
Predictive Context-sensitive Fuzzing

Pietro Borrello∗, Andrea Fioraldi†, Daniele Cono D’Elia∗,
Davide Balzarotti†, Leonardo Querzoni∗ and Cristiano Giuffrida‡

∗Sapienza University of Rome
†EURECOM

‡Vrije Universiteit Amsterdam
{borrello, delia, querzoni}@diag.uniroma1.it, {fioraldi, balzarot}@eurecom.fr, giuffrida@cs.vu.nl

Abstract—Coverage-guided fuzzers expose bugs by progres-
sively mutating testcases to drive execution to new program
locations. Code coverage is currently the most effective and
popular exploration feedback. For several bugs, though, also how
execution reaches a buggy program location may matter: for
those, only tracking what code a testcase exercises may lead
fuzzers to overlook interesting program states. Unfortunately,
context-sensitive coverage tracking comes with an inherent state
explosion problem. Existing attempts to implement context-
sensitive coverage-guided fuzzers struggle with it, experiencing
non-trivial issues for precision (due to coverage collisions) and
performance (due to context tracking and queue/map explosion).

In this paper, we show that a much more effective approach
to context-sensitive fuzzing is possible. First, we propose function
cloning as a backward-compatible instrumentation primitive
to enable precise (i.e., collision-free) context-sensitive coverage
tracking. Then, to tame the state explosion problem, we argue to
account for contextual information only when a fuzzer explores
contexts selected as promising. We propose a prediction scheme
to identify one pool of such contexts: we analyze the data-flow
diversity of the incoming argument values at call sites, exposing
to the fuzzer a contextually refined clone of the callee if the latter
sees incoming abstract objects that its uses at other sites do not.

Our work shows that, by applying function cloning to pro-
gram regions that we predict to benefit from context-sensitivity,
we can overcome the aforementioned issues while preserving,
and even improving, fuzzing effectiveness. On the FuzzBench
suite, our approach largely outperforms state-of-the-art coverage-
guided fuzzing embodiments, unveiling more and different bugs
without incurring explosion or other apparent inefficiencies. On
these heavily tested subjects, we also found 8 enduring security
issues in 5 of them, with 6 CVE identifiers issued.

I. INTRODUCTION

Fuzz testing (or fuzzing for short) techniques earned a
prominent place in the software security research landscape
over the last decade. Their efficacy in generating unexpected
or invalid inputs that make a program crash helps developers
catch bugs early, even before they turn into vulnerabilities [1].
As an example, their deployment at scale in the OSS-Fuzz [2]
initiative has led so far to the discovery of over 30 000 bugs
in the daily testing of hundreds of open-source projects.

The most popular and researched form of fuzzing is
coverage-guided fuzzing (CGF), which uses code or other cov-
erage information from program execution to deem whether the
current testing input led to interesting (for example, previously
unseen) portions of a program. The main intuition behind much
CGF research is that code coverage is strongly correlated with
bug coverage [3] and no dynamic testing technique can detect
a bug if execution does not reach the corresponding program
point at least once. A flourishing topic of research is to enlarge
the covered code by improving the effectiveness of the input
generation process, e.g., by guiding input mutations to meet
complex control-flow conditions in the program [4], [5], [6].

However, for software testing, coverage is only one part
of the equation [7], and the ultimate metric for the effec-
tiveness of fuzzing remains the ability to discover bugs. As
recently observed in [8], successful CGF embodiments balance
between exploration and exploitation. While exploration aims
to increase coverage, exploitation tries to trigger bugs in
already-covered program regions by varying the inputs used
to reach them before. As there is no immediate feedback
for exploitation, fuzzers have to count on input mutations to
execute such code “sufficiently well” to trigger bugs in it [8].

Therefore, other efforts focus on retaining for further
mutation inputs that, while being equivalent to prior executions
in terms of covered program points, exercise new valuable
execution paths and/or internal states of the program [9].
Intuitively, these inputs offer alternative (and possibly more
profitable) “starting points” for the above-said mutations to
trigger some bugs. For example, most state-of-the-art CGF
systems track edge coverage information to distinguish visits
to the same basic block from different predecessor blocks [10].

Edge coverage and other function-local metrics track and
summarize program execution for its effects on entities (e.g.,
code blocks, variable values) involving individual functions.
A limitation of this strategy is that it may lead a fuzzer to
overlook internal program states for which also how an entity is
reached matters. In program analysis, this concept goes under
the name of context-sensitivity and has seen many applications,
such as refining the precision of pointer analyses [11] and
developing compiler optimizations [12].

ANGORA [1] showcases the benefits of context-sensitivity
for fuzzing by augmenting edge coverage with calling-context
information, which captures the sequence of active function
calls on the stack leading to the currently executing func-
tion [13]. In principle, such a fully context-sensitive approach
can differentiate the coverage of each testcase in a fine-grained
manner and lead to the discovery of more bugs [1], [10].

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24113
www.ndss-symposium.org

However, as an accurate call-stack tracking and context
encoding would be costly and degrade the fuzzer’s throughput,
ANGORA [1] and other fuzzers [14], [15] embody a best-effort
strategy for full context-sensitivity. In particular, they model
the calling context as a hash of the call stack and compute
context-sensitive coverage identifiers by combining the hash
for the current context with the function-local edge identifier
upon entering a basic block. This scheme is naturally prone
to collisions, which are detrimental to fuzzing as they may
lead to missing many relevant testcases [16]. To mitigate this
shortcoming, these fuzzers employ larger coverage maps (e.g.,
220 entries in ANGORA [1]), a choice that does not come cheap
as it can severely harm the fuzzing throughput.

More importantly, as we study, fully context-sensitive ap-
proaches are prone to state explosion, enlarging the fuzzer’s
queue with additional testcases that further reduce fuzzing
efficiency, as the fuzzer will often fall short of the time needed
to schedule or sufficiently mutate them [10].

In this paper, we will refer to all such kinds of detrimental
effects as the internal wastage that the fuzzer experiences.

Our approach: We argue that the current “all-or-
nothing” approach to context-sensitive fuzzing is unnecessarily
inefficient, and that a much more effective approach is possi-
ble. The design we propose builds on three main insights:

1 We show that we can do away with run-time call stack
tracking by relying on a code specialization primitive. For a
given calling context, with function cloning we create a clone
of each callee and redirect the caller invocation to it. As a
result, existing function-local coverage tracking techniques can
naturally disambiguate calling contexts with no changes. For
example, edges from cloned functions can benefit from the
collision-free encoding of modern fuzzers as their presence
implicitly carries (precise) contextual information, opposed to
current approaches that enforce (and, as we study, further
deteriorate) an imprecise hash-based edge encoding scheme.

2 We show that, while fully context-sensitive approaches
are in general problematic due to an inherent state explosion
problem, selective approaches can be a much better alter-
native. Through techniques that restrict cloning to program
portions that are likely to benefit from contextually refined
edge profiles, we can bound our cloning efforts to trade
a modest increase in program size with efficient context-
sensitivity provided only for the callees that “matter”. We term
our approach predictive context-sensitive fuzzing.

3 We show that data-flows for function call arguments
can be an effective predictor for several such regions. We
analyze the flow of objects through function arguments at
call sites and pick those call targets that see a highly diverse
incoming data-flow if compared to other invocations of the
function in the rest of the program. The intuition is that such
differences may reflect relevant variations in program behavior
that we want to capture by means of context-sensitive coverage
tracking. Moreover, we show how to realize the strategy
without analyzing full calling contexts, but building instead
atop a standard context-insensitive inter-procedural analysis.

This design results in a practical and performant context-
sensitive fuzzing solution. On the popular FuzzBench
suite [17], our approach can reveal more unique bugs than

ANGORA-style context-sensitivity (+22.55%). Also, it outper-
forms a collision-free edge coverage solution boosted with
link-time optimization (+11.6%), with the bugs found across
trials being different than with edge coverage alone by 19.2%.

These improvements mainly come from our ability to
trigger bugs in code regions that other solutions explore but
fail to exploit. Our approach experiences only a limited growth
of retained testcases (+26% w.r.t. edge coverage, opposed to
+81.7% from ANGORA-style context-sensitivity) and a modest
impact on the fuzzing throughput (−6.5% vs. −20.3%).

Finally, despite the FuzzBench subjects we study are well-
tested in prior efforts and daily in OSS-Fuzz, our tests revealed
8 long-standing security issues involving 5 of these subjects,
with 6 CVE identifiers issued upon responsible disclosure.

Contributions: To summarize, this paper proposes:

• A selective approach to context-sensitive fuzzing that aug-
ments only promising program portions with contextual
information, using function cloning to enable a collision-
free encoding with no run-time tracking machinery;

• A data-flow analysis to predict program portions likely to
benefit from contextual refinement when fuzzing, using
a strong signal given by call-argument value diversity
among the different callers of a given target function.

• An open-source implementation in LLVM that produces
programs suitable for out-of-the-box fuzzing (available at:
https://github.com/eurecom-s3/predictive-cs-fuzzing).

• An evaluation of our approach atop AFL++ on the
FuzzBench suite, where we consistently outrank state-of-
the-art context sensitive and insensitive techniques, also
exposing 8 enduring vulnerabilities in 5 popular subjects.

II. BACKGROUND

This section covers fundamental concepts of fuzzing and
the points-to analysis primitives that back our predictive
context-sensitive approach.

A. Coverage-guided Fuzzing

Fuzzing techniques have a prominent place in software
security research due to their effectiveness in bug discov-
ery [18]. In the most naive embodiment, a fuzzer is a system
that attempts repeated executions of a target program over
randomly generated testcases while monitoring it for crashes.
Many techniques are available to optimize the testcase gener-
ation process, e.g., to discover more bugs within a given time
budget [19] or prioritize specific code regions for testing [20].

The amount of information that a modern fuzzer acquires
during the (many) executions of the program under test can
vary, leading to a distinction between black-box [21], [22],
white-box [23], [24], and grey-box [25], [26] fuzzers. In
particular, grey-box fuzzers use lightweight instrumentation
to track coarse-grained state information such as the code
coverage achieved by each testcase and are largely popular
due to their effectiveness.

As we anticipated in Section I, tracking code coverage can
also serve as a feedback for coverage-guided fuzzers, allowing
them to distinguish the program behaviors distinctive of each
testcase by profiling, e.g., the control-flow edges taken during

2

the execution (edge coverage). Ultimately, this choice improves
the ability of a fuzzer to find vulnerabilities [27].

Coverage-guided fuzzers instrument program code to up-
date a coverage map (e.g., when the program takes a control-
flow edge) that eventually serves as a profile of the testcase
execution. Some also keep track of hit counts at coverage
points. A relevant aspect of map updates involves collisions,
which harm the effectiveness of fuzzing: a fuzzer may overlook
program behaviors (and in turn bug discovery opportunities)
if the encoding scheme for map updates treats two distinct
coverage facts as if they were the same [16].

For instance, the popular AFL fuzzer [25] tracks edge
coverage by combining, upon entering a basic block, the
index of the current block with the one of its predecessors as
curr⊕(prev >> 1). Despite a limited run-time overhead, this
hashing scheme incurs frequent collisions [16]. Fuzzers such
as AFL++ and LIBFUZZER mitigate this problem by inserting
dummy basic blocks to disambiguate critical edges [28] in the
control-flow graph. Thanks to this transformation, they can
track the original edges by using only the (unique) identifier
of the currently executing basic block in the modified program,
therefore achieving collision-free edge coverage.

B. Points-to Analysis

A points-to analysis is a static program analysis that is able
to identify the possible targets of a pointer expression [29]
by building the points-to set of abstract objects that each
expression may reference. An abstract object represents an
allocation site and concisely captures all the concrete object
instances that the program may create there.

Points-to sets are sound, meaning they never miss feasible
objects. Sensitivity properties of a specific analysis influence
the accuracy of the sets it produces (for the presence of
unfeasible abstract objects) and its ability to scale with pro-
gram complexity. Points-to analyses are nowadays used in
several security scenarios (e.g., [30], [31], [32]), also thanks to
recent technical advances and state-of-the-art implementations
(e.g., [33], [34]) available for mainstream compilers.

In this paper, we use a state-of-the-art points-to analysis
to study data-flow diversity properties for function call
arguments.

III. MOTIVATION AND OPEN PROBLEMS

We use the code in Listing 1 as a running example to
showcase how context-sensitive coverage information can help
a fuzzer explore and eventually exploit a faulty program
statement that may trigger a bug only when execution reaches
it along certain program paths.

The program processes input data as a stream of bytes.
Segments of type A1 and A2 contain a variable-size payload
of 128 to 192 bytes. Payloads for segments of type B can
host up to 127 bytes. For all segments, the payload hosts 16
elements stored adjacently. Element sizes are encoded in the
input as 16 consecutive bytes prepended to the payload: these
will eventually populate the sizes array of the segment
structure of the program. Accepted inputs contain one segment
of type A1 or A2 followed by one segment of type B; the logic
enacting this constraint is not shown in the listing for brevity.

1 #define MAX_SEG_SIZE 192
2 #define SEG_A12_SIZE 192
3 #define SEG_B_SIZE 127
4 #define EOSEGM(x) ((x) == 0x23)
5

6 struct {
7 u16 type, len;
8 u8 sizes[16];
9 u8 data[];

10 } segment;
11

12 segment* cur;
13

14 void parse_seg(char* stream, segment* d) {
15 int n = 0;
16 u8 tmp[MAX_SEG_SIZE];
17 for (int i=0; i<16; ++i) {
18 d->sizes[i] = *stream++;
19 n += d->sizes[i];
20 }
21 if (n > MAX_SEG_SIZE) error("too long");
22 for (int i=0; i < n; ++i)
23 tmp[i] = decode_byte(*stream++, d->type);
24 if (!EOSEGM(tmp[n-1])) error("invalid data");
25 memcpy(d->data, tmp, n);
26 d->len = n;
27 }
28

29 void get_seg_A1_A2(char* stream, u16 type) {
30 cur = malloc(sizeof(segment) + SEG_A12_SIZE);
31 cur->type = type;
32 parse_seg(stream, cur);
33 }
34

35 void get_seg_B(char* stream) {
36 cur = malloc(sizeof(segment) + SEG_B_SIZE);
37 cur->type = SEG_TYPE_B;
38 parse_seg(stream, cur);
39 }
40

41 void process_segment(char* stream) {
42 u16 type = decode_type(stream);
43 switch(type) {
44 case SEG_TYPE_A1:
45 case SEG_TYPE_A2:
46 get_seg_A1_A2(stream+2, type); break;
47 case SEG_TYPE_B:
48 get_seg_B(stream+2); break;
49 }
50 // [...] parsing logic continues
51 }

Listing 1. Motivating example for context-sensitive fuzzing.

Function parse_seg contains a heap-overflow bug at line
25. To trigger it, the program state must satisfy two conditions:
(i) the input contains a segment of type B with a stated payload
size higher than 127 bytes and (ii) the last payload byte, once
decoded, corresponds to the segment termination marker.

In the early stages of fuzzing, a CGF system will have
to generate an input containing a segment of type A1 or A2
through progressive mutations of intermediate testcases. This
implies that overly long inputs will be rejected at line 16 and
that the segment termination marker should appear as the last
decoded symbol in the tmp buffer to overcome the check at
line 24. Both checks lead to immediate program termination.

Later on, once mutations materialize also a segment of type
B in the input, a CGF system based on edge coverage may
easily change the 16 bytes related to sizes to have overly

3

long payloads meeting condition (i), but will not retain such
a testcase for further mutations because its execution does not
cover any new edge (or hit count bucket) unless get_seg_B
is being called for the very first time in the campaign.
Therefore, the fuzzer can expose the bug only if condition
(ii) is already met by chance when generating such a testcase.

ANGORA [1] extends edge coverage to distinguish ex-
ecutions of the same branch by different calling contexts
(defined in Section I). To this end, it dynamically tracks the
calling context as the hash of the current call stack, computed
by XOR-ing at each call and return instruction the current
hash value with the unique numeric identifier of the involved
function. Then, it combines this hash with AFL’s edge hash
identifiers, obtaining a feedback where each map entry should
ideally capture a distinct context-sensitive edge instance. We
call such kind of feedback best-effort.

Challenges: We studied the internal fuzzer wastage that
comes with best-effort context-sensitivity approaches by ana-
lyzing popular programs from fuzzing literature. We consider
two standard configurations of the popular AFL++ fuzzer:

1) EDGES, the context-insensitive AFL-style setup with a
coverage map of a standard size of 216 entries indexed
by edge hashes (Section II-A);

2) LTO, the configuration of AFL++ optimized for collision-
free edge coverage, with unique edge identifiers assigned
during link-time optimization. We remark that LTO is
currently the most performant setting in the CGF practice.

For context-sensitive fuzzing (CONTEXT), we consider the
specific configuration of AFL++ for it (used also in, e.g., [15]),
which reproduces the working of ANGORA [1] by combining
AFL’s edge encoding with the XOR-based call-stack hash
described above. We test it in two flavors, using coverage maps
of 216 (AFL’s default) and 220 (as in ANGORA) entries.

Figure 1 plots statistics collected from a 24-h fuzzing
campaign on a subject, libxml2, that is particularly repre-
sentative of the issues behind current approaches. To conduct
the experiment, we use the driver and seeds from FuzzBench
commit 81d0ed8 and the default timeout of AFL++. We study
the size of the queue, the throughput (completed executions),
the number of distinct map entries covered by the testcases,
and, where applicable, how many per-entry unique collisions
we identified. A collision at a map entry implies that the
fuzzer met and erroneously treated at least two distinct context-
sensitive edge instances as if they were the same.

The resulting data highlight two efficiency issues leading to
internal wastage for current context-sensitive fuzzers: we will
refer to them as coverage map explosion and queue explosion.

To understand coverage map explosion issues, we took a
closer look at ANGORA. As acknowledged by the authors [1],
their encoding method for context-sensitive edge instances is
prone to hash collisions: we identified them on 50.7% of the
map entries for the CONTEXT 216 fuzzer configuration.

Collisions are undesirable, since they lead to loss of
context-sensitivity1 and ultimately increase the likelihood of
discarding useful testcases [16]. Therefore, ANGORA uses a
larger map with 220 entries. While this choice can effectively
mitigate collisions (1.2% for CONTEXT 220), it can hamper the

Executions / Map entries
Fuzzer configuration Queue size sec (large L2) Used / Total Colliding

EDGES (216 map) 9 911 609.04 19.86% of 64 KB 9.8%
LTO (collision-free) 11 093 572.02 15.59% of 50 KB -
CONTEXT (216 map) 33 675 530.10 79.54% of 64 KB 50.7%
CONTEXT (220 map) 21 157 84.38 7.21% of 1 MB 1.2%
PREDICTIVE 15 455 490.62 9.28% of 256 KB -

00:00 04:00 08:00 12:00 16:00 20:00 24:00
time

3000

4000

5000

6000

7000

8000

ed
ge

 c
ov

er
ag

e

Fig. 1. Fuzzer’s internal wastage vs. edge coverage over 24 hours with best-
effort context-sensitivity. Peak values for degradation are highlighted in bold.

throughput of the fuzzer because of higher map access latency
(as the map would no longer fit common L2 cache sizes, which
can accommodate up to 218 entries) and slower processing at
the end of each execution. On standard hardware, we observed
induced slowdowns of one order of magnitude.

To partially mitigate this coverage map explosion problem,
we collected our data on a high-end Intel Xeon Platinum 8160
with a 1-MB L2 cache. Even on such a high-end configuration,
the number of completed executions dropped from ˜45 millions
to ˜7 millions. Such low fuzzing throughput ultimately resulted
in much poorer (context-insensitive) edge coverage after 24
hours than any other configuration.

The second problem, queue explosion, is well-understood
in literature: as observed in [10], while retaining more seeds
offers “stepping stones for more meaningful mutations that
lead to final crashes, [retaining] too many of them would hurt
the fuzzing performance” as the differences between most such
seeds are likely so tiny that would hardly result in new bugs.

For the CONTEXT 216 configuration, the queue size grows
significantly (from 9 911 to 33 675 retained testcases), but
the edge coverage achieved over time is appreciably lower
than EDGES (where 9.8% of map entries see collisions) and
much lower than the one obtainable with a collision-free LTO
solution. The problem is less noticeable in the CONTEXT
220 configuration (although the queue size still doubles to
21 157), but only because the much lower throughput (and
edge coverage) masks the queue explosion problem.

Summarizing, our analysis shows that current context-
sensitive strategies (CONTEXT) struggle to achieve good preci-
sion without introducing internal wastage due to explosion is-
sues: by allowing more collisions, they lose context-sensitivity
(at the cost of discarding important testcases), whereas by
reducing collisions, they overly discriminate contexts (at the
cost of retaining too many testcases and trashing the fuzzing

1And, even worse, weaker path sensitivity than a context-insensitive base-
line, since a single hash is used for calling contexts and edges. Therefore, one
may suggest combining a collision-free edge ID with a hash of the context.
Unfortunately, this method would be much poorer than the one of ANGORA
due to the limited entropy of edge identifiers, which would be completely
marginal compared to the one of contexts.

4

throughput). The performance of CONTEXT falls behind by an
appreciable margin not only the collision-free edge coverage
setting of LTO, but even EDGES. Best-effort context-sensitivity
was similarly outclassed for bug finding capabilities in the full
evaluation that we will illustrate in Section VI-A (Table III).

The key reason why this is essentially an impossible needle
to thread is that prior strategies are entirely blind to which of
the many distinct contexts are important to capture in order to
retain interesting testcases. As an example, libxml2 can see
potentially up to 16-million distinct contexts originating from
its main; more in general, their number is often exponentially
large w.r.t. the number of program functions [11].

Our Approach: In this paper, we explore a selective
angle to deploy context-sensitive fuzzing in a more effective
way: we augment only certain program regions with contextual
information, devising then a novel predictive solution to stat-
ically identify regions that are likely to benefit from context-
sensitive profiles for the edges traversed during execution.

As a concrete instance of this strategy, we favor call sites
that see a higher diversity for the incoming data-flow at call
arguments. For our example, such a predictor would recognize
that the segment object flowing into the buggy function
comes from different allocation sites depending on the caller.

Then, as we study only data-flows for function arguments
across different call sites, instead of the full calling-context we
can rely on a much lighter context abstraction that discrimi-
nates only the identity of the caller function.

Our approach (PREDICTIVE) augments an LTO-style map
with entries for collision-free context-sensitive profiles of
edges from selected regions. For the rest of the code, we use
collision-free context-insensitive edge tracking as LTO does.
We bound our selection so that the map fits standard L2 caches.

Ultimately, all these choices allow us to hit the “sweet
spot” between insufficient and excessive context-sensitivity,
uncovering more bugs in well-known benchmarks with only
a moderate impact on the fuzzer’s internal wastage.

IV. PREDICTIVE CONTEXT-SENSITIVITY

This section presents the three main pillars of our approach:

1) a collision-free method to encode context-sensitivity;
2) a selective approach to restrict context-sensitive fuzzing

to program regions of interest for the sake of scalability;
3) a data-flow analysis to predict regions likely to benefit

from having been selected when a coverage-guided ex-
ploration reaches them.

We produce a transformed program containing context-
sensitive instances of control-flow edges, added according to a
user-specified budget and in a cost-effective manner. Existing
CGF systems can test it without requiring any changes.

A. Function Cloning

A way to turn a context-insensitive program analysis into
a context-sensitive one is to expose to the analysis a separate
instance (clone) of the code unit of interest at each different
encountered context. For instance, if contextual information is
represented only by the caller of a function, the analysis may

produce separate results for the unique clones of the callee
devised for each possible caller.

Such an approach has two main advantages: it offers
backward compatibility for existing fuzzing instrumentation
solutions and can accommodate different context-sensitivity
definitions. Let us consider calling-context information, ini-
tially on recursion-free programs for simplicity.

One may disambiguate the calling context for a specific
function by taking the call graph of the program and, for each
maximal acyclic path that reaches the function, introducing a
clone at every caller-callee pair on the backward walk to its
root node. In this way, whenever the analysis reaches a clone
of the original function, the path from the root function to it
is unique. Therefore, the identity of the clone is sufficient to
precisely determine the invocation context.

To handle recursion, we look for functions involved in
direct and indirect recursion by analyzing the strongly con-
nected components (SCCs) of the call graph [35]. During path
analysis and cloning, we treat each SCC as a single node
without a self-edge. This allows us to retain precise contextual
information before and after entering recursive sequences
(which in general may be unbounded in depth), treating only
the recursive parts in a context-insensitive manner.

For a coverage-guided fuzzer, we need a way to discrimi-
nate different clones of a function of interest that is both cheap
to maintain or retrieve at run-time and composable with other
encoding techniques in a space-efficient and collision-free way.

An elegant and effective way to maintain context-sensitivity
for program points is to manipulate the code of the program
and add concrete copies of the involved functions. This choice
brings several advantages. By exposing contextual information
through new code locations, we offload the collision problem
to the feedback mechanism already in use by the coverage-
guided fuzzer. With edge coverage, existing collision-free edge
encodings will just assign unique (context-sensitive) edge
identifiers to code from clones. Therefore, function cloning
effectively solves the collision problem we saw in Section III.

Furthermore, when deploying context-sensitivity in the
selective flavor that we present in the next section, another
advantage of our scheme is that it brings virtually no run-time
overhead for tracking and retrieving the context, as we trade
this efficiency for a modest increase in program size.

Let us use as running example our program from List-
ing 1. The relevant caller-callee pairs are (get_seg_A1_A2,
parse_seg) and (get_seg_B, parse_seg). For simplic-
ity, we pick the second for specialization as we know that
such path can expose the bug at line 25. Our cloning primitive
adds to the program a duplicate of parse_seg, which we
call __clone_ps, and patches the call at line 38 to invoke
it in lieu of the original function. When a coverage-guided
fuzzer executes the augmented program, the branch originally
at line 22 will benefit from separate coverage information when
reached via get_seg_B, allowing the fuzzer to treat it as an
interesting testcase (and, in more detail, to become sensitive
to the different payload lengths that its hit count may capture).

By choosing to work on call sites, we can virtually model
any notion of context-sensitivity based on tracking portions of

5

TABLE I. CODE FEATURES OF FUZZBENCH SUBJECTS.

Benchmark Type Edges Functions Call sites Calling contexts

ffmpeg C, some C++ 716 046 5 314 44 500 8 014 021
file C, some C++ 15 986 250 985 19 217
grok C++ 94 092 535 2 234 11 025
libarchive C 67 096 866 4 377 27 984 301
libgit2 C 107 785 1 718 5 467 3 024 953
libhevc C 119 646 197 853 125 907
libhtp C++ 11 203 181 706 6 718
libxml2 C 104 351 1 147 6 708 44 652 617 060
matio C 24 112 300 1 795 2 793 663
muparser C++ 14 007 103 483 6 120
ndpi C 49 216 355 1 991 10 507
njs C 57 402 588 3 818 12 671 908
openh264 C++ 78 819 384 1638 28 441
stb C/C++ 11 861 144 881 11 501
usrsctp C 96 225 405 4 303 3 294 931 527
zstd C/C++ 38 863 848 5 027 140 141

the call stack: a global policy will ensure that each cloning
action draws out a piece of the desired portion. The call sites
present within an added clone may be in turn disambiguated
for context-sensitivity by applying cloning recursively.

B. The Need for Selective Sensitivity

While cloning can expose context-sensitivity information
for program points in a “fuzzer-friendly” manner, it does not
help us get around the path explosion problem that comes with
calling contexts (Section III). As evidence of this issue, Table I
reports statistics collected for programs from the FuzzBench
test suite that we later use for evaluation purposes (Section VI).

As a fuzzing harness often tests only a relevant subset
of a code base, we collect the figures after removing all the
functions unreachable according to LLVM’s static analyses. In
the edges column, we report the number of basic blocks that a
collision-free edge coverage scheme instruments after breaking
all the critical edges in program functions [26]. The last three
columns represent, respectively, the number of nodes, edges,
and acyclic paths in the call graph.

For many subjects, the number of contexts appears in-
tractable for any practical collision-free attempt (we will return
to this in Section VII), including cloning. Even when the
contexts are not millions or more, the number of “context-
sensitive” edges to disambiguate may still increase dramati-
cally when the call sites are many, requiring in turn (inefficient)
large coverage maps for their (collision-free) tracking.

However, we argue that a much more effective approach is
possible: adding context-sensitivity only to selected program
portions. Algorithm 1 presents the high-level workflow: we
process the call graph at call-site granularity and follow a
prioritization policy to pick individual call sites for cloning.
As a baseline, we consider a random policy that prioritizes
them uniformly at random.

We surveyed static analysis literature for contextual in-
formation representation in the programming language com-
munity (e.g., [36], [37], [38]) and derived three policies that
approximate their core ideas by performing a visit of the
call graph and assigning priorities (captured by visit order)
according to topological properties:

• top: assigns higher priority to call sites from nodes closer
to the root(s) of the call graph, progressively exposing the
context in a top-down fashion as in [37].

Algorithm 1: Priority-based Cloning
function CloneByPriority(program, budget)

callsites ←
⋃

f∈program GetAllCallsites(f)
priorities ← GetPriorities(callsites)
pqueue ← PriorityQueue(callsites, priorities)
while program.size < budget do

callsite ← pqueue.pop()
target ← GetCallTarget(callsite)
new target ← CloneFunction(target)
SetCallTarget(callsite, new target)
new callsites ← GetAllCallsites(new target)
new priorities ← GetPriorities(new callsites)
pqueue.push_all(new callsites, new priorities)

• bottom: assigns higher priority to call sites closer to
leaves. This policy progressively exposes the last entries
on the call stack as in call strings [36], which in some
domains can effectively replace the full calling context.

• uniform: treats every call site with the same priority. It
resembles [38] and mixes the effects of the other policies,
exposing the top or bottom call-stack entries leading to a
node depending on its proximity to a root node or a leaf.

In preliminary tests2, these policies exposed a few more
bugs than standard edge coverage (thus already outclassing
best-effort context-sensitive solutions) and did not experience
any evident internal wastage. However, their apparent benefits
were modest and also difficult to understand when compared to
random, as the policies often resulted in similar performance.

Eventually, we looked at these results retrospectively. Poli-
cies of this kind are well suited for static program analysis sce-
narios, where partial contextual information may still expose to
an analysis sufficient information to reason on all the possible
refined program states and, in turn, the user can measure the
improvement (if any) in the precision of the returned answers.
Instead, coverage-guided fuzzing is a dynamic analysis tech-
nique based on a lightweight abstraction of program state: no
direct static measurement of the benefits of context-sensitivity
seems possible. To effectively take advantage of any added
context-sensitivity (which can be available only in a limited
quantity), we concluded that we need a predictor for program
portions that may practically benefit from it during fuzzing.

C. Data Flow-based Prediction

A pivotal element of our proposal is a prediction-based pol-
icy that prioritizes for cloning those call sites where the callee
sees higher diversity in the incoming data-flow compared to
other uses of the same function in the rest of the program.
Specifically, we favor cases where the abstract objects poten-
tially incoming as arguments for the callee function are more
peculiar (i.e., less frequently met) w.r.t. other call sites where
the function is invoked. Our hypothesis is that such diversity
can be a promising indicator that the program may enter “less
common” internal states along these execution contexts.

Prioritizing such contexts for cloning and, in turn, retaining
testcases that hit them during execution may allow the fuzzer

2The results for top (shown as ‘bfs’) and uniform can be found at https:
//www.fuzzbench.com/reports/experimental/2021-05-25-cloning/index.html,
whereas for random and bottom at https://www.fuzzbench.com/reports/
experimental/2021-07-09-cloning/index.html.

6

to delve more pervasively into these behaviors, both locally at
the callee and in any subsequently reached code that is affected
by the data flow. As we will explore in Section VI, the analysis
we present below turns out to be a good predictor in practice
for eliciting profitable states and uncovering new bugs.

We argue that function arguments are a natural way for
programs to orchestrate data-flows through their code units.
Therefore, we study the invocation of every function at its
different call sites in the call graph and analyze what values
are possible for each of its arguments. We prioritize cloning
those call sites that pass as arguments abstract objects that
never or rarely appear at other call sites.

In other words, we find it reasonable to differentiate those
call sites (i.e., to introduce clones for callees) that see peculiar
incoming objects, while we predict a lower benefit from doing
so at call sites that see objects that recur at other places too.
For example, for a function with two call sites, we have little
interest in cloning it if the two pass similar objects; instead,
when the two pass very different objects, we find it reasonable
to differentiate them for the fuzzer to explore both.

In this paper, we focus on pointer-type arguments and use
an off-the-shelf analysis to build points-to sets (Section II-B),
obtaining the possible abstract objects that an argument may
reference when passed at a call site. We compute the prediction
to use as priority value in Algorithm 1 as follows. Let the target
function be in use at n call sites in the call graph3 and O be the
set of all abstract objects that may be passed via its arguments
at the current call site. The priority p of the call site is:

p =
1

n
×

∑
o∈O

(n − no)

where no is the number of call sites for f where object o
may appear in any of its arguments. As we said earlier, we
seek to favor the diversity of the incoming data-flow: an object
o that does not appear at other call sites for the target will
contribute with a n − 1 addend, whereas an object that may
appear at all call sites will give a zero addend. Eventually, the
edge coverage collected for the clones exposes the incoming
data-flow diversity to the fuzzer, favoring a more pervasive
exploration of the underlying program states.

D. Discussion

With our approach, we propose to overcome the precision
and efficiency limitations of current context-sensitive fuzzing
flavors by augmenting only selected program points with con-
textual information. Our data flow-driven prioritization policy
shows promise in practice, retaining for further mutations
inputs that eventually led us to discover new (or more) bugs.

In our approach, we chose to focus on pointers because
pointer diversity always leads to data-flow deviations, while
non-pointer diversity does not necessarily do so. We also be-
lieve memory errors to be more likely in presence of data-flow
deviations, and fuzzers are notoriously effective in exposing
them [39] (especially in combination with sanitizers [40]).
An interesting follow-up may be to study what non-pointer
variables in a program can lead to “helpful” diversity and,
in turn, to what extent. In this scenario, a practical aspect
to account for is the precision of value analysis techniques

for non-pointers (e.g., value range analysis [41] on integer
arguments), as too coarse results could mask real diversity.

Compiler-based instrumentation is a natural way to deploy
our approach. For fuzzing programs available only as binaries,
binary rewriting techniques or a modified runtime can intercept
and divert call sites. However, analyzing pointer arguments
may be challenging as, among others, it would need to recover
object locations. We leave this investigation to future work.

V. IMPLEMENTATION

We implement our techniques as a set of analysis and
transformation passes (˜2k C++ LOC) for the intermediate
representation (IR) of the LLVM compiler, a popular choice
for fuzzers that instrument source code. We operate on a link
time-ready whole-program IR file that the GLLVM helper [42]
obtains for the uninstrumented program. We produce a trans-
formed IR file and feed an off-the-shelf fuzzer with it.

As for evaluation purposes we opted for the state-of-the-
art AFL++ [14] fuzzer (version 3.15a), we devise a simple
Python helper that automates the compilation process and also
the insertion of sanitization machinery. Our cloning pass has
provisions to correctly handle the instrumentation introduced
by popular sanitizers such as ASAN and UBSAN, which insert
tripwires that help fuzzers expose silent bugs [43].

For sizing purposes, we implement an analysis to estimate,
for each cloning decision, the coverage map size increase due
to the unique identifiers that the collision-free edge coverage
encoding of AFL++ would introduce for the clone. We simulate
a cloning action and reuse AFL++’s instrumentation algorithm
to count the edge entries the clone would need in the map.

Good fuzzing practices [1] recommend map sizes no larger
than standard L2 cache sizes (i.e., 256 KB), whereas overly
large maps can be detrimental for performance even on fa-
vorable hardware, as we saw in Section III. Once we set a
maximum desirable map size, we can use as residual budget for
cloning the “free” map entries after we accounted for the edges
currently in the program and, potentially, add clones up to its
exhaustion. Our evaluation sets a budget of 256 KB, which
can host up to 218 map entries. In practice, this tuning choice
allowed our fuzzers to discriminate and pervasively delve into
new program states without incurring internal wastage.

To analyze pointer arguments at call sites, we use the state-
of-the-art points-to analysis FlowSensitive from the popu-
lar SVF framework [33]. Among the analyses implemented in
SVF, it is expected to bring the most accurate points-to sets for
general code, as it carries an Andersen-style analysis enhanced
with field- and flow-sensitivity (while it remains array- and
context-insensitive for the sake of scalability).

As an implementation refinement, we attempt to lower the
priority of a recurrent class of uninteresting call-site targets:
error-handling functions that lead to program termination. In
the programs we study, many such functions see a very high
number of callers and, consequently, an inherently diverse
incoming data-flow at various call sites. We opt for lowering
the priority of the call sites whose target is a function called
by at least 25% (a value set empirically) of all functions in

3We remark that we compute priority values on the unmodified program.

7

the program. We have verified that this choice affected only
error-handling functions in our tests.

Our prototype can also attempt to reason on paths involving
indirect-call sites, by promoting each indirect call into a
conditional selection of direct calls to plausible targets [44],
[45], [46]. However, this is disabled by default since precise
reasoning on indirect calls is notoriously hard. With a static
approach, the precision of the analysis for building call-target
sets is crucial [47]: in most of the cases we analyzed using
points-to analysis, the size of the resulting sets led to path ex-
plosion. Nonetheless, as we will see throughout Section VI, the
effects of our techniques allowed us to expose bugs and report
security vulnerabilities in heterogeneous programs written in
C/C++ and object oriented-style C. As future work, we plan
to explore the potential benefits of profile-guided indirect call
promotion [44] for these subjects, for instance using testcases
from a short fuzzing session, as well as of recent advances in
static type-based dependence analysis techniques [48].

VI. EVALUATION

We study the performance of predictive context-sensitive
fuzzing using the FuzzBench testing infrastructure. Popular in
academia and industry since its release in 2020, FuzzBench has
become a de-facto standard benchmarking platform and pro-
gram collection for fuzzing research. FuzzBench targets real-
world programs, pinning specific versions for reproducibility
and result validation [17]. We select the ‘type: bug‘
configuration of FuzzBench, a choice made also in other recent
bug-oriented studies [49], [50], [51]. We study different dimen-
sions of our approach for the following research questions:

RQ1: Can we outperform the state of the art in bug finding? Can
we find vulnerabilities that existing approaches overlook?

RQ2: To what extent do we induce internal wastage, if any?
RQ3: What burden do we place on the compilation pipeline?

Atop the AFL++ [14] fuzzer, we test these configurations:

• context: best-effort context-sensitivity as evaluation
baseline, using the implementation available in AFL++

that reproduces what proposed in ANGORA [1];
• lto: collision-free edge coverage boosted with link-time

optimization. It is the the most effective setting available
for context-insensitive coverage-guided fuzzers [14] and
serves as a reference point to show (in further detail than
in Section III) the internal wastage effects of context;

• predictive: the approach we propose in this paper;
• random: an uninformed prioritization policy serving as

a baseline for selective context-sensitivity;

For context, we use a coverage map of 218 entries to
fill the L2 cache (256 KB) typical of most machines, including
the FuzzBench cloud infrastructure on which we ran our tests.
We do not evaluate larger sizes as we experienced significant
internal wastage for the reasons discussed in Section III.
We also remark that context reproduces only ANGORA’s
context-sensitive edge coverage encoding: that is, it does not
perform the taint tracking or gradient-descent based search
that are other distinctive features of ANGORA. The reason for
it is that we want to stress context-sensitivity alone (which
other fuzzers, like WEIZZ [15], already use): the independent
contributions of such features would only pollute the analysis.

For lto, the number of instrumented edges in each pro-
gram (Table I) determines the map size.

For predictive and random, we use the largest
cloning budget value such that the resulting map still fits4 an
L2 cache of 256 KB (i.e., up to 218 entries).

We could obtain a compilable whole-program IR file (Sec-
tion V) for 16 of the 22 benchmarks from FuzzBench. Bugs
and missing features in the GLLVM [42] helper5 and other
compilation errors unrelated to our techniques prevented us
from testing the other programs. The link-time primitives that
recently became available in LLVM may help for them for
future implementation extensions.

For all the fuzzer configurations that we study, we instru-
ment each whole-program IR file with the ASAN and UBSAN
sanitizers [52] to expose common classes of silent bugs. All
the fuzzer configurations that we test work on binaries built
with -O3 optimization level.

A. RQ1: Effectiveness in Bug Finding

To evaluate the bug finding capabilities of our four fuzzer
configurations (hereafter fuzzers for brevity), we initially rely
on the infrastructure of FuzzBench to count unique bugs via
automatic crash deduplication based on unique stack traces. As
we run the fuzzers on its cloud platform, each configuration-
benchmark pair sees 20 trials of 23 hours each.

1) General Trends: Following standard practices [53], we
reason on the median values over all trials to mitigate the
well-known effects of randomness in fuzzing. Figure 2 reports
the boxplots for each benchmark showing the number of bugs
found by each fuzzer. For each benchmark, the fuzzers appear
in the ranking order given by their median number of bugs
found across the trials and using their maximum number to
break ties when necessary.

To compare the effectiveness of each fuzzer, we first
consider the average score metric from FuzzBench. For each
benchmark, the score of a fuzzer in a ‘type: bug‘ cam-
paign is given by expressing the median number of bugs6 it
finds as the percentage of the median number of bugs from
the fuzzer that performed best on that benchmark. The final
cross-benchmark average score for a fuzzer, shown in Table II,
is the average of individual benchmark scores and mitigates
distortion effects due to benchmarks having a different number
of total bugs [17]. We note that cross-benchmark average
scores reflect the relative performance of each fuzzer in
one experiment setting: therefore, they do not generalize for
comparisons with other selections of fuzzers and/or programs.

The best-performing fuzzer is the one using our predictive
policy: predictive obtains the highest score with an 11.84
net difference with lto, which in turn largely outperforms

4Except for ffmpeg, for which the number of unique edges requires more
than 218 entries already with lto: therefore, we set the budget for it to the
nearest feasible multiple of two (768 KB).

5Two practical limitations we observed with GLLVM are i) its incorrect
handling of source files that a build system may supply to a linker (while this
may seem an unorthodox behavior, both clang and gcc allow it; we reported
the issue to its developers) and ii) when it invokes llvm-link to merge the
bitcode files, the IR elements for indirect functions (GNU IFUNC) are lost.

6Coverage-centric experiments use the median code coverage instead.

8

B C A D
0
1
2
3
4
5
6
7
8

bu
gs

ffmpeg_ffmpeg_demuxer_fuzzer

B A D C
0.0

0.5

1.0

1.5

2.0

2.5

3.0

bu
gs

file_magic_fuzzer

B D C A
0

1

2

3

4

5

6

bu
gs

grok_grk_decompress_fuzzer

C A B D
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

bu
gs

libarchive_libarchive_fuzzer

A B C D
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

bu
gs

libgit2_objects_fuzzer

A B C D
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

bu
gs

libhevc_hevc_dec_fuzzer

D C B A
0

1

2

3

4

5

6

bu
gs

libhtp_fuzz_htp

B C D A

2.5

5.0

7.5

10.0

12.5

15.0

17.5

bu
gs

libxml2_libxml2_xml_reader_for_file_fuzzer

A D B C
12

14

16

18

20

22

24

26

bu
gs

matio_matio_fuzzer

B D A C
0.0

0.2

0.4

0.6

0.8

1.0

bu
gs

muparser_set_eval_fuzzer

B C D A
2

4

6

8

10

bu
gs

ndpi_fuzz_ndpi_reader

B C D A
0.0

0.2

0.4

0.6

0.8

1.0

bu
gs

njs_njs_process_script_fuzzer

B C D A
3

4

5

6

7

8

bu
gs

openh264_decoder_fuzzer

B D C A
7

8

9

10

11

12

13

14

bu
gs

stb_stbi_read_fuzzer

B C D A
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

bu
gs

zstd_stream_decompress

A: context B: predictive C: lto D: random

Fig. 2. Boxplots with mean value (△) and raw data points (·) for bugs uncovered in the FuzzBench programs across 20 trials. Fuzzers are ordered by ⟨median,
maximum⟩ number of bugs found. We leave out usrsctp as no fuzzer found bugs for it.

TABLE II. CROSS-BENCHMARK AVERAGE SCORE FROM FUZZBENCH.

Fuzzer configuration FuzzBench score

predictive 94.14
random 82.98
lto 82.30
context 63.42

context (and even random does too). The predictive
fuzzer will similarly stand out also in the analysis of individual
bugs that we provide in the next section.

As we move to the other fuzzers, we remark how the lto
state-of-the-art configuration is a strong baseline. In addition
to collision-free encoding of edges, which outperforms classic
(collision-prone) edge tracking and refinements [16], it benefits
from link-time optimizations such as additional inlining. For
instance, LLVM may inline a short-sized callee at a call
site for performance, incidentally providing some context-
sensitivity [54] as the inlined edge instances get new iden-
tifiers. However, an optimizing compiler follows performance-
based (rather than context sensitivity-based) inlining policies.
When our data flow-based prediction mechanism drives the
cloning decisions, we can observe a significantly larger number
of bugs found for the subjects considered in this evaluation.

On the contrary, the best-effort context-sensitivity of
context suffers from a combination of the problems ana-
lyzed in Section III. While we defer a detailed discussion of
internal wastage effects to Section VI-B, collisions hamper its
ability to distinguish, and thus explore, useful program states
that not only predictive, but even lto can often retain
in its queue. Combined with the time spent analyzing likely
uninteresting testcases that pollute its queue and the lower end-
to-end throughput (Section VI-B), context ranks on average
as the least effective fuzzer configuration in our tests.

2) In-depth Analysis: We now qualitatively analyze the
unique bugs identified by the fuzzers predictive (125),
lto (112), and context (102). We leave out random (110)
for brevity. We start by discussing the left part of Figure 3,
which compares the unique bugs found by predictive
against the lto and context fuzzers, which embody the
state of the art in context-insensitive and sensitive fuzzing.
Table III lists how many bugs we found on each subject.

Due to internal wastage effects, context missed 27 of
the unique bugs that both predictive and lto could find.
Of the 102 unique bugs context found, 74 were found by
both the others, and 82 by predictive. As for the 18 bugs
found only by context, 15 are from matio—on which, as
we discuss next, our predictive strategies are less effective.

On the other hand, predictive revealed twice as many
(43) unique bugs missed by context, found in 9 of the
16 subjects we study, and 23 more bugs in total (+22.55%).
Finally, the two fuzzers find an identical number of bugs
in 5 subjects. We conclude that our approach significantly
outperforms the state of the art in context-sensitive fuzzing.

Comparing the counts for predictive and lto, the
former found 13 more bugs in total (+11.6%). Also, 24 of
its 125 bugs (19.2% of the total) were missed by lto; this
amount equals the 21.4% of the lto count. Of the 112
bugs found by lto, our approach missed 11 bugs (10.7%
of the lto count). Hence, our approach not only significantly
outperforms best-effort context-sensitivity, but does not show
appreciable internal wastage compared to lto. With more and
different bugs found, we may argue that our approach has
benefited the exploitation work of the fuzzer (Section III).

Testcase Dissection: To better understand these results
and how refined contextual information may be behind the
bugs that only predictive found, we analyze several char-

9

predictive

lto

context

18

9

2

16

8

27

74

1

2

2

6

8

2

10

Fig. 3. Venn diagrams for unique (left) and also new (right) bugs found by
the fuzzers across all benchmarks.

acteristics of the crashing testcases. For example, we examine
how often the bugs come from code that the state-of-the-art
lto fuzzer driven by edge coverage (possibly refined by LTO
effects) reaches in its exploration without causing a crash.

Although our methods improves context-sensitive fuzzing,
the following discussion mainly considers lto as a com-
parison point both due to its significantly better bug finding
performance compared to context and for understanding
why context-sensitivity helped our fuzzer’s performance.

We downloaded the queues from all trials from the
FuzzBench cloud and ran each testcase on a locally compiled
binary. We successfully reproduced 23 out of 24 bugs; the one
failure involves subject grok and a corrupted zip file stored
on the FuzzBench cloud for the trial that exposed the bug.

We check the bugs found only by predictive against
the cumulative code coverage achieved by lto on each of its
20 runs. We note that 16 bugs occur in code that lto covered
in at least one trial without yielding a crash. Conversely, 7
bugs are from new code coverage.

The attentive reader may find the last result surprising.
Typically in program analysis, context-sensitive approaches
are meant to improve the results (here, the exploitability) for
code that is already within the reach of context-insensitive
solutions. However, context-sensitivity may make a fuzzer
retain a testcase that, through further mutation, eventually
“unlocks” new coverage by meeting particular control-flow
conditions (e.g., branch predicates) later in the execution. Such
testcases progressively lead predictive to buggy parts that
lto never reached in our tests across 20 trials. In Section VI-B
we will provide code coverage statistics for all subjects.

Moving forward in the analysis, we observe that for 14
bugs cloning choices directly contributed to reaching the buggy
program location and associated state, as one or more cloned
functions were active on the call stack upon the crash. In 21
bugs, contextual information helped by retaining “ancestor”
testcases during previous mutations: we measure this property
by seeing if the crashing testcase exercises context-sensitive
edges from one or more clones (which the fuzzer would see
as a novelty). These allowed the fuzzer to further mutate the
input and, in turn, the induced program state until exposing
the bug. We attribute the remaining 2 bugs (1 of which was
covered but not exploited by lto) to fuzzing entropy.

Section VI-A3 will complete this discussion with a case
study that further showcases how data-flow diversity is a good
predictor of regions for which retaining testcases that reach
them from different contexts can be beneficial when fuzzing.

We also reviewed the bugs found by both lto and
predictive. An interesting finding was that in 12 cases

TABLE III. UNIQUE BUGS FOUND PER BENCHMARK BY THE FUZZERS.

Benchmark Language context predictive lto random

ffmpeg C, some C++ 6 11 10 7
file C, some C++ 3 3 1 2
grok C++ 2 7 6 7
libarchive C 0 0 2 0
libgit2 C 3 3 3 3
libhevc C 2 1 2 1
libhtp C++ 5 5 6 5
libxml2 C 3 22 16 12
matio C 43 26 26 34
muparser C++ 0 1 0 1
ndpi C 12 17 18 13
njs C 0 1 1 1
openh264 C++ 7 8 8 8
stb C/C++ 15 18 11 15
usrsctp C 0 0 0 0
zstd C/C++ 1 2 2 1

Total

All (16) 102 125 112 110
C only (8) 63 70 68 64
C++ only (4) 14 21 20 21
Mixed (4) 25 34 24 25

the two fuzzers exposed the same unique bug from testcases
with a different edge coverage, suggesting that predictive
found the bugs from a different angle.

As for the bugs found by lto and missed by
predictive (11), we attribute them to the different ex-
ploration and scheduling choices that the two fuzzers follow.
In particular, context-sensitive fuzzing is designed to spend
fractions of the fuzzing budget in mutating testcases (and
exploring “pervasively” the associated program states [1]) that
lto does not retain. However, predictive retains any
testcase that lto would: hence, those bugs remain in its reach.

We remark that this trend is expected: in the given time, our
approach prioritized and explored other program parts better.
Such a trend is common for fuzzer specializations: for exam-
ple, also Token-level AFL [55] finds diverse and more bugs
than prior concepts, missing a few for the same reasons. The
ability to find different bugs is a pillar for initiatives like OSS-
Fuzz that stack different fuzzers and motivates recent research
on ensemble fuzzing [56], [57]. The inclusion relations of
Figure 3 are meant to show such differences, which may be
overlooked if one looks at bug counts only. We refer our
readers to Appendix A for detailed per-benchmark statistics.

On a different note, when looking at Table III, the bug
finding capabilities of our approach do not appear to reflect a
strong influence from the source language.

Instead, a subject worthy of a detailed discussion is matio.
It is the only subject on which context is the best performer
(and also by a large margin). Written in C and featuring a
high number of potential calling contexts (Table I), matio
follows an object-oriented paradigm that heavily relies on
evolving the state of a single object by manipulating its
fields while passing it across many functions. This dynamic
is missed by our diversity heuristic, which sees objects as a
whole. As a result, we may clone call sites that are much
less appealing than those that context explored blindly but

10

profitably; here, random outperforms predictive by 8
bugs. On the contrary, predictive is the most effective
fuzzer on libxml2, another target written in C following an
object-oriented paradigm and with a huge amount of potential
calling contexts. Complex state variations as in programs like
matio deserve further investigation, for example combining
our approach with the data-oriented feedback of [58] from
likely invariants for recurrent program variable values.

3) New Bugs: As a last dimension to investigate, we
conduct a set of experiments on the ability of the fuzzers to
find lingering bugs in well-tested software. We again leave out
the less performant random fuzzer.

We first analyze whether any of the bugs we found would
affect the latest program versions at the time of testing
(February 2022), which follow those used in FuzzBench by 9
months to over 4 years. These programs are tested daily by the
OSS-Fuzz initiative and are recurrent choices for many papers
behind recent fuzzer concepts. As the right part of Figure 3
shows, 31 unique testcases (as deduplicated by FuzzBench)
could crash recent versions too: in particular, predictive
(26 bugs) outperforms context (21), which in turn found
only one bug that predictive or even lto did not.

For the 31 testcases, we ruled out a few that matched issues
in existing public bug reports and responsibly disclosed all
the others to the respective developers. For bugs that hinted
at ostensible security issues, we conducted further manual
analysis to identify the logical root cause underlying each
bug and cluster them accordingly (that is, we “conceptually”
merged some). This analysis exposed 8 security issues in 5
programs: ffmpeg (1), njs (1), stb (4), libhevc (1), and
matio (1). Six of them received a CVE ID (Appendix A), 1
was deemed a duplicate of one of our newly assigned CVE IDs
(stb), and 1 was not considered a vulnerability by the vendor
according to its criteria (we reported an undefined behavior
from an invalid shift in libhvec). From commit dates, the
issues had been present in the programs for at least 1.5-3 years.

In more detail, 5 issues derive from bugs found by
predictive only: 3 for stb and 1 each for ffmpeg
and libhevc. For these issues, lto typically covered the
involved code without triggering a crash, with the exception
of 1 issue as it involved new code coverage. The remaining 3
issues came from bugs spotted by both fuzzers7.

As a case study, we discuss one of the CVEs assigned
for stb, which is a well-tested image processing C li-
brary. The bug showcases how context-sensitivity is help-
ful to expose overlooked buggy code and how our predic-
tive mechanism made effective cloning decisions for that
end. The bug manifests as a heap use-after-free violation
caused by an out-of-bound array write during JPEG de-
coding. The vulnerable function stbi__process_marker
does JPEG segment processing and is invoked, in a strict
order, from two call sites: in the initial header parsing of
stbi__decode_jpeg_header and in the subsequent im-
age decoding of stbi__decode_jpeg_image.

The incriminated code derives from the input a quantity,
hereafter n, that controls the trip count of two loops that
populate two arrays of 256 bytes within a complex struc-
ture. In the crashing testcase generated by predictive,
the out-of-bound accesses impact, among others, data that

another function, stbi__jpeg_huff_decode, later uses
to index memory. This results in a negative offset that makes
the rogue pointer reference memory previously allocated by
the fuzzing harness for another testcase. Upon the crash,
stbi__decode_jpeg_image is still present in the stack
trace for stbi__jpeg_huff_decode.

Context-insensitive fuzzers cover the edges of the vulner-
able function, but do not differentiate the program internal
states when invalid segments reach it from the second call site
because they see no new coverage. In more detail, hit count
buckets are of limited help because of the counts seen when
processing header segments. Also, after invoking the buggy
function, stbi__decode_jpeg_header carries validity
checks on several input bytes following the segment. Invalid
n values induce “unaligned” reads, and the validity checks
discard the input when such bytes do not meet the expected
semantics. As a result, the fuzzer has limited wiggle room
to retain and further mutate testcases leading to increasingly
higher values for n for invocations from the second call site.

Our approach introduces context-sensitive instances of the
loop edges: the fuzzer becomes sensitive to different n values
induced from the second call site, so it will retain and further
mutate the associated testcases, eventually exposing the bug. In
our tests, we measured that our predictor selected the call site
for cloning with a priority p = 0.91 (we recall that p ∈ [0, 1]).

B. RQ2: Internal Wastage

As seen in Section III, internal wastage may hamper the
effectiveness of a fuzzer by making it explore uninteresting
program states and/or face higher latencies for completing the
execution cycle of each testcase. We studied its impact by col-
lecting in Table IV statistics on the queue size and the execu-
tion throughput of each fuzzer at the end of the fuzzing session.

Our predictive fuzzer sees a median queue size per
benchmark that, on average, is moderately larger (+26.4%)
than the value measured for lto. As we discussed, some
of the additionally retained testcases operated as stepping
stones, letting it further explore states that eventually led to
additional bugs. On the contrary, the queue median size growth
for the all-or-nothing approach of context is on average
81.7% compared to lto, with peak values on grok (331.2%),
libxml2 (200%), and njs (468.9%).

To better put these numbers in perspective, we first study
how many executions each fuzzer completed in a unit of
time. This metric is affected by the fuzzer’s novelty search, as
exploration can take different turns among different concepts:
this impacts both the execution time of individual testcases
(depending on the regions visited) and queue management
(e.g., culling) costs when its size grows. Compared to the
baseline lto, we observe for context a reduction of the
fuzzing execution throughput by 20.3% on average, whereas
predictive is slower than lto by only 6.5% on average8.

7The reader may wonder why lto finds bugs in well-tested software. While
OSS-Fuzz conducts daily 5h tests on them, we believe that, as studied in [14],
our collision-free configuration is more performant thanks to LTO effects.

8As a reference, this overhead is lower than with other compile-time
transformations often employed to improve fuzzing effectiveness, such as
multi-byte comparison splitting to bypass magic value checks [59].

11

TABLE IV. MEDIAN QUEUE SIZE AND EXECUTIONS/SECOND RATIO FOR EACH FUZZER ACROSS 20 TRIALS OF THE FUZZBENCH PROGRAMS.

Queue size Executions per second

Benchmark context predictive lto random context predictive lto random

ffmpeg 11202 9787 9713 8711 148 189 190 143
file 4046 2681 1734 2645 425 463 501 425
grok 17651 4503 4093 4975 35 152 131 137
libarchive 8007 6938 5526 5410 1659 1421 1601 1500
libgit2 2443 1190 1128 1271 899 826 868 931
libhevc 13229 8727 7515 11161 166 153 122 172
libhtp 9243 13878 6466 13990 2193 2881 2274 2814
libxml2 41928 15652 13977 15126 1352 1090 1132 1249
matio 15040 10374 9068 10935 298 415 492 334
muparser 1837 1522 1184 1828 1215 2183 3221 2108
ndpi 1623 1673 1651 1783 38 39 42 42
njs 27660 5083 4862 5236 498 570 650 623
openh264 6904 8031 5239 7770 6 8 10 9
stb 3761 6297 3228 6102 1414 1384 1565 1330
usrsctp 2632 1700 1631 1635 2351 2164 2318 2136
zstd 26711 25671 18464 28259 6516 5149 6307 4841

Geo-mean 7784 5416 4283 5528 431 506 541 502

B C D A
3200

3400

3600

3800

4000

4200

4400

4600

co
ve

ra
ge

file_magic_fuzzer

B D C A

8800

9000

9200

9400

9600

co
ve

ra
ge

grok_grk_decompress_fuzzer

C B D A

9000

9500

10000

10500

11000

co
ve

ra
ge

libarchive_libarchive_fuzzer

B C D A
2438.0

2438.5

2439.0

2439.5

2440.0

2440.5

2441.0

co
ve

ra
ge

libgit2_objects_fuzzer

D A C B

2000

4000

6000

8000

10000

12000

co
ve

ra
ge

libhevc_hevc_dec_fuzzer

D B C A
6582

6584

6586

6588

6590

6592

6594

co
ve

ra
ge

libhtp_fuzz_htp

D C B A

20000

21000

22000

23000

24000

25000

26000

co
ve

ra
ge

libxml2_libxml2_xml_reader_for_file_fuzzer

B C D A
2760

2780

2800

2820

2840

2860

2880

2900

co
ve

ra
ge

matio_matio_fuzzer

C B D A
930

935

940

945

950

955
co

ve
ra

ge
muparser_set_eval_fuzzer

C A B D

10500

11000

11500

12000

12500

13000

co
ve

ra
ge

ndpi_fuzz_ndpi_reader

C B D A
5000

5500

6000

6500

7000

7500

8000

co
ve

ra
ge

njs_njs_process_script_fuzzer

C B D A
13800

13900

14000

14100

14200

14300

14400

co
ve

ra
ge

openh264_decoder_fuzzer

B D C A

2600

2700

2800

2900

3000

3100

co
ve

ra
ge

stb_stbi_read_fuzzer

A B D C

13300

13325

13350

13375

13400

13425

13450

co
ve

ra
ge

usrsctp_fuzzer_connect

C A B D

10100

10200

10300

10400

10500

10600

10700

10800

co
ve

ra
ge

zstd_stream_decompress

A: context B: predictive C: lto D: random

Fig. 4. Boxplots for FuzzBench programs for the median number of discovered control-flow edges on 20 trials. Symbols and ordering are as in Figure 2.
Coverage data for ffmpeg is not available due to a known bug in the FuzzBench coverage measurer.

Next, we study how code coverage is affected. We recall
that, unlike fuzzing techniques that aim to increase coverage
(for example, to help a fuzzer meet checksums or other struc-
tural input constraints [15]), context-sensitivity aims to im-
prove the exploitation stage (Section III). Both predictive
and context favor a more pervasive analysis of program
states already within reach of a CGF system based on edge
coverage: hence, one cannot expect appreciable code coverage
improvements from either. However, if a context-sensitive
fuzzer faces significant internal wastage, this will be reflected
in an appreciably lower coverage: with more testcases to
mutate and/or lower throughput, the fuzzer will fall short of the
time needed to schedule or sufficiently mutate testcases that
lead to more coverage. As Figure 4 shows, compared to lto,
the best-effort approach of context is appreciably detrimen-

tal for code coverage on several benchmarks (libarchive,
libhtp, libxml2, matio, njs, openh64, stb).

Our predictive approach performs surprisingly well, obtain-
ing coverage close to lto on all subjects except libhevc,
ndpi, openh264, and ztd and even improving it for 8
subjects, showing almost no internal wastage. As we discussed
in Section VI-A2 for the bugs found only by predictive,
we attribute this improvement to how the refined data-flow
along cloned call sites may occasionally help the fuzzer retain
and later mutate testcases that eventually unlock new code.

C. RQ3: Analysis and Compilation Costs

Our approach incurs direct and indirect preparation costs
for the transformed program that we feed to a fuzzer.

12

TABLE V. POINTS-TO COSTS AND STATISTICS FOR OUR SUBJECTS.

Benchmark Time (s) Memory (MB) |Set| (avg.) |Set| (σ)

ffmpeg 2193.75 22553 4.38 68.31
file 25.07 522 2.79 6.26
grok 181.55 2797 1.74 2.92
libarchive 103.5 2073 2.1 15.21
libgit2 446.52 4711 2.41 9.91
libhevc 93.73 3143 1.15 0.52
libhtp 161.98 647 56.1 43.79
libxml2 648.34 4289 9.83 12.26
matio 111.34 1181 32.47 30.76
muparser 12.53 487 2.9 5.83
ndpi 265.14 3250 115.5 87.18
njs 185.14 2012 16.22 11.74
openh264 108.55 2269 2.11 13.39
stb 12.86 413 2.08 2.28
usrsctp 1095.52 5851 55.85 33.07
zstd 45.47 1206 13.85 5.25

Geo-mean 139.94 2007.8 7.09 11.074

Direct costs include generating clones (typically a very
fast operation) and running the analyses behind our predictive
policy. Table V reports the CPU time and memory usage from
running points-to analysis on each whole-program IR file. SVF
takes on average 139.94 seconds and 1.96 GB of memory to
analyze a program, peaking at 2193.75 seconds and 22 GB
on a larger subject like ffmpeg. Memory usage is < 6 GB
for all but one subject. Table V reports the average number of
possible pointed abstract objects per call-site argument.

Indirect costs for IR preparation include the impact of
cloning on the binary compilation process orchestrated by
the off-the-shelf fuzzer. For predictive, compilation time
increased on average by 153 seconds (peaking at 443 on
ffmpeg). As for the resulting binary size increase, which
includes the fuzzer’s instrumentation for context-sensitive edge
instances, we observe a geometric mean of 3.6x and a peak
value of 10.1x (stb grows from 1.45 MB to 14.8 MB),
while libarchive sees the largest produced binary with
its 46 MB (initial size: 34.1 MB). In the context of fuzzing,
though, such increases hardly affect performance. This applies
to both persistent fuzzing scenarios (as with FuzzBench),
where a binary is (re)loaded in memory only sporadically,
and fork-based settings, which benefit from copy-on-write OS
mechanisms. This observation is backed by the experiments of
Section VI-B: in our tests, trading such additional space for
supporting selective collision-free context-sensitivity did not
harm the execution speed and effectiveness of our fuzzers.

D. Discussion

In our tests, predictive context-sensitive fuzzing signif-
icantly outperforms the all-or-nothing, best-effort approach
pioneered in ANGORA. The internal wastage effects that char-
acterize the latter make it fall behind even the random fuzzer
in several tested dimensions (e.g., 110 vs 102 unique bugs in
RQ1). Our data flow-based predictive policy largely outper-
forms random and the three topological policies discussed in
Section IV-B that we evaluated in early tests.

The results of our investigation back the expectation that
providing efficient and collision-free context-sensitivity only
for the callees that matter—heuristically identified with a

predictor based on diverse incoming data-flows at call sites—
offers a practical, cost-effective, and scalable way for context-
sensitive coverage-guided fuzzing. Detailed analyses of the
identified bugs revealed that not only our fuzzers found more
and different bugs than both context and lto, but also
uncovered enduring issues in well-tested subjects.

Our evaluation is centered on bug finding results since,
as repeatedly evidenced in the literature (e.g., most recently
in [60]), coverage-based benchmarking is only one part of the
story and, in our scenario, the goal is to better exploit cov-
erage already reached by context-insensitive solutions. Simply
reaching some code is often insufficient to trigger a bug, as the
execution of a certain sequence of statements may be needed
to enter the “right” state [60].

Our technique comes with tenable one-time compilation
and analysis costs, limited run-time overhead, and no queue ex-
plosion effects. The moderate number of additionally retained
testcases was instrumental for discovering more bugs in the
tested benchmarks. Also, some of them occasionally helped
the fuzzer reach new code through subsequent mutations.

VII. RELATED WORKS

Local Feedbacks: A few function-local feedbacks have
been proposed as a replacement or extension of code coverage.

CollAFL [16] analyzes the detrimental effects of collisions
in AFL-style edge coverage tracking, proposing a method to
reduce them. The technique based on breaking critical edges
that is adopted by AFL++ and LIBFUZZER and we use in this
paper fully removes them. The work also argues that tracking
full paths (vs. edges) is infeasible in practice. PathAFL [61]
hashes whole-execution paths with pruning heuristics, but the
approach has yet to gain traction in the fuzzing community.

Padhye et al. [62] analyze alternatives such as the number
of bits matched between operands of integer comparisons (for
input-dependent conditions that are difficult to meet) or the size
of allocation operations (for memory corruption bugs). Wang
et al. [10] study, among others, extensions for edge coverage
as a feedback: for instance, they evaluate an n-gram feedback
to track bounded-length sequences of consecutively traversed
edges as a better approximation of the program behaviors.

Finally, other efforts investigate auxiliary feedbacks involv-
ing data profiles [58], [49], [63]. As one may naturally augment
local feedbacks with our cloning-based context-sensitivity, fu-
ture research may involve identifying profitable combinations.

Calling Contexts: Programming language literature
largely studied calling contexts and their portions (e.g., [36],
[64], [65], [38]). Due to their sheer number, a static enu-
meration of calling contexts is often unfeasible [65], and
even space-efficient dynamic methods need wide identifiers to
keep collisions low [66]. Furthermore, for complex programs,
short executions often result in dozens of million distinct
contexts [13], [67]. Unlike cloning, these techniques incur
non-negligible temporal or spatial overheads, hindering an
effective composition with local feedbacks used by fuzzers.
Also, we have shown that full context-sensitivity—unlike
selectivity—can be unnecessarily inefficient when fuzzing.
Other works [68], [69] study calling contexts that, if seen
as distinct, would bring more accurate points-to sets. While

13

better sets may refine our data flow-based priority values, the
selectivity choices from these works would hardly help a fuzzer
on their own, as they optimize for a different goal.

A particularly relevant work in the field is [11], as it pio-
neered the concept of cloning for static analysis. The authors
simulate the creation of clones for all the call-graph acyclic
paths reaching each function and use a context numbering
scheme that exposes commonalities in context-sensitive rela-
tions, enabling their efficient encoding through ordered binary
decision diagrams. They then store all program information
and results as relations and encode program analyses as Data-
log operations. The work showcases scalable implementations
of context-sensitive points-to and other analyses on Java code.

Recently, some works leveraged calling contexts in special-
purpose fuzzers. FIFUZZ [70] targets bugs in error handling
code, which may trigger only when the error site fails in a
specific calling context. CONZZER [71] focuses on data races
occurring in specific runtime contexts, modeling execution
contexts through a concurrency coverage metric that describes
thread interleavings with runtime calling contexts. It would be
interesting to explore synergies between these methods and
what we propose in this paper for general fuzzing systems.

Directed Fuzzing: While directed fuzzing is a long-
studied subject [72], [73], its combination with grey-box
fuzzing is more recent [20]. This fuzzing flavor can guide
execution towards specific program points deemed interesting:
for instance, a crash site from a core dump. AFLGO [20]
builds a whole-program inter-procedural control flow graph
(iCFG) and assigns weights to basic blocks to define a distance
function from the entry point to a target location. When
fuzzing, it gradually assigns more energy to testcases that
are closer to the target locations. HAWKEYE [30] improves,
among others, the iCFG construction by reasoning on indirect-
call targets obtained from a points-to analysis. While directed
fuzzing focuses on reaching predetermined locations based
on user-specified criteria, our approach automatically selects
interesting program points for context-sensitive coverage track-
ing. However, our approach may potentially enhance directed
fuzzing in two ways: (i) context-sensitivity may refine some
points-to sets during iCFG construction and (ii) given a stack-
trace, we may clone only the context that leads to the target
program state and assign ad-hoc weights to clones.

Software Hardening: A few hardening solutions resort
to cloning techniques, often in combination with points-to
analyses. Constantine [74] uses function cloning to improve
the accuracy of points-to analysis by adding context-sensitivity.
The authors apply it to the cryptographic functions in a library
that are secret-sensitive: as those are typically in limited num-
ber, this somewhat bounds explosion issues. ProbeGuard [75]
clones functions to provide hardened versions that can be
hotpatched to protect programs from probing attacks. Control-
flow integrity solutions leverage type or pointer analyses to
enumerate the possible targets of an indirect branch, and
restrict the code to follow one of them [76], [77], [78].
DynPTA [32] enhances a Steensgaard-style points-to analysis
with context-sensitive heap modeling using function sum-
maries to distinguish different allocation sites, treating them
as virtual clones of the original function.

VIII. CONCLUDING REMARKS

We presented a novel approach to context-sensitivity in
fuzzing, terming it predictive. Our proposal stems from the
analysis of existing context-sensitive approaches, which track
full calling contexts and allow context/edge hash collisions
for the sake of a practical implementation. Such approaches
face an impossible trade-off: either allow too many collisions
and lose context (but also path1) sensitivity, or allow too few
and incur trashing behavior due to queue/map explosion. With
our approach, we show that a profitable avenue exists if we
proactively select (and clone) only the contexts that look more
promising as predicted by a program analysis oracle, forbid-
ding hash collisions and avoiding internal wastage. Our tests
show that data-flow diversity can serve as one effective predic-
tor for such contexts, with significant improvements compared
to the state of the art (e.g., +22.55% total bugs on ANGORA-
style context-sensitivity). They also found 8 enduring security
issues in 5 well-tested programs, with 6 CVE IDs issued.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their feedback.
We are also grateful to Mathias Payer for his comments on
a prior version of this work and to Giacomo Priamo and
Slasti Mormanti for their valuable suggestions when finaliz-
ing the manuscript. This work was supported by the Italian
MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU through project SERICS
(PE00000014), by the Dutch Ministry of Economic Affairs and
Climate Policy (EZK) through the AVR “Memo” project, by
the Dutch Research Council (NWO) through project “INTER-
SECT”, and by the European Union’s Horizon Europe pro-
gramme under grant agreement No. 101120962 (“Rescale”).

REFERENCES

[1] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 711–
725.

[2] “Google OSS-Fuzz: continuous fuzzing of open source software,” https:
//github.com/google/oss-fuzz, 2016, [Online; accessed 28 Mar. 2023].

[3] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “ParmeSan:
Sanitizer-guided Greybox Fuzzing,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug.
2020, pp. 2289–2306. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/osterlund

[4] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: fuzzing with input-to-state correspondence,” in 26th
Annual Network and Distributed System Security Symposium,
NDSS, 2019. [Online]. Available: https://www.ndss-symposium.org/
ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/

[5] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: A practical concolic
execution engine tailored for hybrid fuzzing,” in Proceedings of the 27th
USENIX Conference on Security Symposium, ser. SEC’18. USENIX
Association, 2018, pp. 745–761.

[6] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and
H. Bos, “Vuzzer: Application-aware evolutionary fuzzing,” in 24th
Annual Network and Distributed System Security Symposium, NDSS,
2017. [Online]. Available: https://www.ndss-symposium.org/ndss2017/
ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/

[7] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. ACM, 2014, p.
435–445. [Online]. Available: https://doi.org/10.1145/2568225.2568271

14

[8] H. Zheng, J. Zhang, Y. Huang, Z. Ren, H. Wang, C. Cao, Y. Zhang,
F. Toffalini, and M. Payer, “FishFuzz: Throwing larger nets to catch
deeper bugs,” in 32nd USENIX Security Symposium (USENIX Security
23). USENIX Association, Aug. 2023.

[9] V. J. M. Manès, S. Kim, and S. K. Cha, “Ankou: Guiding grey-box
fuzzing towards combinatorial difference,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
ser. ICSE ’20. ACM, 2020, pp. 1024–1036. [Online]. Available:
https://doi.org/10.1145/3377811.3380421

[10] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be
sensitive and collaborative: Analyzing impact of coverage metrics
in greybox fuzzing,” in 22nd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2019). USENIX
Association, Sep. 2019, pp. 1–15. [Online]. Available: https:
//www.usenix.org/conference/raid2019/presentation/wang

[11] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams,” SIGPLAN Not.,
vol. 39, no. 6, pp. 131–144, Jun. 2004. [Online]. Available:
https://doi.org/10.1145/996893.996859

[12] K. Hazelwood and D. Grove, “Adaptive online context-sensitive inlin-
ing,” in Proceedings of the International Symposium on Code Gener-
ation and Optimization: Feedback-Directed and Runtime Optimization,
ser. CGO ’03. IEEE Computer Society, 2003, pp. 253–264.

[13] D. C. D’Elia, C. Demetrescu, and I. Finocchi, “Mining hot calling
contexts in small space,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’11. ACM, 2011, pp. 516–527. [Online]. Available:
https://doi.org/10.1145/1993498.1993559

[14] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

[15] A. Fioraldi, D. C. D’Elia, and E. Coppa, “WEIZZ: Automatic
grey-box fuzzing for structured binary formats,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2020. ACM, 2020. [Online]. Available:
https://doi.org/10.1145/3395363.3397372

[16] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in 2018 IEEE Symposium on Security and
Privacy (SP), 2018, pp. 679–696.

[17] J. Metzman, L. Szekeres, L. M. R. Simon, R. T. Sprabery, and A. Arya,
“Fuzzbench: An open fuzzer benchmarking platform and service,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, New York, NY, USA, 2021.

[18] M. Payer, “The fuzzing hype-train: How random testing triggers thou-
sands of crashes,” IEEE Security and Privacy, vol. 17, no. 1, pp. 78–82,
2019.

[19] M. Böhme and S. Paul, “A probabilistic analysis of the efficiency of au-
tomated software testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 4, pp. 345–360, 2016.

[20] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. ACM, 2017, pp. 2329–2344. [Online]. Available:
https://doi.org/10.1145/3133956.3134020

[21] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’11. ACM, 2011, p. 283–294. [Online]. Available:
https://doi.org/10.1145/1993498.1993532

[22] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code
fragments,” in 21st USENIX Security Symposium (USENIX Security
12). USENIX Association, Aug. 2012, pp. 445–458. [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/holler

[23] S. Poeplau and A. Francillon, “Symbolic execution with symcc:
Don’t interpret, compile!” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp.
181–198. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/poeplau

[24] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox

fuzz testing,” in Proceedings of the Network and Distributed System
Security Symposium, ser. NDSS’08, 2008.

[25] M. Zalewski, “American Fuzzy Lop - Whitepaper,” https://lcamtuf.
coredump.cx/afl/technical details.txt, 2016, [Online; accessed 28 Mar.
2023].

[26] LLVM Project, “libFuzzer – a library for coverage-guided fuzz testing.”
https://llvm.org/docs/LibFuzzer.html, Sep. 2018, [Online; accessed 28
Mar. 2023].

[27] J. D. DeMott and R. Enbody, “Revolutionizing the field of grey-box
attack surface testing with evolutionary fuzzing,” ser. Black Hat USA,
2007.

[28] LLVM, “SanitizerCoverage - Edge coverage,” https://clang.llvm.org/
docs/SanitizerCoverage.html#edge-coverage, 2021, [Online; accessed
28 Mar. 2023].

[29] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?”
in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, ser.
PASTE ’01. ACM, 2001, p. 54–61. [Online]. Available: https:
//doi.org/10.1145/379605.379665

[30] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye:
Towards a desired directed grey-box fuzzer,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. ACM, 2018, p. 2095–2108. [Online].
Available: https://doi.org/10.1145/3243734.3243849

[31] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris,
T. Kim, and W. Lee, “Enforcing unique code target property
for control-flow integrity,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’18. ACM, 2018, p. 1470–1486. [Online]. Available:
https://doi.org/10.1145/3243734.3243797

[32] T. Palit, J. Firose Moon, F. Monrose, and M. Polychronakis, “Dynpta:
Combining static and dynamic analysis for practical selective data
protection,” in 2021 IEEE Symposium on Security and Privacy (SP),
2021, pp. 1919–1937.

[33] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis
in llvm,” in Proceedings of the 25th International Conference on
Compiler Construction, ser. CC 2016. ACM, 2016, p. 265–266.
[Online]. Available: https://doi.org/10.1145/2892208.2892235

[34] J. Kuderski, J. A. Navas, and A. Gurfinkel, “Unification-based pointer
analysis without oversharing,” in 2019 Formal Methods in Computer
Aided Design, FMCAD 2019, San Jose, CA, USA, October 22-25,
2019, C. W. Barrett and J. Yang, Eds. IEEE, 2019, pp. 37–45.
[Online]. Available: https://doi.org/10.23919/FMCAD.2019.8894275

[35] T. Yu and O. Kaser, “A note on ”on the conversion of
indirect to direct recursion”,” ACM Trans. Program. Lang. Syst.,
vol. 19, no. 6, pp. 1085–1087, Nov. 1997. [Online]. Available:
https://doi.org/10.1145/267959.269973

[36] O. G. Shivers, “Control-flow analysis of higher-order languages of
taming lambda,” Ph.D. dissertation, 1991, uMI Order No. GAX91-
26964.

[37] E. M. Nystrom, H.-S. Kim, and W.-m. W. Hwu, “Bottom-up and
top-down context-sensitive summary-based pointer analysis,” in Static
Analysis, R. Giacobazzi, Ed. Springer Berlin Heidelberg, 2004, pp.
165–180.

[38] G. Ausiello, C. Demetrescu, I. Finocchi, and D. Firmani, “K-calling
context profiling,” in Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’12. ACM, 2012, pp. 867–878. [Online]. Available:
https://doi.org/10.1145/2384616.2384679

[39] Z. Y. Ding and C. L. Goues, “An empirical study of oss-fuzz bugs,”
2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pp. 131–142, 2021.

[40] Y. Jeon, W. Han, N. Burow, and M. Payer, “Fuzzan: Efficient sanitizer
metadata design for fuzzing,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, Jul. 2020,
pp. 249–263. [Online]. Available: https://www.usenix.org/conference/
atc20/presentation/jeon

[41] W. H. Harrison, “Compiler analysis of the value ranges for variables,”
IEEE Transactions on Software Engineering, vol. 3, no. 03, pp. 243–
250, may 1977.

15

[42] I. A. Mason, “Whole Program LLVM in Go,” https://github.com/
SRI-CSL/gllvm, 2021, [Online; accessed 2 Sep. 2021].

[43] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically
instrumenting cots binaries for fuzzing and sanitization,” in 2020 IEEE
Symposium on Security and Privacy (SP), 2020, pp. 1497–1511.

[44] I. Baev and Q. I. Center, “Profile-based indirect call promotion,” in
LLVM Developers Meeting, Oct, 2015.

[45] N. Amit, F. Jacobs, and M. Wei, “Jumpswitches: Restoring the
performance of indirect branches in the era of spectre,” in
2019 USENIX Annual Technical Conference (USENIX ATC 19).
USENIX Association, Jul. 2019, pp. 285–300. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/amit

[46] V. Duta, C. Giuffrida, H. Bos, and E. van der Kouwe, “Pibe:
Practical kernel control-flow hardening with profile-guided indirect
branch elimination,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS 2021. ACM, 2021, p. 743–757.
[Online]. Available: https://doi.org/10.1145/3445814.3446740

[47] P. Biswas, N. Burow, and M. Payer, “Code specialization through
dynamic feature observation,” in Proceedings of the Eleventh ACM
Conference on Data and Application Security and Privacy, ser.
CODASPY ’21. ACM, 2021, p. 257–268. [Online]. Available:
https://doi.org/10.1145/3422337.3447844

[48] K. Lu, “Practical program modularization with type-based dependence
analysis,” in 2023 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, may 2023, pp. 1610–1624. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00092

[49] A. Mantovani, A. Fioraldi, and D. Balzarotti, “Fuzzing with data
dependency information,” in 7th IEEE European Symposium on Security
and Privacy, ser. EuroS&P ’22, IEEE, Ed., 2022.

[50] A. Fioraldi, A. Mantovani, D. Maier, and D. Balzarotti, “Dissecting
American Fuzzy Lop: A FuzzBench evaluation,” ACM Trans. Softw.
Eng. Methodol., vol. 32, no. 2, mar 2023. [Online]. Available:
https://doi.org/10.1145/3580596

[51] D. Liu, J. Metzman, M. Böhme, O. Chang, and A. Arya, “SBFT Tool
Competition 2023 - Fuzzing Track,” in 2023 IEEE/ACM International
Workshop on Search-Based and Fuzz Testing (SBFT), 2023, pp. 51–54.

[52] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “SoK: Sanitizing for security,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 1275–1295.

[53] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18. ACM, 2018,
pp. 2123–2138. [Online]. Available: https://doi.org/10.1145/3243734.
3243804

[54] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama,
“Towards optimization-safe systems: Analyzing the impact of undefined
behavior,” in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, ser. SOSP ’13. ACM, 2013, p. 260–275.
[Online]. Available: https://doi.org/10.1145/2517349.2522728

[55] C. Salls, C. Jindal, J. Corina, C. Kruegel, and G. Vigna, “Token-Level
fuzzing,” in 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Aug. 2021, pp. 2795–2809. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/salls

[56] E. Güler, P. Görz, E. Geretto, A. Jemmett, S. Österlund, H. Bos,
C. Giuffrida, and T. Holz, “Cupid: Automatic fuzzer selection for
collaborative fuzzing,” in Annual Computer Security Applications
Conference, ser. ACSAC ’20. ACM, 2020, pp. 360–372. [Online].
Available: https://doi.org/10.1145/3427228.3427266

[57] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao,
and Z. Su, “EnFuzz: Ensemble fuzzing with seed synchronization
among diverse fuzzers,” in 28th USENIX Security Symposium
(USENIX Security 19). USENIX Association, Aug. 2019, pp.
1967–1983. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/chen-yuanliang

[58] A. Fioraldi, D. C. D’Elia, and D. Balzarotti, “The use of likely
invariants as feedback for fuzzers,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Aug.
2021, pp. 2829–2846. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/fioraldi

[59] “Circumventing Fuzzing Roadblocks with Compiler
Transformations,” https://lafintel.wordpress.com/2016/08/15/
circumventing-fuzzing-roadblocks-with-compiler-transformations/,
2016, [Online; accessed 28 Mar. 2023].

[60] M. Böhme, L. Szekeres, and J. Metzman, “On the reliability
of coverage-based fuzzer benchmarking,” in Proceedings of the
44th International Conference on Software Engineering, ser. ICSE
’22. ACM, 2022, pp. 1621–1633. [Online]. Available: https:
//doi.org/10.1145/3510003.3510230

[61] S. Yan, C. Wu, H. Li, W. Shao, and C. Jia, “Pathafl: Path-
coverage assisted fuzzing,” in Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security, ser.
ASIA CCS ’20. ACM, 2020, pp. 598–609. [Online]. Available:
https://doi.org/10.1145/3320269.3384736

[62] R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vijayakumar,
“FuzzFactory: Domain-specific fuzzing with waypoints,” Proc. ACM
Program. Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360600

[63] A. Herrera, M. Payer, and A. Hosking, “datAFLow: Towards a
data-flow-guided fuzzer,” in 1st International Fuzzing Workshop, ser.
FUZZING ’22, I. Society, Ed., 2022.

[64] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware
performance counters with flow and context sensitive profiling,” in
Proceedings of the ACM SIGPLAN 1997 Conference on Programming
Language Design and Implementation, ser. PLDI ’97. ACM, 1997,
pp. 85–96. [Online]. Available: https://doi.org/10.1145/258915.258924

[65] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang, “Precise
calling context encoding,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1,
ser. ICSE ’10. ACM, 2010, pp. 525–534. [Online]. Available:
https://doi.org/10.1145/1806799.1806875

[66] M. D. Bond and K. S. McKinley, “Probabilistic calling context,”
in Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications,
ser. OOPSLA ’07. ACM, 2007, pp. 97–112. [Online]. Available:
https://doi.org/10.1145/1297027.1297035

[67] D. C. D’Elia, C. Demetrescu, and I. Finocchi, “Mining hot
calling contexts in small space,” Software: Practice and Experience,
vol. 46, no. 8, pp. 1131–1152, 2016. [Online]. Available: https:
//doi.org/10.1002/spe.2348

[68] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “A principled approach
to selective context sensitivity for pointer analysis,” ACM Trans.
Program. Lang. Syst., vol. 42, no. 2, may 2020. [Online]. Available:
https://doi.org/10.1145/3381915

[69] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective
analysis: Context-sensitivity, across the board,” in Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’14. ACM, 2014, pp. 485–495.
[Online]. Available: https://doi.org/10.1145/2594291.2594320

[70] Z.-M. Jiang, J.-J. Bai, K. Lu, and S.-M. Hu, “Fuzzing error
handling code using Context-Sensitive software fault injection,”
in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 2595–2612. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/jiang

[71] Z. Jiang, J. Bai, K. Lu, and S. Hu, “Context-sensitive and directional
concurrency fuzzing for data-race detection,” in 29th Annual Network
and Distributed System Security Symposium, NDSS 2022, San Diego,
California, USA, April 24-28, 2022. The Internet Society, 2022.

[72] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’05. ACM, 2005, pp. 213–223. [Online]. Available:
https://doi.org/10.1145/1065010.1065036

[73] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox
fuzzing,” in 2009 IEEE 31st International Conference on Software
Engineering, 2009, pp. 474–484.

[74] P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida, “Constantine:
Automatic side-channel resistance using efficient control and data flow
linearization,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’21. ACM, 2021.

16

[75] K. Bhat, E. van der Kouwe, H. Bos, and C. Giuffrida, “Probeguard:
Mitigating probing attacks through reactive program transformations,”
in Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’19. ACM, 2019, pp. 545–558. [Online]. Available:
https://doi.org/10.1145/3297858.3304073

[76] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-Edge Control-Flow In-
tegrity in GCC and LLVM,” in Proceedings of the USENIX Security
Symposium (USENIX Security), 2014.

[77] Clang, “LLVM’s Control Flow Integrity,” 2018, [Online; accessed
28 Mar. 2023]. [Online]. Available: https://clang.llvm.org/docs/
ControlFlowIntegrity.html

[78] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive
cfi,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. ACM, 2015, p. 927–940.
[Online]. Available: https://doi.org/10.1145/2810103.2813673

APPENDIX A
ADDITIONAL BUG ANALYSIS RESULTS

The CVE identifiers for the security issues in the
FuzzBench programs mentioned in Section VI-A3 are the fol-
lowing: CVE-2022-28041, CVE-2022-28042, and CVE-2022-
28048 for stb, CVE-2022-1475 for ffmpeg, CVE-2022-
1515 for matio, and CVE-2022-28049 for njs.

This appendix includes four tables (Table VI, VII, VIII,
and IX) that complement the bug counts reported in Table III
and the inclusion relations of Figure 3 with more detailed
comparisons based on bug identity at each benchmark.

Benchmark Only predictive Both Only context

ffmpeg 5 6 0
file 1 2 1

grok 5 2 0
libarchive 0 0 0

libgit2 0 3 0
libhevc 0 1 1

libhtp 0 5 0
libxml2 19 3 0

matio 0 26 17
muparser 1 0 0

ndp 6 11 1
njs 1 0 0

openh264 1 7 0
stb 3 15 0

usrsctp 0 0 0
zstd 1 1 0

TABLE VI. INCLUSION RELATIONS FOR BUGS FOUND BY
predictive AND lto IN THE FUZZBENCH EXPERIMENTS (CF. LEFT

PART OF FIGURE 3).

Benchmark Only predictive Both Only lto

ffmpeg 2 9 1
file 2 1 0

grok 1 6 0
libarchive 0 0 2

libgit2 0 3 0
libhevc 0 1 1

libhtp 0 5 1
libxml2 6 16 0

matio 2 24 2
muparser 1 0 0

ndp 2 15 3
njs 0 1 0

openh264 1 7 1
stb 7 11 0

usrsctp 0 0 0
zstd 0 2 0

TABLE VII. INCLUSION RELATIONS FOR BUGS FOUND BY
predictive AND lto IN THE FUZZBENCH EXPERIMENTS (CF. LEFT

PART OF FIGURE 3).

Benchmark Only context Both Only lto

ffmpeg 0 6 4
file 2 1 0

grok 0 2 4
libarchive 0 0 2

libgit2 0 3 0
libhevc 1 1 1

libhtp 0 5 1
libxml2 0 3 13

matio 17 26 0
muparser 0 0 0

ndp 2 10 8
njs 0 0 1

openh264 0 7 1
stb 4 11 0

usrsctp 0 0 0
zstd 0 1 1

TABLE VIII. INCLUSION RELATIONS FOR BUGS FOUND BY context
AND lto IN THE FUZZBENCH EXPERIMENTS (CF. LEFT PART OF

FIGURE 3).

Benchmark Only predictive All Only others

ffmpeg 2 9 1
file 1 2 1

grok 1 6 0
libarchive 0 0 2

libgit2 0 3 0
libhevc 0 1 2

libhtp 0 5 1
libxml2 6 16 0

matio 0 26 17
muparser 1 0 0

ndp 1 16 4
njs 0 1 0

openh264 1 7 1
stb 3 15 0

usrsctp 0 0 0
zstd 0 2 0

TABLE IX. INCLUSION RELATIONS FOR BUGS FOUND BY
predictive VS. THE ENSEMBLE OF context AND lto IN THE

FUZZBENCH EXPERIMENTS (CF. LEFT PART OF FIGURE 3). NOTE THAT
THE ENSEMBLE HAS THE UNFAIR ADVANTAGE OF HAVING DONE TWICE AS

MANY TRIALS.

17

