly random
values generated such that a periodic invariant holds, and backs
the extraction of a quantity a that we use to compute the
displacement in the chain for one of the n branches in the
code. Suppose we need to extract a for branch b∈{0..n− 1}:
starting with cell b, in every p-th cell of the array we store a

random number q such that q≡amodm, with m>n and p
chosen at obfuscation time.

10 19 34 45 54 62 66 33 6 59 61 20

Above we encoded information for n=3 branches using p=4
repetitions and m=7. For the branch with ordinal 1 we wanted
to memorize a=5: every cell colored in dark gray thus
contains a value v such that vmod 7 equals 5.

During obfuscation we use a period of size s>n, with a
fraction of the cells containing garbage. We also share a valid
cell among multiple branches, so to avoid encoding unique
offsets that may aid reversing. To this end we divide an RSP
branch offset δ in a fixed part a encoded in the array and a
branch-specific part δ − a computed by the chain, then we
compose them upon branching.

This implies that for static disassembly an attacker should
recover the array representation and mimic the computations
made in every chain segment to extract a and compute the
branch-specific part. While this is possible for a semantically
rich static technique like SE, periodicity comes to the rescue
as it brings aliasing: every p-th cell is suitable for extracting
a. Our array dereferencing scheme takes the form of:

a=A[f(x) ∗ s+ n]modm

where f(x) depends on the program state and returns a value
between 0 and p − 1. Its implementation opaquely combines
the contents of up to 4 registers that hold input-derived
values. SE will thus explore alternative input configurations
that ultimately lead to the same rsp+= δ update; reducing
their number by constraining the input would lead instead to
missing later portions of program state.

Whenever an attacker may attempt a points-to analysis [65]
over rsp+= δ, we believe a different index expression based
on user-supplied or statically extracted facts on input value
ranges would suffice to complicate such analysis significantly.

B. Predicate P2: Preventing Brute-Force Search

Our second predicate introduces artificial data dependen-
cies on the control flow, hindering dynamic approaches for
brute-force path exploration (A2) that flip branches from an
execution trace. While these techniques do not help in secret
finding (G1) as they neglect data constraints (§III-A), they may
be effective when the focus is code coverage (G2).

P1 is not sufficient against A2: an attacker can record a trace
that takes a conditional branch shielded by P1, analyze it to
locate the flags set by the instruction that steered the program
along the branch, flip them, and reveal the other path [10].

Without loss of generality, let us assume that a cmp a, b
instruction determines whether the original program should
jump to location L when a == b and fall through otherwise.
We introduce a data dependency that breaks the control flow
when brute-force attempts leave its operands untouched. As
we translate the branch in ROP, in the block starting at L we
manipulate RSP with, e.g., rsp += x ∗ (a− b), so that when
brute-forcing it without changing the operands, (a − b) != 0
and RSP flows into unintended code by some offset multiple

of x. Similarly, on the fall-through path we manipulate RSP
with, e.g., rsp += x ∗ (1− notZero(a− b)), where notZero is
a flag-independent computation2 so the attacker cannot flip it.

Different formulations of opaque updates are possible.
Whenever an attacker may attempt to learn and override up-
dates locally, we figured a future, more covert P2 variant that
encodes offsets for branches using opaque expressions based
on value invariants (obtainable via value set analysis [66]) for
some variable that is defined in an unrelated CFG block.

C. Predicate P3: State Space Widening

Our third predicate brings a path-oriented protection that
artificially extends the program space to explore and is coupled
with data (and optionally control) flows of the program, so that
techniques like TDS (A3) cannot remove it without knowledge
of the obfuscation-time choices. P3 comes in two variants.

The first variant is an adaptation of the FOR predicate
from [14]. The idea is to introduce state forking points
using loops, indexed by input bytes, that opaquely recompute
available values that the program may use later. In its simplest
formulation, FOR replaces occurrences of an input value char
c with uses of a new char fc instantiated by for (i=0;
i<c; ++i) fc++. Such loop introduces 28 artificial states
to explore due to the uncertainty on the value of c.

The work explains that targeting 1-byte input portions brings
only a slight performance overhead, and choosing independent
variables for multiple FOR instances optimizes composition for
state explosion. It also argues how to make FOR sequences
resilient to pattern attacks, and presents a theorem for robust-
ness against taint analysis and backward slicing, considered for
forward and backward code simplification attacks, respectively
(the TDS technique we use has provisions for both [7]).

While we refer to it for the formal analysis, for our goals
suffice it to say that when the obfuscated variable is input-
dependent (for tainting) and is related to the output (for slic-
ing), such analyses cannot simplify away the transformation.

During the rewriting we use a data-flow analysis to iden-
tify which live registers contain input-derived data (symbolic
registers) and may later concur to program outputs3. We then
introduce value-preserving opaque computations like in the
examples below (the right one is adapted from [14]):

// clear last byte
dead_reg &= 0xAB00;
for (i=0; i<(char)sym; ++i)

dead_reg++;
sym |= (char)dead_reg;

dead_reg = 0;
for (i=0; i<(char)sym; ++i)

if (i%2) dead_reg--;
else dead_reg+=3;

if (i%2) dead_reg-=2;
sym = (sym&0xF..F00)+dead_reg;

These patterns significantly slow down SE and DSE en-
gines, but also challenge approaches that feed tractable sim-
plified traces to DSE. While one may think of detecting and
propagating constant values in the trace, the TDS paper [7]
explains that doing it indiscriminately may oversimplify the
program: in our scenario it may remove FOR but also pieces
of the logic of the original program elsewhere. To avoid over-
simplification the TDS authors restrict constant propagation
across input-tainted conditional jumps, which is exactly the
case with dead_reg and sym in the examples above.

The authors suggest, as a general way to hamper semantics-
based deobfuscation approaches like TDS, to deeply entwine
the obfuscation code with the original input-to-output com-
putations. They also state that at the time obfuscation tools
had not explored this avenue, possibly for the difficulties in
preserving observable program behavior [7].

Our second P3 variant is new and moves in this direc-
tion. Instead of recomputing input-derived variables, we use
them to perform opaque updates to the array used by P1.
Updates include adding/subtracting quantities multiple of m,
swapping the contents of two related cells from different
periods, or combining the contents of two cells i and j
where a≡A[i]modm and b≡A[j]modm to update a cell l
where (a + b)≡A[l]modm. For DSE-alike path exploration
approaches the effect is tantamount to the FOR transformation
described above. For trace simplification it introduces implicit
flows, with fake control dependencies between program inputs
and branch decisions taken later in the code: TDS cannot
simplify them without explicit knowledge of the invariants.

D. Gadget Confusion
ROP encoding brings several advantages when implement-

ing P1-2-3. Firstly, it offers significant leeway for diversifying
the gadget instances we use to instantiate them. We combine
this diversity with dynamically dead instructions: we can use
gadgets whose each instruction either concurs to implementing
a predicate or has no effect depending on the surrounding
chain portion. This helps in instantiating many variants of a
pattern, challenging syntactic attacks aware of the design.

However, a unique advantage of ROP, as we observed in §I,
is the level of indirection that it brings: this complicates pattern
attacks that look for specific instruction bytes, since code is
not in plain sight, and attackers need to extract the instruction
sequences as if executing the program. What they see are bytes
belonging to either gadget addresses or data operands. They
may, however, attempt analyses that look for byte sequences
resembling addresses from code regions (i.e., plausible gad-
gets) and try to speculatively execute the chain from there [10],
[67]. By trying it at every plausible point, this may eventually
reveal some chain portions, nonetheless short thanks to P1-2.

This is when gadget confusion enters the picture. Firstly, we
can transform data operands in the chain to look like gadget
addresses, having then gadgets recover the desired values at
run time (e.g., subtracting two addresses to obtain a constant,
applying bitmasks, shifting bits, etc.). This is possible as we
control both the layout of the binary (for the addresses) and
the pool of artificial gadgets (for the manipulations). Now that
virtually every 8-byte chain stride looks like a gadget address,
we introduce unaligned RSP updates at random program
points, adding a quantity η s.t. ηmod 8 != 0. In the end, the
attacker may have to execute speculatively at every possible
chain offset, obtaining instructions that may or may not be part
of the intended execution sequence. We believe such gadget
confusion makes pattern attacks on our chains even harder.

2Example: notZero(n) := ∼(∼n&(n+∼0))�31 for 32-bit data types.
3To this end we use the symbolic execution capabilities of angr [50].

E. Further Remarks

The instantiation of P1-2-3 is naturally entwined with RSP
dispatching: directly for P1-2, and indirectly for P3 through
array updates. In the rewriter, P1 replaces the RSP update
sequence we showed in §IV-B2, while P2 operates on the
fall-through and target blocks of a branch. Finally, the rewriter
can apply either P3 variant to a user-defined fraction k of the
original program points when lowering the associated roplets.

Each predicate targets a main attack surface, but positive
externalities are also present. P2 can protect against possible
linear/recursive disassembly algorithms for ROP (A1), but will
not withstand SE-based disassembly. In §VII-C we discuss
how P1 can slow down state exploration (A3) by indirectly
putting pressure on the memory model of a SE or DSE engine.

Finally, with the second P3 variant we used ROP control
transfer dynamics to introduce also fake control dependencies.

VI. OTHER RELATED WORKS

Prior research explored ROP for software protection goals
orthogonal to obfuscation: tamper checking of selected code
regions through chains that use gadgets from such regions [3],
covert watermark encoding [68], and steganography of short
code [69]. Each of them could complement our design, espe-
cially [3] for checking code integrity of non-obfuscated parts.

ROPOB [41] is a lightweight obfuscation method to rewrite
transfers between CFG basic blocks using ROP gadgets. It
considers standard disassembly algorithms as adversary (a
“lighter” A1 case), and does not withstand static attacks like
SE (A1) or ROPDissector (A2), nor dynamic ones like DSE
or TDS (A3). ROPOB leaves data manipulation instructions in
plain sight, whose rewriting poses several challenges (§IV-B).

VM deobfuscation attacks like Syntia [8] and VMHunt [40]
intercept and simplify (A3) dispatching and opcode handling
sequences. They do not apply directly to ROP chains, and
embody flavors of the agnostic and general approach of TDS.

movfuscator [70] is an extreme instance of the weird
machine concept, rewriting programs using only the Turing-
complete mov instruction. Kirsch et al. present [71] a custom
linear-sweep algorithm (A1) that recovers the CFG by targeting
logic dispatching elements used for the very encoding.

VII. EVALUATION

We arrange our experimental analysis in three parts. We
first study the efficacy of our techniques against prominent
solutions for A1-2-3 (§VII-A), confirming the theoretical ex-
pectations. We then study the resource usage of viable de-
obfuscation attacks using a methodology adopted in previous
works [14], [38], and put such numbers into perspective with
VM-obfuscated4 counterparts (§VII-B). Finally, we analyze
the applicability of our method to real-world code (§VII-C).

We ran the tests on a Debian 9.2 server with two Xeon E5-
4610v2 and 256 GB of RAM. Our online technical report [52]
details the settings we used to generate our 72 test functions
and the VM variants with Tigress, and more implementation
details. The rewriter currently consists of ˜3K Python LOC.

SETTING DESCRIPTION

ROPk

ROP obfuscation with P3 inserted at a fraction of
program points k∈{0, 0.05, 0.25, 0.50, 0.75, 1.00}
and with P1 instantiated with n=4, s=n, p=32

nVM n layers of VM obfuscation with n∈{1, 2, 3}

nVM-IMPx
n layers of VM obfuscation with implicit flows used
for every VPC load at layer(s) x∈ {first, last, all}

TABLE I: Terminology for obfuscation configurations.

Table I details configuration naming for the main ROP and
VM experiments. For the latter we try multiple layers of nested
virtualization as this is known to slow down SE and DSE-
based attacks [14], [23], and use a Tigress predicate that adds
implicit flows to virtual program counter (VPC) loads: those
frustrate taint analysis-based simplifications and also create
many redundant states whenever VPC becomes symbolic.

A. Efficacy of ROP Strengthening Transformations

The techniques presented in §V should intuitively raise
the bar to existing automated attacks, and hinder symbiotic
combinations between them. We now study how each auto-
mated approach feels the effects of each technique individually
already on small program instances, discussing also design-
aware enhancements we tried for ROP tools. In the end, DSE
emerges as the one and only viable option for our attacker.

We leverage the Tigress framework [56] to generate func-
tions appropriate as reverse engineering targets with a desired
complexity and structure. Tigress will also annotate CFG split
and join points with probes to help us measure code coverage.

1) General Attacks: In the context of general-purpose au-
tomated attacks, we consider angr [50] as SE engine, S2E [72]
for DSE, and the TDS implementation released by its authors.
Let us start with SE. For P1 we consider a function with
control structure [56] for (if (bb 4) (bb4)) having 4
mathematical computations per block, 15 loop iterations, and a
single int as input. In a “ROP-P1” version we encode in the
array for P1 n=4 δ-offsets, with no garbage entries (s=n) and
p=32 repetitions, for a total of 128 cells populated statically.

To explore enough paths to hit all coverage points (G2),
angr took a time in the order of seconds for the native function,
and over 4500 seconds for ROP-P1. The aliasing P1 induces
on RSP updates for branching slows angr down significantly
already for little code, as the SMT solver sees increasingly
complex expressions over RSP. Aliasing reverberates on secret
finding (G1) too: with a simpler for (for (bb 4)) code,
angr cracked the secret in the order of seconds for the original
code, and over 5 hours for ROP-P1. Other configurations of
variable complexity confirmed these trends. When we tested
P3 shielding a single program point per basic block, 24 hours
were not sufficient for angr to crack the secret. These results
suggest SE may not be readily suitable against our approach.

As for DSE, in the experiments P1 impacted it slightly and
only for G2: the reason is that S2E benefits from concrete

4We do not consider commercial tools like VMProtect for two reasons: they
offer little control over the transformations (but may rather combine many at
once), and add tricks and bombs [7] to break deobfuscation solutions by
targeting implementation gaps instead of their methodological shortcomings.

input values when picking the next path to execute. For
P3 we obtained two confirmations: its two variants bring
similar time increases, and while higher k fractions of shielded
program points inflate the state space possibly more, code with
small input space may not always offer sufficient independent
sources (i.e., symbolic registers) for optimal composition of
P3 instances. We postpone a detailed analysis of the induced
overheads to §VII-B as we consider larger code instances.

P1 and P3 resist TDS by design. The tested output traces
kept non-simplifiable (§V-C) implicit control dependencies
from having a tainted input value determine a jump target:
as those are pivotal to put pressure on DSE, combining DSE
with TDS-simplified input traces [7] would not ease attacks.

Summarizing, P1 and P3 effectively raise the bar for A1 and
A3 attacks, respectively: SE and TDS look no longer useful
already for little code. P2 and gadget confusion target syntactic
approaches, unlike the semantics-aware attacks we considered
above: we address them next in the ROP-aware domain.

2) ROP-Aware Attacks: To analyze ROP payloads we use
and extend ROPDissector to start from a memory dump of
the program taken when entering the chain of interest: in this
configuration it operates as a hybrid static-dynamic analysis
and surpasses ROPMEMU in branch analysis and flipping
capabilities. With ROPDissector now embodying a full-fledged
ROP-A2 approach, we test if it can help with G2, while G1 is
out of scope as A2 recovers code but neglects data constraints.

Backing our expectations, shielding branches with P2 in the
rewriting makes ROPDissector fail in revealing any basic block
other than those the input used for the test reveals. We tried
to further extend ROPDissector by using its gadget guessing
technique (a ROP-educated form of pattern matching [10]) to
reveal new blocks by executing the chain at different start
offsets. Our gadget confusion however makes such analysis
explode, with many short and unaligned candidate blocks that
are difficult to distinguish from P2-protected true positives.

We conclude this part by stressing the importance of con-
ceiving all of our protections. P1 impacts ROPDissector only if
no dump is supplied, and P3 does not affect it directly. Hence,
without P2 an attacker could have used ROPDissector or a
similar tool to aid semantic attacks in code coverage scenarios.

B. Measuring Obfuscation Resilience

We now measure the amount of resources required to
carry automated attacks for secret finding (G1) and code
coverage (G2) over synthetic functions from an established
methodology. We ask Tigress to generate 72 non-cryptographic
hash functions with 6 control structures analogous to the most
complex ones from an influential obfuscation work [39], input
sizes of {1, 2, 4, 8} bytes, and three seeds (details in [52]).

We exclude techniques that were ineffective on smaller
inputs like SE, and restrict our focus to DSE (recently [14]
makes a similar choice). DSE allows us to set up controlled
and accurate experiments for measuring G1 and G2, as S2E
typically succeeds in either goal in about one minute for
each of the 72 functions. This makes measuring obfuscation
overheads feasible, with a 1-hour budget per experiment

OBFUSCATION SECRET FINDING CODE COVERAGE
CONFIGURATION FOUND AVG TIME 100% POINTS

NATIVE 70/72 65.2s 72/72
ROP0.05 19/72 907.9s 34/72
ROP0.25 10/72 568.4s 11/72
ROP0.50 9/72 884.0s 9/72
ROP0.75 5/72 775.3s 7/72
ROP1.00 1/72 3028.7s 6/72
1VM-IMPall 61/72 85.8s 68/72
2VM 62/72 71.6s 67/72
2VM-IMPfirst 62/72 100.4s 66/72
2VM-IMPlast 61/72 104.1s 65/72
2VM-IMPall 62/72 160.6s 64/72
3VM 62/72 119.2s 69/72
3VM-IMPfirst 54/72 899.2s 56/72
3VM-IMPlast 62/72 240.3s 61/72
3VM-IMPall 0/72 - 0/72

TABLE II: Successful attacks in the 1h-budget per program.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

b-trees

fannkuch

fasta
fasta-redux

mandelbrot

n-body

pidigits

regex
rev-comp

sp-norm

R
u
n
-t

im
e
 s

lo
w

d
o
w

n

ROP0.05
ROP0.25
ROP0.50

ROP0.75
ROP1.00

Fig. 5: Run-time overhead for clbg benchmarks of different
ROPk settings with 2VM-IMPlast used as baseline.

sufficient to capture a slowdown of ∼50x or higher. With 15
configurations and 2 goals, the tests took > 2000 CPU hours.

In light of all the considerations made in §VII-A, we
use a ROPk setup with P1 and P3 enabled (P2 and gadget
confusion are disabled as they do not affect DSE), with the
same {s, n, p} settings mentioned there for P1, and with P3
instantiated in its first variant and applied at different fractions
k of program points (Table I). As state exploration strategy for
S2E we use class-uniform path analysis [73] as it consistently
yielded the best results across all ROP and VM configurations:
its state grouping seems to work effectively for reducing bias
towards picking hot spots involved in path explosion, which
could be the case with P3 instances under other strategies.

1) Secret Finding: Column two and three of Table II sum-
marize the results for the differently obfuscated configurations:
for each class we report for how many functions S2E found the
secret, and the average time for successful attempts. For 2 of
the 72 non-obfuscated functions S2E failed also with a 3-hour
budget, likely due to excessively complex path constraints.

Coherently with insights from previous works [14], [23],
applying one or two layers of VM obfuscation does not prevent
S2E from solving the majority of the secrets (the same sets
of 61-62 functions over 72) even when using implicit VPC
loads5, with average overheads as high as 1.6x when applied
to either the inner or the outer VPC, and 2.46x when to both.
For 3VM implicit VPC loads are significantly more effective
in slowing down S2E when applied on the innermost VPC
than on the outermost one, while when used at all the three

5We do not report data for 1VM and ROPk=0 programs since S2E breaks
them with no appreciable slowdown w.r.t. their non-obfuscated counterparts.

layers S2E found zero secrets within the 1-hour budget.
The fraction of successful attacks to ROPk is lower

than for VM configurations already for k=0.05, except for
3VM-IMPall that however, as we see in §VII-C2, may bring
a destructive impact on program running time. The fraction
of ROPk-protected functions that S2E can crack decreases
with k: while we cannot compare average times computed for
different sets, individual figures reveal that S2E can crack only
the simpler functions as k increases, with a higher processing
time compared to when they were cracked for a smaller k.

2) Code Coverage: The last column of Table II lists for
how many functions S2E covered all the CFG split and
join points annotated by Tigress and reachable in the native
counterparts (as the functions are relatively small, we consider
coverage an “all or nothing” goal like in [14], [38]). As seen
in §III-A, we recall that secret finding may not require full
coverage (neither achieving G2 is sufficient for G1). For most
VM configurations, the functions for which S2E fully explored
the original CFG are slightly more than those for which
it recovered the secret. ROPk already for k=0.05 impedes
achieving G2 for nearly half of the functions, and leaves only
a handful (6-11) within the reach of S2E for higher k values.

C. Deployability

To conclude our evaluation, we investigate how our methods
can cope with real-world code bases in three respects: efficacy
of the rewriting, run-time overhead for CPU-intensive code,
and an obfuscation case study on a popular encoding function.

1) Coverage: We start by assessing how our implemen-
tation can handle the code base of the coreutils (v8.28,
compiled with gcc 6.3.0 -O1). Popular in software testing,
this suite is a suitable benchmark thanks to its heterogeneous
code patterns. Using symbol and size information, we identify
1354 unique functions across its corpus of 107 programs. We
skip the 119 functions shorter than the 22 bytes the pivoting
sequence requires (§IV-B3). Our rewriter could transform 1175
over 1235 remaining functions (95.1%, or a 0.801 fraction
if normalized by size). 40 failures happened during register
allocation as one spilling slot was not enough to cope with
high pressure (§IV-C), 19 for code like push rsp and push
qword [rsp + imm] that the translation step does not
handle yet (§IV-B1), and 1 for failed CFG reconstruction.

As informal validation of functional correctness, we run the
test suite of the coreutils over the obfuscated program in-
stances, obtaining no mismatches in the output they compute.

2) Overhead: Albeit a common assumption is that heavy-
duty obfuscation target one-off or infrequent computations, we
also seek to study performance overhead aspects. We consider
the clbg suite [74] used in compiler research to benchmark
the effects of code transformations (e.g., [75], [76]). As a
reference we consider 2VM-IMPlast as it was the fastest
configuration for double virtualization with implicit VPC loads
(1VM is too easy to circumvent, and 3VM brings prohibitive
overheads, i.e., over 5-6 orders of magnitude in our tests).

Figure 5 uses a stacked barchart layout to present slow-
downs for ROPk, as its overhead can only grow with k. With

the exception of sp-norm that sees repeated pivoting events
from a ROP tight loop calling a short-lived ROP subroutine,
ROPk is consistently faster than 2VM-IMPlast for k≤0.5, and
no slower than 1.81x (b-trees that repeatedly calls malloc
and free) when in the most expensive setting k=1.00.

3) Case Study: Finally, we study resilience and slowdowns
of selected obfuscation configurations on the reference im-
plementation of the popular base64 encoding algorithm [77].
base64 features byte manipulations and table lookups relevant
for transformation code of variable complexity that users may
wish to obfuscate. An important consideration is that in the
presence of table lookups, using concrete values for input-
dependent pointers is no longer effective (but even counter-
productive) for DSE to explore relevant states. We thus opt
for the per-page theory-of-arrays ([11], [78]) memory model
of S2E. This choice allows S2E to recover a 6-byte input in
about 102 seconds for the original implementation, 180 for
2VM-IMPlast, 281 for 2VM-IMPall, and 1622 for 3VM-IMPlast.

A budget of 8 hours was not sufficient for 3VM-IMPall,
as well as for ROPk already for k=0 (when only P1 is
enabled). As anticipated in §V-E, the aliasing from P1 on
RSP updates can impact the handling of memory in DSE
executors in ways that the synthetic functions of §VII-B did
not (as they do not use table lookups). As for code slowdowns,
ROPk seems to bring rather tolerable execution times: for a
rough comparison, execution takes 0.299ms for ROP0.25 and
1.791ms for ROP1.00, while for VM settings we measured
1.63ms for 2VM-IMPlast, 347ms for 2VM-IMPall, 668ms for
3VM-IMPlast and 2211s for the unpractical 3VM-IMPall.

VIII. CONCLUDING REMARKS

Adding to the appealing properties of ROP against reverse
engineering that we discussed throughout the paper, the ex-
perimental results lead us to believe that our approach can:

1) hinder many popular deobfuscation approaches, as well as
symbiotic combinations aimed at ameliorating scalability;

2) significantly increase the resources needed by automated
techniques that remain viable, with slowdowns ≥ 50x for
the vast majority of the 72 targets for both end goals G1-2;

3) bring multiple configuration opportunities for resilience
(and overhead) goals to the program protection landscape.

While obfuscation research is yet to declare a clear winner
and automated attacks keep evolving, our technique is also
orthogonal to most other code obfuscations, meaning it can
be applied on top of already obfuscated code (§IV-C). We
have followed established practices [13] of analyzing our
obfuscation individually and on function units, yet in future
work we would like to expand both points: namely, studying
mutually reinforcing combinations with other obfuscations,
and applying ROP rewriting inter-procedurally, removing the
stack-switching step during transfers between ROP functions,
since our design allows that. Finally, to optimize composition
of symbolic registers when instantiating P3, we may look at
def-use chains as suggested by [14] for FOR cases, exploring
analyses like [66] necessary to obtain the required information.

REFERENCES

[1] V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos,
“Memory errors: The past, the present, and the future,” in
Research in Attacks, Intrusions, and Defenses. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 86–106. [Online]. Available:
https://doi.org/10.1007/978-3-642-33338-5 5

[2] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proc. of the 14th ACM
Conf. on Comp. and Comm. Sec., ser. CCS ’07, 2007, pp. 552–561.
[Online]. Available: http://doi.acm.org/10.1145/1315245.1315313

[3] D. Andriesse, H. Bos, and A. Slowinska, “Parallax: Implicit
code integrity verification using return-oriented programming,” in
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, ser. DSN ’15, 2015, pp. 125–135.
[Online]. Available: https://doi.org/10.1109/DSN.2015.12

[4] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee, “Jekyll on iOS: When
benign apps become evil,” in Proceedings of the 22nd USENIX Security
Symposium, ser. SEC ’13, 2013, pp. 559–572.

[5] P. Borrello, E. Coppa, D. C. D’Elia, and C. Demetrescu, “The
ROP needle: Hiding trigger-based injection vectors via code reuse,”
in Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, ser. SAC ’19, 2019, pp. 1962–1970. [Online]. Available:
https://doi.org/10.1145/3297280.3297472

[6] FireEye, “The Number of the Beast,” https://www.fireeye.com/blog/
threat-research/2013/02/the-number-of-the-beast.html, 2013, online; ac-
cessed 11 June 2020.

[7] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in 2015 IEEE
Symp. on Sec. and Privacy, ser. SP ’15, 2015, pp. 674–691. [Online].
Available: https://doi.org/10.1109/SP.2015.47

[8] T. Blazytko, M. Contag, C. Aschermann, and T. Holz, “Syntia: Synthe-
sizing the semantics of obfuscated code,” in Proc. of the 26th USENIX
Security Symposium, ser. USENIX Security 17, 2017, pp. 643–659.

[9] M. Graziano, D. Balzarotti, and A. Zidouemba, “ROPMEMU:
A framework for the analysis of complex code-reuse attacks,” in
Proceedings of 11th Asia Conference on Computer and Communications
Security, ser. ASIACCS ’16, 2016, pp. 47–58. [Online]. Available:
http://doi.acm.org/10.1145/2897845.2897894

[10] D. C. D’Elia, E. Coppa, A. Salvati, and C. Demetrescu, “Static
Analysis of ROP Code,” in Proceedings of the 12th European
Workshop on Systems Security, ser. EuroSec ’19, 2019. [Online].
Available: http://doi.acm.org/10.1145/3301417.3312494

[11] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi,
“A Survey of Symbolic Execution Techniques,” ACM Computer
Surveys, vol. 51, no. 3, pp. 50:1–50:39, 5 2018. [Online]. Available:
http://doi.acm.org/10.1145/3182657

[12] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in Proceedings of the 2014 IEEE Symposium
on Security and Privacy, ser. SP ’14, 2014, pp. 276–291. [Online].
Available: https://doi.org/10.1109/SP.2014.25

[13] S. Banescu and A. Pretschner, “Chapter five - A tutorial on software
obfuscation,” Advances in Computers, vol. 108, pp. 283–353, 2018.
[Online]. Available: https://doi.org/10.1016/bs.adcom.2017.09.004

[14] M. Ollivier, S. Bardin, R. Bonichon, and J.-Y. Marion, “How to
kill symbolic deobfuscation for free (or: Unleashing the potential
of path-oriented protections),” in Proc. of the 35th Annual Comp.
Security Applications Conference, ser. ACSAC ’19, 2019, pp. 177–189.
[Online]. Available: https://doi.org/10.1145/3359789.3359812

[15] S. R. Subramanya and B. K. Yi, “Digital rights management,” IEEE
Potentials, vol. 25, no. 2, pp. 31–34, 2006.

[16] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?” ACM Computer Surveys, vol. 49,
no. 1, Apr. 2016. [Online]. Available: https://doi.org/10.1145/2886012

[17] C. Wang, J. Hill, J. C. Knight, and J. W. Davidson, “Protection
of software-based survivability mechanisms,” in Proceedings of
the 2001 International Conference on Dependable Systems and
Networks, ser. DSN ’01, 2001, pp. 193–202. [Online]. Available:
https://doi.org/10.1109/DSN.2001.941405

[18] S. Chow, Y. X. Gu, H. Johnson, and V. A. Zakharov, “An approach
to the obfuscation of control-flow of sequential computer programs,”
in Proceedings of the 4th International Conference on Information

Security, ser. ISC ’01, vol. 2200, 2001, pp. 144–155. [Online].
Available: https://doi.org/10.1007/3-540-45439-X 10

[19] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: Reverse
engineering obfuscated code,” in Proc. of the 12th Working Conference
on Reverse Engineering, ser. WCRE ’05, 2005, pp. 45–54. [Online].
Available: https://doi.org/10.1109/WCRE.2005.13

[20] B. Johansson, P. Lantz, and M. Liljenstam, “Lightweight dispatcher
constructions for control flow flattening,” in Proc. of the 7th Software
Security, Protection, and Reverse Engineering Workshop, ser. SSPREW-
7, 2017. [Online]. Available: https://doi.org/10.1145/3151137.3151139

[21] J. Kinder, “Towards static analysis of virtualization-obfuscated binaries,”
in Proceedings of the 2012 19th Working Conference on Reverse
Engineering, ser. WCRE ’12. USA: IEEE Computer Society, 2012,
pp. 61–70. [Online]. Available: https://doi.org/10.1109/WCRE.2012.16

[22] B. Yadegari and S. Debray, “Symbolic execution of obfuscated code,”
in Proc. of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15, 2015, pp. 732–744. [Online].
Available: https://doi.org/10.1145/2810103.2813663

[23] J. Salwan, S. Bardin, and M. Potet, “Symbolic deobfuscation: From
virtualized code back to the original,” in Proc. of the 15th Int. Conf.
on Detection of Intrusions and Malware, and Vulnerability Assessment,
ser. DIMVA ’18, vol. 10885, 2018, pp. 372–392. [Online]. Available:
https://doi.org/10.1007/978-3-319-93411-2 17

[24] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Automatic reverse
engineering of malware emulators,” in Proc. of the 30th IEEE
Symposium on Security and Privacy, ser. SP ’09, 2009, pp. 94–109.
[Online]. Available: https://doi.org/10.1109/SP.2009.27

[25] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of virtualization-
obfuscated software: A semantics-based approach,” in Proceedings
of the 18th ACM Conference on Computer and Communications
Security, ser. CCS ’11, 2011, pp. 275–284. [Online]. Available:
https://doi.org/10.1145/2046707.2046739

[26] C. S. Collberg, C. D. Thomborson, and D. Low, “A taxonomy of
obfuscating transformations,” Tech. Rep., 1997.

[27] G. Ramalingam, “The undecidability of aliasing,” ACM Trans. on Prog.
Lang. and Sys., vol. 16, no. 5, pp. 1467–1471, Sep. 1994. [Online].
Available: https://doi.org/10.1145/186025.186041

[28] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy,” in Proceedings of the 20th USENIX Conference on Security,
ser. SEC ’11. USENIX Association, 2011.

[29] M. Angelini, G. Blasilli, P. Borrello, E. Coppa, D. C. D’Elia,
S. Ferracci, S. Lenti, and G. Santucci, “ROPMate: Visually Assisting
the Creation of ROP-based Exploits,” in Proceedings of the 15th IEEE
Symposium on Visualization for Cyber Security, ser. VizSec ’18, 2018.
[Online]. Available: https://doi.org/10.1109/VIZSEC.2018.8709204

[30] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans.
on Inf. and Sys. Sec., vol. 15, no. 1, 2012. [Online]. Available:
https://doi.org/10.1145/2133375.2133377

[31] A. Wailly, A. Souchet, J. Salwan, A. Verez, and T. Romand, “Au-
tomated Return-Oriented Programming Chaining,” https://github.com/
awailly/nrop, 2014, online; accessed 11 June 2020.

[32] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: A new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, ser. ASIACCS ’11, 2011, pp. 30–40. [Online]. Available:
https://doi.org/10.1145/1966913.1966919

[33] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in 2015 IEEE
Symp. on Sec. and Priv., ser. SP ’15, 2015, pp. 745–762. [Online].
Available: https://doi.org/10.1109/SP.2015.51

[34] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented rootkits: Bypass-
ing kernel code integrity protection mechanisms,” in Proceedings of the
18th USENIX Security Symposium. USENIX Association, 2009, pp.
383–398.

[35] S. Vogl, J. Pfoh, T. Kittel, and C. Eckert, “Persistent data-only malware:
Function hooks without code,” in 21st Annual Network and Distributed
System Security Symposium, ser. NDSS ’14, 2014.

[36] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware with
Intel SGX,” in Detection of Intrusions and Malware, and Vulnerability
Assessment, ser. DIMVA ’19, 2019, pp. 177–196. [Online]. Available:
https://doi.org/10.1007/978-3-030-22038-9 9

https://doi.org/10.1007/978-3-642-33338-5_5
http://doi.acm.org/10.1145/1315245.1315313
https://doi.org/10.1109/DSN.2015.12
https://doi.org/10.1145/3297280.3297472
https://www.fireeye.com/blog/threat-research/2013/02/the-number-of-the-beast.html
https://www.fireeye.com/blog/threat-research/2013/02/the-number-of-the-beast.html
https://doi.org/10.1109/SP.2015.47
http://doi.acm.org/10.1145/2897845.2897894
http://doi.acm.org/10.1145/3301417.3312494
http://doi.acm.org/10.1145/3182657
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.1016/bs.adcom.2017.09.004
https://doi.org/10.1145/3359789.3359812
https://doi.org/10.1145/2886012
https://doi.org/10.1109/DSN.2001.941405
https://doi.org/10.1007/3-540-45439-X_10
https://doi.org/10.1109/WCRE.2005.13
https://doi.org/10.1145/3151137.3151139
https://doi.org/10.1109/WCRE.2012.16
https://doi.org/10.1145/2810103.2813663
https://doi.org/10.1007/978-3-319-93411-2_17
https://doi.org/10.1109/SP.2009.27
https://doi.org/10.1145/2046707.2046739
https://doi.org/10.1145/186025.186041
https://doi.org/10.1109/VIZSEC.2018.8709204
https://doi.org/10.1145/2133375.2133377
https://github.com/awailly/nrop
https://github.com/awailly/nrop
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1007/978-3-030-22038-9_9

[37] C. Ntantogian, G. Poulios, G. Karopoulos, and C. Xenakis,
“Transforming malicious code to rop gadgets for antivirus evasion,”
IET Inform. Security, vol. 13, no. 6, pp. 570–578, 2019. [Online].
Available: https://doi.org/10.1049/iet-ifs.2018.5386

[38] S. Banescu, C. S. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
“Code obfuscation against symbolic execution attacks,” in Proceedings
of the 32nd Annual Conference on Computer Security Applications,
ser. ACSAC ’16. ACM, 2016, pp. 189–200. [Online]. Available:
https://doi.org/10.1145/2991079.2991114

[39] S. Banescu, C. Collberg, and A. Pretschner, “Predicting the resilience
of obfuscated code against symbolic execution attacks via machine
learning,” in Proc. of the 26th USENIX Security Symposium, 2017, pp.
661–678.

[40] D. Xu, J. Ming, Y. Fu, and D. Wu, “VMHunt: A verifiable approach
to partially-virtualized binary code simplification,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18, 2018, pp. 442–458. [Online]. Available:
https://doi.org/10.1145/3243734.3243827

[41] D. Mu, J. Guo, W. Ding, Z. Wang, B. Mao, and L. Shi, “ROPOB: Obfus-
cating Binary Code viaReturn Oriented Programming,” in Security and
Privacy in Communication Networks, ser. SecureComm ’17. Springer
International Publishing, 2018, pp. 721–737.

[42] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-Force: Force-
executing binary programs for security applications,” in Proc. of the 23rd
USENIX Conf. on Security Symp., ser. SEC ’14, 2014, pp. 829–844.

[43] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “Rambo:
Run-time packer analysis with multiple branch observation,” in Proc.
of the 13th Int. Conf. on Detection of Intrusions and Malware,
and Vulnerability Assessment, ser. DIMVA ’16, 2016, pp. 186–206.
[Online]. Available: https://doi.org/10.1007/978-3-319-40667-1 10

[44] S. Wang, P. Wang, and D. Wu, “UROBOROS: instrumenting stripped
binaries with static reassembling,” in IEEE 23rd Int. Conf. on Soft.
Analysis, Evol., and Reengineering, ser. SANER ’16, 2016. [Online].
Available: https://doi.org/10.1109/SANER.2016.106

[45] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically
instrumenting cots binaries for fuzzing and sanitization,” in Proceedings
of the 2020 IEEE Symposium on Security and Privacy, ser. SP ’20, 2020.

[46] D. Williams-King, H. Kobayashi, K. Williams-King, G. Patterson,
F. Spano, Y. J. Wu, J. Yang, and V. P. Kemerlis, “Egalito: Layout-
agnostic binary recompilation,” in Proc. of the 25th Int. Conf. on Arch.
Support for Prog. Lang. and Oper. Sys., ser. ASPLOS ’20, 2020, pp.
133–147. [Online]. Available: https://doi.org/10.1145/3373376.3378470

[47] E. Bauman, Z. Lin, and K. Hamlen, “Superset disassembly: Statically
rewriting x86 binaries without heuristics,” in Proc. of the 25th Annual
Network and Distributed System Security Symp., ser. NDSS ’18, 2018.

[48] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley, 2006.

[49] NSA, “Ghidra,” https://ghidra-sre.org/, online; accessed 11 June 2020.
[50] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,

A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Krügel, and G. Vigna,
“SOK: (state of) the art of war: Offensive techniques in binary analysis,”
in IEEE Symposium on Security and Privacy, ser. SP ’16, 2016, pp.
138–157. [Online]. Available: https://doi.org/10.1109/SP.2016.17

[51] S. Alvarez, “Radare2,” https://rada.re/n/, online; accessed 11 June 2020.
[52] P. Borrello, E. Coppa, and D. C. D’Elia, “Hiding in the particles: When

return-oriented programming meets program obfuscation,” ser. DSN’21,
2021, online extended version; https://arxiv.org/abs/2012.06658.

[53] M. Probst, A. Krall, and B. Scholz, “Register liveness analysis for
optimizing dynamic binary translation,” in Proc. of the 9th Working
Conf. on Rev. Engin., ser. WCRE ’02, 2002, pp. 35–44. [Online].
Available: https://doi.org/10.1109/WCRE.2002.1173062

[54] D. C. D’Elia and C. Demetrescu, “On-stack replacement, distilled,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. New York,
NY, USA: Association for Computing Machinery, 2018, pp. 166–180.
[Online]. Available: https://doi.org/10.1145/3192366.3192396

[55] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’05, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065034

[56] C. Collberg, S. Martin, J. Myers, and J. Nagra, “Distributed
application tamper detection via continuous software updates,” in

Proceedings of the 28th Annual Computer Security Applications
Conference, ser. ACSAC ’12, 2012, pp. 319–328. [Online]. Available:
https://doi.org/10.1145/2420950.2420997

[57] D. C. D’Elia, E. Coppa, S. Nicchi, F. Palmaro, and L. Cavallaro,
“SoK: Using Dynamic Binary Instrumentation for Security (And
How You May Get Caught Red Handed),” in Proceedings of the
14th ACM ASIA Conference on Computer and Communications
Security, ser. ASIACCS ’19, 2019, pp. 15–27. [Online]. Available:
https://doi.org/10.1145/3321705.3329819

[58] Z. L. Nemeth, “Modern binary attacks and defences in the Windows
environment – fighting against Microsoft EMET in seven rounds,” in
2015 IEEE 13th International Symposium on Intelligent Systems and
Informatics (SISY), 2015, pp. 275–280.

[59] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in Proc. of the 23rd USENIX Security Symposium, 2014,
pp. 401–416.

[60] M. Elsabagh, D. Barbara, D. Fleck, and A. Stavrou, “Detecting ROP
with statistical learning of program characteristics,” in Proceedings of
the Seventh ACM on Conference on Data and Application Security and
Privacy, ser. CODASPY ’17, 2017, pp. 219–226. [Online]. Available:
https://doi.org/10.1145/3029806.3029812

[61] P. Larsen, S. Brunthaler, and M. Franz, “Automatic software diversity,”
IEEE Sec. and Priv., no. 2, pp. 30–37, 2015. [Online]. Available:
https://doi.org/10.1109/MSP.2015.23

[62] F. Biondi, S. Josse, A. Legay, and T. Sirvent, “Effectiveness of synthesis
in concolic deobfuscation,” Computers & Security, vol. 70, pp. 500–515,
2017. [Online]. Available: https://doi.org/10.1016/j.cose.2017.07.006

[63] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware
analysis using conditional code obfuscation,” in Proc. of the Network
and Distributed System Security Symposium, ser. NDSS ’08, 2008.

[64] C. S. Collberg and J. Nagra, Surreptitious Software - Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection, ser. Addison-
Wesley Software Security Series. Addison-Wesley, 2010.

[65] Y. Smaragdakis and G. Balatsouras, “Pointer analysis,” Found. and
Trends in Prog. Lang., vol. 2, no. 1, pp. 1–69, 2015. [Online].
Available: http://dx.doi.org/10.1561/2500000014

[66] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum, “Codesurfer/x86
- A platform for analyzing x86 executables,” in Proceedings of the
14th International Conference on Compiler Construction, ser. CC
’05, 2005, pp. 250–254. [Online]. Available: https://doi.org/10.1007/
978-3-540-31985-6 19

[67] M. Polychronakis and A. D. Keromytis, “ROP payload detection using
speculative code execution,” in 2011 6th International Conference
on Malicious and Unwanted Software, 2011, pp. 58–65. [Online].
Available: https://doi.org/10.1109/MALWARE.2011.6112327

[68] H. Ma, K. Lu, X. Ma, H. Zhang, C. Jia, and D. Gao, “Software
watermarking using return-oriented programming,” in Proceedings of the
10th ACM Symposium on Information, Computer and Communications
Security, ser. ASIACCS ’15. ACM, 2015, pp. 369–380. [Online].
Available: https://doi.org/10.1145/2714576.2714582

[69] K. Lu, S. Xiong, and D. Gao, “RopSteg: Program steganography with
return oriented programming,” in Proc. of the 4th ACM Conf. on Data
and App. Sec. and Priv., ser. CODASPY ’14, 2014, pp. 265–272.
[Online]. Available: https://doi.org/10.1145/2557547.2557572

[70] Christopher Domas, “M/o/Vfuscator,” https://github.com/xoreaxeaxeax,
2015, online; accessed 11 June 2020.

[71] J. Kirsch, C. Jonischkeit, T. Kittel, A. Zarras, and C. Eckert, “Combating
control flow linearization,” in Proceedings of the 32nd international
conference on ICT Systems Security and Privacy Protection, ser. IFIP
SEC ’17, vol. 502. Springer, 2017, pp. 385–398. [Online]. Available:
https://doi.org/10.1007/978-3-319-58469-0 26

[72] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for
in-vivo multi-path analysis of software systems,” in Proc. of the 16th
Int. Conf. on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XVI, 2011, pp. 265–278. [Online].
Available: https://doi.org/10.1145/1950365.1950396

[73] S. Bucur, J. Kinder, and G. Candea, “Prototyping symbolic execution
engines for interpreted languages,” in Proc. of the 19th Int. Conf.
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14, 2014, pp. 239–254. [Online]. Available:
https://doi.org/10.1145/2541940.2541977

https://doi.org/10.1049/iet-ifs.2018.5386
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1145/3243734.3243827
https://doi.org/10.1007/978-3-319-40667-1_10
https://doi.org/10.1109/SANER.2016.106
https://doi.org/10.1145/3373376.3378470
https://ghidra-sre.org/
https://doi.org/10.1109/SP.2016.17
https://rada.re/n/
https://arxiv.org/abs/2012.06658
https://doi.org/10.1109/WCRE.2002.1173062
https://doi.org/10.1145/3192366.3192396
http://doi.acm.org/10.1145/1065010.1065034
https://doi.org/10.1145/2420950.2420997
https://doi.org/10.1145/3321705.3329819
https://doi.org/10.1145/3029806.3029812
https://doi.org/10.1109/MSP.2015.23
https://doi.org/10.1016/j.cose.2017.07.006
http://dx.doi.org/10.1561/2500000014
https://doi.org/10.1007/978-3-540-31985-6_19
https://doi.org/10.1007/978-3-540-31985-6_19
https://doi.org/10.1109/MALWARE.2011.6112327
https://doi.org/10.1145/2714576.2714582
https://doi.org/10.1145/2557547.2557572
https://github.com/xoreaxeaxeax
https://doi.org/10.1007/978-3-319-58469-0_26
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/2541940.2541977

[74] I. Gouy, “The Computer Language Benchmarks Game,” https://
benchmarksgame-team.pages.debian.net/benchmarksgame/, 2018, on-
line; accessed 20 March 2021.

[75] J. Castanos, D. Edelsohn, K. Ishizaki, P. Nagpurkar, T. Nakatani,
T. Ogasawara, and P. Wu, “On the benefits and pitfalls of extending a
statically typed language jit compiler for dynamic scripting languages,”
in Proc. of the ACM Int. Conf. on Object Oriented Prog. Systems Lang.
and Applications, ser. OOPSLA ’12, 2012, pp. 195–212. [Online].
Available: https://doi.org/10.1145/2384616.2384631

[76] D. C. D’Elia and C. Demetrescu, “Flexible On-stack Replacement
in LLVM,” in Proceedings of the 2016 International Symposium on
Code Generation and Optimization, ser. CGO ’16, 2016, pp. 250–260.
[Online]. Available: http://doi.acm.org/10.1145/2854038.2854061

[77] B. Trower, “base64,” http://base64.sourceforge.net/b64.c, 2001.
[78] L. Borzacchiello, E. Coppa, D. C. D’Elia, and C. Demetrescu,

“Memory models in symbolic execution: key ideas and new thoughts,”
Soft. Testing, Verification and Reliability, vol. 29, no. 8, 2019. [Online].
Available: https://doi.org/10.1002/stvr.1722

https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://doi.org/10.1145/2384616.2384631
http://doi.acm.org/10.1145/2854038.2854061
http://base64.sourceforge.net/b64.c
https://doi.org/10.1002/stvr.1722

	Introduction
	Preliminaries
	Code Obfuscation
	Return-Oriented Programming

	Adversarial Model
	Principles behind Automated Deobfuscation
	State-of-the-art Deobfuscation Solutions
	General Techniques
	ROP-Aware Techniques

	Program Encoding with ROP
	Geometry of a ROP Encoder
	Gadget Sources
	Rewriting
	Control Transfers and Stack Layout
	Chain Embedding

	Translation, Chain Crafting, and Materialization
	Translation
	Chain Crafting
	Materialization

	Discussion

	Strengthening ROP Programs
	Predicate P1: Anti-ROP-Disassembly
	Predicate P2: Preventing Brute-Force Search
	Predicate P3: State Space Widening
	Gadget Confusion
	Further Remarks

	Other Related Works
	Evaluation
	Efficacy of ROP Strengthening Transformations
	General Attacks
	ROP-Aware Attacks

	Measuring Obfuscation Resilience
	Secret Finding
	Code Coverage

	Deployability
	Coverage
	Overhead
	Case Study

	Concluding Remarks
	References

