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Abstract

Identifying the hottest paths in the control flow graph of

a routine can direct optimizations to portions of the code

where most resources are consumed. This powerful method-

ology, called path profiling, was introduced by Ball and

Larus in the mid 90’s [4] and has received considerable at-

tention in the last 15 years for its practical relevance. A

shortcoming of the Ball-Larus technique was the inability

to profile cyclic paths, making it difficult to mine execu-

tion patterns that span multiple loop iterations. Previous re-

sults, based on rather complex algorithms, have attempted

to circumvent this limitation at the price of significant per-

formance losses even for a small number of iterations. In

this paper, we present a new approach to multi-iteration path

profiling, based on data structures built on top of the original

Ball-Larus numbering technique. Our approach allows the

profiling of all executed paths obtained as a concatenation of

up to k Ball-Larus acyclic paths, where k is a user-defined

parameter. We provide examples showing that this method

can reveal optimization opportunities that acyclic-path pro-

filing would miss. An extensive experimental investigation

on a large variety of Java benchmarks on the Jikes RVM

shows that our approach can be even faster than Ball-Larus

due to fewer operations on smaller hash tables, producing

compact representations of cyclic paths even for large val-

ues of k.

Categories and Subject Descriptors C.4 [Performance of

Systems]: Measurement Techniques; D.2.2 [Software Engi-

neering]: Tools and Techniques—programmer workbench;

D.2.5 [Software Engineering]: Testing and Debugging—

diagnostics, tracing
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1. Introduction

Path profiling is a powerful methodology for identifying per-

formance bottlenecks in a program. The approach consists

of associating performance metrics, usually frequency coun-

ters, to paths in the control flow graph. Identifying hot paths

can direct optimizations to portions of the code that could

yield significant speedups. For instance, trace scheduling can

improve performance by increasing instruction-level paral-

lelism along frequently executed paths [13, 22]. The sem-

inal paper by Ball and Larus [4] introduced a simple and

elegant path profiling technique. The main idea was to im-

plicitly number all possible acyclic paths in the control flow

graph so that each path is associated with a unique compact

path identifier (ID). The authors showed that path IDs can

be efficiently generated at runtime and can be used to update

a table of frequency counters. Although in general the num-

ber of acyclic paths may grow exponentially with the graph

size, in typical control flow graphs this number is usually

small enough to fit in current machine word-sizes, making

this approach very effective in practice.

While the original Ball-Larus approach was restricted to

acyclic paths obtained by cutting paths at loop back edges,

profiling paths that span consecutive loop iterations is a de-

sirable, yet difficult, task that can yield better optimization

opportunities. Consider, for instance, the problem of elim-

inating redundant executions of instructions, such as loads

and stores [7], conditional jumps [6], expressions [9], and

array bounds checks [8]. A typical situation is that the same

instruction is redundantly executed at each loop iteration,

which is particularly common for arithmetic expressions and

load operations [7, 9]. To identify such redundancies, paths

that extend across loop back edges need to be profiled. An-

other application is trace scheduling [22]: if a frequently exe-

cuted cyclic path is found, compilers may unroll the loop and

perform trace scheduling on the unrolled portion of code.

Tallam et al. [20] provide a comprehensive discussion of the
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benefits of multi-iteration path profiling. We provide further

examples in Section 3.

Different authors have proposed techniques to profile cyclic

paths by modifying the original Ball-Larus path numbering

scheme in order to identify paths that extend across multi-

ple loop iterations [17, 19, 20]. Unfortunately, all known so-

lutions require rather complex algorithms that incur severe

performance overheads even for short cyclic paths, leaving

the interesting open question of finding simpler and more

efficient alternative methods.

Contributions. In this paper, we present a novel approach

to multi-iteration path profiling, which provides substan-

tially better performance than previous techniques even for

long paths. Our method stems from the observation that any

cyclic execution path in the control flow graph of a routine

can be described as a concatenation of Ball-Larus acyclic

paths (BL paths). In particular, we show how to accurately

profile all executed paths obtained as a concatenation of up

to k BL paths, where k is a user-defined parameter. The main

results of this paper can be summarized as follows:

1. we reduce multi-iteration path profiling to the problem

of counting n-grams, i.e., contiguous sequences of n
items from a given sequence. To compactly represent

collected profiles, we organize them in a forest of prefix

trees (or tries) [14] of depth up to k, where each node

is labeled with a BL path, and paths in a tree represent

concatenations of BL paths that were actually executed

by the program, along with their frequencies. We also

present an efficient construction algorithm based on a

variant of the k-SF data structure presented in [3];

2. we discuss examples of profile-driven optimizations that

can be achieved using our approach. In particular, we

show how the profiles collected with our method can help

to restructure the code of an image processing applica-

tion, achieving speedups up to about 30% on an image

filter based on convolution kernels;

3. to evaluate the effectiveness of our ideas, we developed

a Java performance profiler in the Jikes Research Virtual

Machine [1]. To make fair performance comparisons with

state-of-the-art previous profilers, we built our code on

top of the BLPP profiler developed by Bond [10, 15],

which provides an efficient implementation of the Ball-

Larus acyclic-path profiling technique. Our Java code

was endorsed by the OOPSLA 2013 Artifact Evaluation

Committee and is available on the Jikes RVM Research

Archive. We also provide a C implementation of our

profiler for manual source code instrumentation;

4. we performed a broad experimental study on a large suite

of prominent Java benchmarks on the Jikes Research

Virtual Machine, showing that our profiler can collect

profiles that would have been too costly to gather using

previous multi-iteration techniques.
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Figure 1: Overview of our approach: classical Ball-Larus profiling

versus k-iteration path profiling, cast in a common framework.

Techniques. Differently from previous approaches [17, 19,

20], which rely on modifying the Ball-Larus path numbering

to cope with cycles, our method does not require any modifi-

cation of the original numbering technique described in [4].

The main idea behind our approach is to fully decouple the

task of tracing Ball-Larus acyclic paths at run time from the

task of concatenating and storing them in a data structure

to keep track of multiple iterations. The decoupling is per-

formed by letting the Ball-Larus profiling algorithm issue

a stream of BL path IDs (see Figure 1), where each ID is

generated when a back edge in the control flow graph is tra-

versed or the current procedure is abandoned. As a conse-

quence of this modular approach, our method can be imple-

mented on top of existing Ball-Larus path profilers, making

it simpler to code and maintain.

Our profiler introduces a technical shift based on a

smooth blend of the path numbering methods used in in-

traprocedural path profiling with data structure-based tech-

niques typically adopted in interprocedural profiling, such

as calling-context profiling. The key to the efficiency of our

approach is to replace costly hash table accesses, which are

required by the Ball-Larus algorithm to maintain path coun-

ters for larger programs, with substantially faster operations

on trees. With this idea, we can profile paths that extend

across many loop iterations in comparable time, if not faster,

than profiling acyclic paths on a large variety of industry-

strength benchmarks.

Organization of the paper. In Section 2 we describe our

approach and in Section 3 we discuss examples of possible

performance optimizations based on the proposed technique.

Section 4 describes the algorithmic ideas behind our tool and

Section 5 provides implementation details. The results of
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our experimental investigation are detailed in Section 6 and

related work is surveyed in Section 7. Concluding remarks

are given in Section 8.

2. Approach

In this section we provide an overview of our approach to

multi-iteration path profiling. From a high-level point of

view, illustrated in Figure 1, the entire process is divided into

two main phases:

1. instrumentation and execution of the program to be pro-

filed (top of Figure 1);

2. profiling of paths (bottom of Figure 1).

The first phase is almost identical to the original approach

described in [4]. The target program is statically analyzed

and a control flow graph (CFG) is constructed for each rou-

tine of interest. The CFG is used to instrument the original

program by inserting probes, which allow paths to be traced

at run time. When the program is executed, taken acyclic

paths are identified using the inserted probes. The main dif-

ference with the Ball-Larus approach is that, instead of di-

rectly updating a frequency counters table here, we emit a

stream of path IDs, which is passed along to the next stage

of the process. This allows us to decouple the task of tracing

taken paths from the task of profiling them.

The profiling phase can be either the original hash table-

based method of [4] used to maintain BL path frequencies

(bottom-left of Figure 1), or other approaches such as the

one we propose, i.e., profiling concatenations of BL paths in

a forest-based data structure (bottom-right of Figure 1). Dif-

ferent profiling methods can be therefore cast into a common

framework, increasing flexibility and helping us make more

accurate comparisons.

We start with a brief overview of the Ball-Larus path

tracing technique, which we use as the first stage of our

profiler.

2.1 Ball-Larus Path Tracing Algorithm

The Ball-Larus path profiling (BLPP) technique [4] identi-

fies each acyclic path that is executed in a routine. Paths start

on the method entry and terminate on the method exit. Since

loops make the CFG cyclic, loop back edges are substituted

by a pair of dummy edges: the first one from the method en-

try to the target of the loop back edge, and the second one

from the source of the loop back edge to the method exit.

After this (reversible) transformation, the CFG of a method

becomes a DAG (directed acyclic graph) and acyclic paths

can be enumerated.

The Ball-Larus path numbering algorithm, shown in Fig-

ure 2, assigns a value val(e) to each edge e of the CFG such

that, given N acyclic paths, the sum of the edge values along

any entry-to-exit path is a unique numeric ID in [0, N-1]. A

CFG example and the corresponding path IDs are shown in

Figure 3: notice that there are eight distinct acyclic paths,

procedure bl path numbering():

1: for each basic block v in reverse topological order do

2: if v is the exit block then

3: numPaths(v)← 1
4: else

5: numPaths(v)← 0
6: for each outgoing edge e = (v, w) do

7: val(e) = numPaths(v)

8: numPaths(v) += numPaths(w)

9: end for

10: end if

11: end for

Figure 2: The Ball-Larus path numbering algorithm.

numbered from 0 to 7, starting either at the method’s entry

A, or at loop header B (target of back edge (E,B)).
BLPP places instrumentation on edges to compute a

unique path number for each possible path. In particular,

it uses a variable r, called probe or path register, to compute

the path number. Variable r is first initialized to zero upon

method entry and then is updated as edges are traversed.

When an edge that reaches the method exit is executed, or

a back edge is traversed, variable r represents the unique

ID of the taken path. As observed, instead of using the path

ID r to increase the path frequency counter (count[r]++),

we defer the profiling stage by emitting the path ID to an

output stream (emit r). To support profiling over multiple

invocations of the same routine, we annotate the stream with

the special marker ∗ to denote a routine entry event. Instru-

mentation code for our CFG example is shown on the left of

Figure 3.

2.2 k-Iteration Path Profiling

The second stage of our profiler takes as input the stream of

BL path IDs generated by the first stage and uses it to build

a data structure that keeps track of the frequencies of each

and every distinct taken path consisting of the concatenation

of up to k BL paths, where k is a user-defined parameter.

This problem is equivalent to counting all n-grams, i.e.,

contiguous sequences of n items from a given sequence of

items, for each n ≤ k. Our solution is based on the notion

of prefix forest, which compactly encodes a list of sequences

by representing repetitions and common prefixes only once.

A prefix forest can be defined as follows:

Definition 1 (Prefix forest). Let L = 〈x1, x2, . . . , xq〉 be

any list of finite-length sequences over an alphabet H . The

prefix forest F(L) of L is the smallest labeled forest such

that, ∀ sequence x = 〈a1, a2, . . . , an〉 in L there is a path

π = 〈ν1, ν2, . . . , νn〉 in F(L) where ν1 is a root and ∀j ∈
[1, n]:

1. νj is labeled with aj , i.e., ℓ(νj) = aj ∈ H;

2. νj has an associated counter c(νj) that counts the num-

ber of times sequence 〈a1, a2, . . . , aj〉 occurs in L.
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Figure 3: Control flow graph with Ball-Larus instrumentation modified to emit acyclic path IDs to an output stream and running example of

our approach that shows a 4-iteration path forest (4-IPF) for a possible small execution trace.

Notice that L is a list and not a set to account for multiple

occurrences of the same n-grams. By Definition 1, each

sequence in L is represented as a path in the forest, and node

labels in the path are exactly the symbols of the sequence,

in the same order. The notion of minimality implies that, by

removing even one single node, there would be at least one

sequence of L not counted in the forest. Observe that there

is a distinct root in the forest for each distinct symbol that

occurs as first symbol of a sequence.

k-iteration path forest. The output of our profiler is a pre-

fix forest, which we call k-Iteration Path Forest (k-IPF), that

compactly represents all observed contiguous sequences of

up to k BL path IDs:

Definition 2 (k-Iteration Path Forest). Given an input stream

Σ representing a sequence of BL path IDs and ∗ mark-

ers, the k-Iteration Path Forest (k-IPF) of Σ is defined as

k-IPF = F(L), where L = { list of all n-grams of Σ that do

not contain ∗, with n ≤ k }.

By Definition 2, the k-IPF is the prefix forest of all consecu-

tive subsequences of up to k BL path IDs in Σ.

Example 1. Figure 3 provides an example showing the 4-

IPF constructed for a small sample execution trace consist-

ing of a sequence of 44 basic blocks encountered during one

invocation of the routine described by the control flow graph

on the left. Notice that the full (cyclic) execution path starts

at the entry basic block A and terminates on the exit basic

block F . The first stage of our profiler issues a stream Σ of

BL path IDs that are obtained by emitting the value of the

probe register r each time a back edge is traversed, or the

exit basic block is executed. Observe that the sequence of

emitted path IDs induces a partition of the execution path

into Ball-Larus acyclic paths. Hence, the sequence of exe-

cuted basic blocks can be fully reconstructed from the se-

quence Σ of path IDs.

The 4-IPF built in the second stage contains exactly one

tree for each of the 4 distinct BL path IDs (0, 2, 3, 6)

that occur in the stream. We observe that path frequen-

cies in the first level of the 4-IPF are exactly those that

traditional Ball-Larus profiling would collect. The second

level contains the frequencies of taken paths obtained by

concatenating 2 BL paths, etc. Notice that the path labeled

with 〈2, 0, 0, 2〉 in the 4-IPF, which corresponds to the path

〈B,C,E,B,D,E,B,D,E,B,C,E〉 in the control flow

graph, is a 4-gram that occurs 3 times in Σ and is one of

the most frequent paths among those that span from 2 up to

4 loop iterations.

Properties. A k-IPF has some relevant properties:

1. ∀ nodes α ∈ k-IPF, k > 0:

c(α) ≥
∑

βi : edge (α,βi)∈ k-IPF

c(βi);

2. ∀k > 0, k-IPF ⊆ (k + 1)-IPF.

By Property 1, since path counters are non-negative, they

are monotonically non-increasing as we walk down the tree.

The inequality ≥ in Property 1 may be strict (>) if the

execution trace of a routine invocation does not end at the

exit basic block; this may be the case when a subroutine call

is performed at an internal node of the CFG.

Property 2 implies that, for each tree T1 in the k-IPF there

is a tree T2 in the (k+1)-IPF such that T2 is equal to T1 after

removing leaves at level k + 1. Notice that a 1-IPF includes

only acyclic paths and yields exactly the same counters as a

Ball-Larus profiler [4].

3. Application Examples

In this section we consider examples of applications where

k-iteration path profiling can reveal optimization opportu-

nities or help developers comprehend relevant properties of
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#define NEIGHBOR(m,i,dy,dx,w) \

(*((m)+(i)+(dy)*(w)+(dx)))

#define CONVOLUTION(i) do { \

val = NEIGHBOR(img_in, (i), \

-2, -2, cols)*filter[0]; \

val += NEIGHBOR(img_in, (i), \

-2, -1, cols)*filter[1]; \

...

val += NEIGHBOR(img_in, (i),

+2, +2, cols)*filter[24]; \

val = val*factor+bias; \

img_out[i] = (unsigned char) \

(val < 0 ? 0 : val > 255 ? 255 : val); \

} while(0)

void filter_conv(unsigned char* img_in,

unsigned char* img_out,

unsigned char* mask,

char filter[25],

double factor, double bias,

int rows, int cols) {

int val;

long n = rows*cols, i;

for (i = 0; i < n; i++)

if (mask[i]) img_out[i] = img_in[i];

else CONVOLUTION(i);

}

Figure 4: Masked image filtering code based on a convolution

matrix.

a piece of software by identifying structured execution pat-

terns that would be missed by an acyclic-path profiler. Our

discussion is based on idealized examples found in real pro-

grams of the kind of behavior that can be exploited using

multi-iteration path profiles. Since our methodology can be

applied to different languages, we addressed both Java and

C applications1.

3.1 Masked Convolution Filters in Image Processing

As a first example, we consider a classic application of con-

volution filters to image processing, addressing the problem

of masked filtering that arises when the user applies a trans-

formation to a collection of arbitrary-shaped subregions of

the input image. A common scenario is face anonymization,

illustrated in the example of Figure 5. The case study dis-

cussed in this section shows that k-iteration path profiling

with large values of k can identify regular patterns spanning

1 We profiled Java programs using the k-BLPP tool described in Section 5

and C programs with manual source code instrumentation based on a C

implementation of the algorithms and data structures of Section 4, available

at http://www.dis.uniroma1.it/~demetres/kstream/.

multiple loop iterations that can be effectively exploited to

speed up the code.

Figure 4 shows a C implementation of a masked image fil-

tering algorithm based on a 5 × 5 convolution matrix2. The

function takes as input a grayscale input image (8-bit depth)

and a black & white mask image that specifies the regions

of the image to be filtered. Figure 5 shows a sample input

image (left), a mask image (center), and the output image

(right) generated by the code of Figure 4 by applying a blur

filter to the regions of the input image specified by the mask.

Notice that the filter code iterates over all pixels of the input

image and for each pixel checks if the corresponding mask

is black (zero) or white (non-zero, i.e., 255). If the mask is

white, the original grayscale value is copied from the input

image to the output image; otherwise, the grayscale value

of the output pixel is computed by applying the convolution

kernel to the neighborhood of the current pixel in the input

image. To avoid expensive boundary checks in the convolu-

tion operation, the mask is preliminarily cropped so that all

values near the border are white (this operation takes negli-

gible time).

Figure 6 shows a portion of the 10-IPF forest containing

the trees rooted at the BL path IDs that correspond to: the

path entering the loop (ID=0), the copy branch taken in

the loop body when the mask is non-zero (ID=1), and the

convolution branch taken in the loop body when the mask

is zero (ID=2). The 10-IPF was generated on the workload

of Figure 5 and was pruned by removing all nodes whose

counters are less than 0.01% of the counter of their parents

or less than 0.01% of the counter of their roots. For each

node v in the forest, if v has a counter that is X% of the

counter of its parent and is Y% of the counter of the root,

then the edge leading to v is labeled with “X%(Y%)”. A

visual analysis of the forest shows that:

• the copy branch (1) is more frequent than the convolution

branch (2);

• 98.9% of the times a copy branch (1) is taken, it is

repeated consecutively at least 10 times, and only 0.1%
of the times is immediately followed by a convolution

branch;

• 95% of the times a convolution branch (2) is taken, it is

repeated consecutively at least 10 times, and only 0.6%
of the times is immediately followed by a copy branch;

This entails that both the copy and the convolution opera-

tions are repeated along long consecutive runs. The above

properties are typical of masks used in face anonymiza-

tion and other common image manipulations based on user-

defined selections of portions of the image. The collected

profiles suggest that consecutive iterations of the same

branches may be selectively unrolled as shown in Figure 7.

Each iteration of the outer loop, designed for a 64-bit plat-

2 The source code of our example is provided at

http://www.dis.uniroma1.it/~demetres/kstream/.
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Figure 5: Masked blur filter example: original 3114× 2376 image (left), filter mask (center), filtered image (right).

Figure 6: 10-IPF forest of the code of Figure 4 on the workload of Figure 5.

378



for (i = 0; i < n-7; i += 8) {

if (*(long*)(mask+i) == 0xFFFFFFFFFFFFFFFF)

*(long*)(img_out+i) = *(long*)(img_in+i);

else if (*(long*)(mask+i) == 0) {

CONVOLUTION(i);

CONVOLUTION(i+1);

CONVOLUTION(i+2);

CONVOLUTION(i+3);

CONVOLUTION(i+4);

CONVOLUTION(i+5);

CONVOLUTION(i+6);

CONVOLUTION(i+7);

}

else for (j = i; j < i+8; j++)

if (mask[j]) img_out[j] = img_in[j];

else CONVOLUTION(j);

}

Figure 7: Optimized 64-bit version of the loop of Figure 4.

form, works on 8 (rather than 1) pixels at a time. Three cases

are possible:

1. the next 8 mask entries are all 255 (white): the 8 corre-

sponding input pixel values are copied to the output im-

age at once with a single assignment instruction;

2. the next 8 mask entries are all 0 (black): the kernel is

applied sequentially to each of the next 8 input pixels;

3. the next 8 mask entries are mixed: an inner loop performs

either copy or convolution on the corresponding pixels.

Performance analysis. To assess the benefits of the opti-

mization performed in Figure 7, we conducted several tests

on recent commodity platforms (Intel Core 2 Duo, Intel Core

i7, Linux and MacOS X, 32 and 64 bits, gcc -O3), consid-

ering a variety of sample images and masks with regions

of different sizes and shapes. We obtained non-negligible

speedups on all our tests, with a peak of about 21% on the

workload of Figure 5 (3114 × 2376 pixels) and about 30%

on a larger 9265 × 7549 image with a memory footprint of

about 200 MB. In general, the higher the white entries in

the mask, the faster the code, with larger speedups on more

recent machines. As we expected, for entirely black masks

the speedup was instead barely noticeable: this is due to the

fact that the convolution operations are computationally de-

manding and tend to hide the benefits of loop unrolling.

Discussion. The example discussed in this section shows

that both the ability to profile paths across multiple itera-

tions, and the possibility to handle large values of k played

a crucial role in optimizing the code. Indeed, acyclic-path

profiling would count the number of times each branch is

taken, but would not reveal that they appear in consecu-

tive runs. Moreover, previous multi-iteration approaches that

only handle very small values of k would not capture the

long runs that make the proposed optimization effective.

For the example of Figure 5, an acyclic-path profile would

indicate that the copy branch is taken 81.7% of the times,

but not how branches are interleaved. From this information,

we would be able to deduce that the average length of a

sequence of consecutive white values in the mask is ≥ 4.

Our profile shows that, 98.9% of the times the actual length

is at least 10, fully justifying our optimization that copies 8

bytes at a time. The advantage of k-iteration path profiling

increases for masks with a more balanced ratio between

white and black pixels: for a 50-50 ratio, an acyclic-path

profile would indicate that the average length of consecutive

white/black runs is ≥ 1, yielding no useful information for

loop unrolling purposes.

The execution pattern where the same branches are re-

peatedly taken over consecutive loop iterations is common

to several other applications, which may benefit from op-

timizations that take advantage of long repeated runs. For

instance, the LBM performStreamCollide function of the

lbm benchmark included in the SPEC CPU 2006 suite it-

erates over a 3D domain, simulating incompressible fluid

dynamics based on the Lattice Boltzmann Method. An in-

put geometry file specifies obstacles that determine a steady

state solution. The loop contains branches that depend upon

the currently scanned cell, which alternates between obsta-

cles and void regions of the domain, producing a k-IPF sim-

ilar to that of Figure 6 on typical workloads.

3.2 Instruction Scheduling

Young and Smith [22] have shown that path profiles span-

ning multiple loop iterations can be used to improve the con-

struction of superblocks in trace schedulers.

Global instruction scheduling groups and orders the in-

structions of a program in order to match the hardware re-

source constraints when they are fetched. In particular, trace

schedulers rely on the identification of traces (i.e., sequences

of basic blocks) that are frequently executed. These traces

are then extended by appending extra copies of likely succes-

sors blocks, in order to form a larger pool of instructions for

reordering. A trace that is likely to complete is clearly prefer-

able, since instructions moved before an early exit point are

wasted work.

Superblocks are defined as sequences of basic blocks with

a single entry point and multiple exit points; they are use-

ful for maintaining the original program semantics during a

global code motion. Superblock formation is usually driven

by edge profiles: however, path profiles usually provide bet-

ter information to determine which traces are worthwhile to

enlarge (i.e., those for which execution reaches the ending

block most of the times). Figure 8 shows how superblock

construction may benefit from path profiling information for
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Figure 8: Superblock construction using cyclic-path profiles.

two different behaviors, characterized by the same edge pro-

file, of a do . . . while loop.

Path profiling techniques that do not span multiple loop

iterations chop execution traces into pieces separated at back

edges, hence the authors collect execution frequencies for

general paths [23], which contain any contiguous sequences

of CFG edges up to a limiting path length; they use a path

length of 15 branches in the experiments.

Example. Phased and alternating behaviors as in Figure 8

are quite common among many applications, thus offering

interesting optimization opportunities. For instance, the con-

volution filter discussed in the previous section is a clear ex-

ample of phased behavior. An alternating behavior is shown

by the checkTaskTag method of class Scanner in the

org.eclipse.jdt.internal.compiler.parser pack-

age of the eclipse benchmark included in the DaCapo re-

lease 2006-10-MR2. In Figure 9 we show a subtree of the

11-IPF generated for this method; in the subtree, we pruned

all nodes with counters less than 10% of the counter of the

root. Notice that, after executing the BL path with ID 38, in

66% of the executions the program continues with 86, and

in 28% of the executions with BL path 87. When 86 fol-

lows 38, in 100% of the executions the control flow takes

the path 〈86, 86, 86, 755〉, which spans four loop iterations

and may be successfully unrolled to perform instruction

scheduling. Interestingly, sequence 〈38, 86, 86, 86, 755, 38,
86, 86, 86, 755, 38〉 of 11 BL path IDs, highlighted in Fig-

ure 9, accounts for more than 50% of all executions of

the first BL path in the sequence, showing that sequence

〈38, 86, 86, 86, 755〉 is likely to be repeated consecutively

more than once.

Discussion. The work presented in [22] focused on assess-

ing the benefits of using general paths for global instruction

scheduling, rather than on how to profile them. As we will

see in Section 7, compared to our approach the technique

38 (9713511)

87 (2758139) 86 (6406072)

819 (2739522)

87 (2739522)

819 (2736476)

87 (2736476)

819 (2736224)

755 (2698080)

38 (2664553)

87 (1300278) 86 (1217577)

819 (1284232) 86 (1217577)

86 (6406072)

86 (6406072)

755 (6406072)

38 (6405932)

87 (1181571) 86 (5128980)

38 (5128840)

819 (1179091) 86 (5128980)

86 (5128980)

755 (5128980)

87 (1179091)

819 (1177898)

87 (1177898)

BL path ID

frequency counter

Figure 9: Subtree of the 11-IPF of method org.eclipse.jdt.

internal.compiler.parser.Scanner.checkTaskTag taken

from release 2006-10-MR2 of the DaCapo benchmark suite.

proposed by Young [23] for profiling general paths scales

poorly for increasing path lengths both in terms of space

usage and running time. We believe that our method, by

substantially reducing the overhead of cyclic-path profiling,

has the potential to provide a useful ingredient for making

profile-guided global instruction scheduling more efficient

in modern compilers.

4. Algorithms

In this section, we show how to efficiently construct a k-IPF

profile starting from a stream of BL path IDs. We observe

that building explicitly a k-IPF concurrently with program

execution would require updating up to k nodes for each

stream item: this may considerably slow down the program

even for small values of k. To overcome this problem, we

construct an intermediate data structure that can be updated

quickly, and then convert it into a k-IPF more efficiently

when the stream is over. As intermediate data structure, we

use a variant of the k-slab forest (k-SF) introduced in [3].

Main idea. The variant of the k-SF we present in this

paper is tailored to keep track of all n-grams of a sequence

of symbols, for all n ≤ k. The organization of our data

structure stems from the following simple observation: if

we partition a sequence into chunks of length k − 1, then

any subsequence of length up to k will be entirely contained

within two consecutive chunks of the partition. The main

idea is therefore to consider all subsequences that start at the

beginning of a chunk and terminate somewhere in the next

chunk, and join them in a prefix forest (the k-SF). Such a
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forest contains a distinct tree for each distinct symbol that

appears at the beginning of any chunk and, as we will see

later on in this section, encodes information about all n-

grams with n ≤ k. Indeed, by Definition 1, node counters

in the k-SF keep track of the number of occurrences of

each distinct subsequence of length between k and 2k −
2 that starts at the beginning of a chunk. The number of

occurrences of a given n-gram can be reconstructed off-

line by finding all subpaths of length n of the k-SF labeled

with the symbols of the n-gram and by summing up the

counters of the end-nodes of the subpaths. The partition of

the sequence into chunks induces a division of the forest into

upper and lower regions (slabs) of height up to k − 1. This

organization implies that the k-SF can be constructed on-

line as stream items are revealed to the profiler by adding or

updating up to two nodes of the forest at a time (one in the

upper region and one in the lower region), instead of k nodes

as we would do if we incremented explicitly the frequencies

of n-grams as soon as they are encountered in the stream.

The following example applies the concepts described

above to a stream of BL path IDs.

Example 2. Let us consider again the example given in

Figure 3. For k = 4, we can partition the stream into

maximal chunks of up to k − 1 = 3 consecutive BL path

IDs as follows:

Σ = 〈∗, 6, 2, 0
︸ ︷︷ ︸

c1

, 0, 2, 2
︸ ︷︷ ︸

c2

, 0, 0, 2
︸ ︷︷ ︸

c3

, 2, 0, 0
︸ ︷︷ ︸

c4

, 2, 3
︸ ︷︷ ︸

c5

〉.

The 4-SF of Σ, defined in terms of chunks c1, . . . , c5, is

shown in Figure 10. Notice for instance that 2-gram 〈0, 0〉
occurs three times in Σ and five times in the 4-SF. However,

only three of them end in the bottom slab and hence are

counted in the frequency counters.

To obtain a k-IPF starting from the k-SF, for each BL path

ID that appears in the stream we will eventually construct

the set of nodes in the k-SF associated with it and join the

subsequences of length up to k starting from those nodes into

a prefix forest.

Formal k-SF definition. The above description of the

k-SF can be more formally and precisely summarized as

follows:

Definition 3 (k-slab forest). Let k ≥ 2 and let c1, c2, c3, . . . ,
cm be the chunks of Σ obtained by: (1) splitting Σ at ∗ mark-

ers, (2) removing the markers, and (3) cutting the remaining

subsequences every k− 1 consecutive items. The k-slab for-

est (k-SF) of Σ is defined as k-SF = F(L), where L = {list

of all prefixes of c1 · c2 and all prefixes of length ≥ k of

ci · ci+1, ∀i ∈ [2,m− 1]} and ci · ci+1 denotes the concate-

nation of ci and ci+1.

By Definition 3, since each chunk ci has length up to k − 1,

then a k-SF has at most 2k − 2 levels and depth 2k − 3. As

observed above, the correctness of the k-SF representation

Figure 10: 4-SF resulting from the execution trace of Figure 3.

stems from the fact that, since each occurrence of an n-gram

with n ≤ k appears in ci ·ci+1 for some i, then there is a tree

in the k-SF representing it.

Example 3. In accordance with Definition 3, the forest of

Figure 10 for the stream of Example 2 is F(L), where L = 〈
〈6〉, 〈6, 2〉, 〈6, 2, 0〉, 〈6, 2, 0, 0〉, 〈6, 2, 0, 0, 2〉, 〈6, 2, 0, 0, 2, 2〉,
〈0, 2, 2, 0〉, 〈0, 2, 2, 0, 0〉, 〈0, 2, 2, 0, 0, 2〉, 〈0, 0, 2, 2〉, 〈0, 0, 2,
2, 0〉, 〈0, 0, 2, 2, 0, 0〉, 〈2, 0, 0, 2〉, 〈2, 0, 0, 2, 3〉〉.

k-SF construction algorithm. Given a streamΣ formed by

∗ markers and BL path IDs, the k-SF of Σ can be constructed

by calling the procedure process bl path id(r) shown in

Figure 11 on each item r of Σ. The streaming algorithm,

which is a variant of the k-SF construction algoritm given

in [3] for the different setting of bounded-length calling

contexts, keeps the following information:

• a hash table R, initially empty, containing pointers to the

roots of trees in the k-SF, hashed by node labels; since

no two roots have the same label, the lookup operation

find(R, r) returns the pointer to the root containing label

r, or null if no such root exists;

• a variable n that counts the number of BL path IDs

processed since the last ∗ marker;

• a variable τ (top) that points either to null or to the

current k-SF node in the upper part of the forest (levels 0

through k − 2);

• a variable β (bottom) that points either to null or to the

current k-SF node in the lower part of the forest (levels

k − 1 through 2k − 3).

The main idea of the algorithm is to progressively add new

paths to an initially empty k-SF. The path formed by the first

k − 1 items since the last ∗ marker is added to one tree of

the upper part of the forest. Each later item r is added at

up to two different locations of the k-SF: one in the upper

part of the forest (lines 13–17) as a child of node τ (if no

child of τ labeled with r already exists), and the other one in

the lower part of the forest (lines 21–25) as a child of node

β (if no child of β labeled with r already exists). Counters

of processed nodes already containing r are incremented by

one (either line 27 or line 29).
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procedure process bl path id(r):

1: if r = ∗ then

2: n← 0
3: τ ← null

4: return

5: end if

6: if n mod (k − 1) = 0 then

7: β ← τ

8: τ ← find(R, r)
9: if τ = null then

10: add root τ with ℓ(τ) = r and c(τ) = 0 to k-SF and R

11: end if

12: else

13: find child ω of node τ with label ℓ(ω) = r

14: if ω = null then

15: add node ω with ℓ(ω) = r and c(ω) = 0 to k-SF

16: add arc (τ, ω) to k-SF

17: end if

18: τ ← ω

19: end if

20: if β 6= null then

21: find child υ of node β with label ℓ(υ) = r

22: if υ = null then

23: add node υ with ℓ(υ) = r and c(υ) = 0 to k-SF

24: add arc (β, υ) to k-SF

25: end if

26: β ← υ

27: c(β)← c(β) + 1
28: else

29: c(τ)← c(τ) + 1
30: end if

31: n← n+ 1

Figure 11: Streaming algorithm for k-SF construction.

Both τ and β are updated to point to the child labeled

with r (lines 18 and 26, respectively). The running time of

the algorithm is dominated by lines 8 and 10 (hash table

accesses), and by lines 13 and 21 (node children scan).

Assuming that operations on R require constant time, the

per-item processing time is O(δ), where δ is the maximum

degree of a node in the k-SF. Our experiments revealed that

δ is on average a typically small constant value.

As an informal proof that each subsequence of length

up to k is counted exactly once in the k-SF, we first ob-

serve that, if the subsequence extends across two consecutive

chunks, then it appears exactly once in the forest (connect-

ing a node in the upper slab to a node in the lower slab). In

contrast, if the subsequence is entirely contained in a chunk,

then it appears twice: once in the upper slab of the tree rooted

at the beginning of the chunk, and once in the lower slab

rooted in at the beginning of the preceding chunk. However,

only the counter in the lower part of the forest is updated

(line 27): for this reason, the sum of all counters in the k-SF

is equal to the length of the stream.

procedure make k ipf():

1: I ← ∅
2: for each node ρ ∈ k-SF do

3: if ℓ(ρ) 6∈ I then

4: add ℓ(ρ) to I and let s(ℓ(ρ))← ∅
5: end if

6: add ρ to s(ℓ(ρ))
7: end for

8: let the k-IPF be formed by a dummy root φ

9: for each r ∈ I do

10: for each ρ ∈ s(r) do

11: join subtree(ρ, φ, k)
12: end for

13: end for

14: remove dummy root φ from the k-IPF

procedure join subtree(ρ, γ, d):

1: δ ← child of γ in the k-IPF s.t. ℓ(δ) = ℓ(ρ)
2: if δ = null then

3: add new node δ as a child of γ in the k-IPF

4: ℓ(δ)← ℓ(ρ) and c(δ)← c(ρ)
5: else

6: c(δ)← c(δ) + c(ρ)
7: end if

8: if d > 1 then

9: for each child σ of ρ in the k-SF do

10: join subtree(σ, δ, d− 1)
11: end for

12: end if

Figure 12: Algorithm for converting a k-SF into a k-IPF.

k-SF to k-IPF conversion. Once the stream Σ is over, i.e.,

the profiled thread has terminated, we convert the k-SF into a

k-IPF using the procedure make k ipf shown in Figure 12.

The key intuition behind the correctness of the conversion

algorithm is that for each sequence in the stream of length

up to k, there is a tree in the k-SF containing it.

The algorithm creates a set I of all distinct path IDs that

occur in the k-SF and for each r in I builds a set s(r)
containing all nodes ρ of the k-SF labeled with r (lines

2–7). To build the k-IPF, the algorithm lists each distinct

path ID r and joins to the k-IPF the top k − 1 levels of the

subtrees of the k-SF rooted at the nodes in s(r). Subtrees are

added as children of a dummy root, which is inserted for the

sake of convenience and then removed. The join operation

is specified by procedure join subtree, which performs a

traversal of a subtree of the k-SF of depth less than k and

adds nodes to k-IPF so that all labeled paths in the subtree

appear in the k-IPF as well, but only once. Path counters

in the k-SF are accumulated in the corresponding nodes of

the k-IPF to keep track of the number of times each distinct

path consisting of the concatenation of up to k BL paths was

taken by the profiled program.
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5. Implementation

In this section we describe the implementation of our pro-

filer, which we call k-BLPP, in the Jikes Research Virtual

Machine [1].

5.1 Adaptive Compilation

The Jikes RVM is a high-performance metacircular virtual

machine: unlike most other JVMs, it is written in Java. Jikes

RVM does not include an interpreter: all bytecode must

be first translated into native machine code. The unit of

compilation is the method, and methods are compiled lazily

by a fast non-optimizing compiler – the so-called baseline

compiler – when they are first invoked by the program.

As execution continues, the Adaptive Optimization System

monitors program execution to detect program hot spots and

selectively recompiles them with three increasing levels of

optimization. Note that all modern production JVMs rely on

some variant of selective optimizing compilation to target

the subset of the hottest program methods where they are

expected to yield the most benefits.

Recompilation is performed by the optimizing compiler,

that generates higher-quality code but at a significantly

larger cost than the baseline compiler. Since Jikes RVM

quickly recompiles frequently executed methods, we imple-

mented k-BLPP in the optimizing compiler only.

5.2 Inserting Instrumentation on Edges

k-BLPP adds instrumentation to hot methods in three passes:

1. building the DAG representation;

2. assigning values to edges;

3. adding instrumentation to edges.

k-BLPP adopts the smart path numbering algorithm pro-

posed by Bond and McKinley [11] to improve performance

by placing instrumentation on cold edges. In particular, line

6 of the canonical Ball-Larus path numbering algorithm

shown in Figure 2 is modified such that outgoing edges are

picked in decreasing order of execution frequency. For each

basic block edges are sorted using existing edge profiling in-

formation collected by the baseline compiler, thus allowing

us to assign zero to the hottest edge so that k-BLPP does not

place any instrumentation on it.

During compilation, the Jikes RVM generates yield points,

which are program points where the running thread deter-

mines if it should yield to another thread. Since JVMs need

to gain control of threads quickly, compilers insert yield

points in method prologues, loop headers, and method epi-

logues. We modified the optimizing compiler to also store

the path profiling probe on loop headers and method epi-

logues. Ending paths at loop headers rather than back edges

causes a path that traverse a header to be split into two

paths: this difference from canonical Ball-Larus path pro-

filing is minor because it only affects the first path through a

loop [10].

Note that optimizing compilers do not insert yield points

in a method when either it does not contain branches (hence

its profile is trivial) or it is marked as uninterruptible. The

second case occurs in internal Jikes RVM methods only; the

compiler occasionally inlines such a method into an appli-

cation method, and this might result in a loss of information

only when the execution reaches a loop header contained in

the inlined method. However, this loss of information ap-

pears to be negligible [10].

5.3 Path Profiling

The k-SF construction algorithm described in Section 2.2 is

implemented using a standard first-child, next-sibling rep-

resentation for nodes. This representation is very space-

efficient, as it requires only two pointers per node: one to

its leftmost child and the other to its right nearest sibling.

Figure 13: Routine with an initial branch before the first cycle.

Tree roots are stored and accessed through an efficient im-

plementation3 of a hash map, using the pair represented by

the Ball-Larus path ID and the unique identifier associated

to the current routine (i.e., the compiled method ID) as key.

Note that this map is typically smaller than a map required

by a traditional BLPP profiler, since tree roots represent

only a fraction of the distinct path IDs encountered during

the execution. Consider, for instance, the example shown in

Figure 13: this control flow graph has N acylic paths after

backedges have been removed. Since cyclic paths are trun-

cated on loop headers, only path IDs 0 and 1 can appear after

the special marker ∗ in the stream, thus leading to the cre-

ation of an entry in the hash map. Additional entries might

be created when a new tree is added to the k-SF (line 10

of the streaming algorithm shown in Figure 11); however,

experimental results show that the number of tree roots is

usually small, while N increases with the complexity (i.e.,

number of branches and loops) of the routine.

6. Experimental Evaluation

In this section we report the result of an extensive exper-

imental evaluation of our approach. The goal is to assess

3 HashMapRVM is the stripped-down implementation of the HashMap data

structure used by core parts of the Jikes RVM runtime and by Bond’s BLPP

path profiler.
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Figure 14: Performance of k-BLPP relative to BLPP.

the performance of our profiler compared to previous ap-

proaches and to study properties of path profiles that span

multiple iterations for several representative benchmarks.

6.1 Experimental Setup

Bechmarks. We evaluated k-BLPP against a variety of

prominent benchmarks drawn from three suites. The DaCapo

suite [5] consists of a set of open source, real-world appli-

cations with non-trivial memory loads. We use the superset

of all benchmarks from DaCapo releases 2006-10-MR2 and

9.12 that can run successfully with Jikes RVM, using the

largest available workload for each benchmark. The SPEC

suite focuses on the performance of the hardware proces-

sor and memory subsystem when executing common gen-

eral purpose application computations4. Finally, we chose

two memory-intensive benchmarks from the Java Grande

2.0 suite [12] to further evaluate the performance of k-BLPP.

Compared codes. In our experiments, we analyzed the na-

tive (uninstrumented) version of each benchmark and its

instrumented counterparts, comparing k-BLPP for differ-

4 Unfortunately, only a few benchmarks from SPEC JVM2008 can run

successfully with Jikes RVM due to limitations of the GNU classpath.

ent values of k (2, 3, 4, 6, 8, 11, 16) with the BLPP pro-

filer developed by Bond [10, 15], which implements the

canonical Ball-Larus acyclic-path profiling technique. We

upgraded the original tool by Bond to take advantage of na-

tive threading support introduced in newer Jikes RVM re-

leases; the code is structured as in Figure 1, except that it

does not produce any intermediate stream, but it directly per-

forms count[r]++. The software evaluated in this section

has been analyzed and endorsed by the OOPSLA 2013 Arti-

fact Evaluation Committee, and the source code is available

in the Jikes RVM Research Archive.

Platform. Our experiments were performed on a 2.53GHz

Intel Core2 Duo T9400 with 128KB of L1 data cache, 6MB

of L2 cache, and 4 GB of main memory DDR3 1066, run-

ning Ubuntu 12.10, Linux Kernel 3.5.0, 32 bit. We ran all of

the benchmarks on Jikes RVM 3.1.3 (default production

build) using a single core and a maximum heap size equal to

half of the amount of physical memory.

Metrics. We considered a variety of metrics, including

wall-clock time, number of operations per second performed

by the profiled program, number of hash table operations,

data structure size (e.g., number of hash table items for
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Figure 15: Number of hash table operations performed by k-BLPP relative to BLPP.

BLPP and number of k-SF nodes for k-BLPP), and statistics

such as average node degree of the k-SF and the k-IPF and

average depth of k-IPF leaves. To interpret our results, we

also “profiled our profiler” by collecting hardware perfor-

mance counters with perf [18], including L1 and L2 cache

miss rate, branch mispredictions, and cycles per instruction

(CPI).

Methodology. For each benchmark/profiler combination,

we performed 10 trials, each preceded by a warmup execu-

tion, and computed the arithmetic mean. We monitored vari-

ance, reporting confidence intervals for performance metrics

stated at a 95% confidence level. Performance measurements

were collected on a machine with negligible background ac-

tivity.

6.2 Experimental Results

Performance overhead. In Figure 14 we report for each

benchmark the profiling overhead of k-BLPP relative to

BLPP. The chart shows that for 12 out of 16 benchmarks

the overhead decreases for increasing values of k, provid-

ing up to almost 45% improvements over BLPP. This is ex-

plained by the fact that hash table accesses are performed by

process bl path id every k−1 items read from the input

stream between two consecutive routine entry events (lines 8

and 10 in Figure 11). As a consequence, the number of hash

table operations for each routine call is O(1 + N/(k − 1)),
where N is the total length of the path taken during the in-

vocation. In Figure 15 we report the measured number of

hash table accesses for our experiments, which decreases

as predicted on all benchmarks with intense loop iteration

activity. Notice that, not only does k-BLPP perform fewer

hash table operations, but since only a subset of BL path

IDs are inserted, the table is also smaller yielding further

performance improvements. For codes such as avrora and

hsqldb, which perform on average a small number of iter-

ations, increasing k beyond this number does not yield any

benefit.

On eclipse, k-BLPP gets faster as k increases, but dif-

ferently from all other benchmarks in this class, it remains

slower than BLPP by at least 25%. The reason is that, due to

structural properties of the benchmark, the average number

of node scans at lines 13 and 21 of process bl path id is

rather high (58.8 for k = 2 down to 10.3 for k = 16). In

contrast, the average degree of internal nodes of the k-SF

is small (2.6 for k = 2 decreasing to 1.3 for k = 16),

hence there is intense activity on nodes with a high num-

ber of siblings. No other benchmark exhibited this extreme

behavior. We expect that a more efficient implementation of

process bl path id, e.g., by adaptively moving hot chil-

dren to the front of the list, could reduce the scanning over-

head for this kind of worst-case benchmarks as well.

Benchmarks compress, scimark.monte carlo, heap-

sort, and md made an exception to the general trend we ob-

served, with performance overhead increasing, rather than

decreasing, with k. To justify this behavior, we collected

and analyzed several hardware performance counters and

noticed that on these benchmarks our k-BLPP implemen-

tation suffers from increased CPI for higher values of k.

Figure 16 (a) shows this phenomenon, comparing the four

outliers with other benchmarks in our suite. By analyzing

L1 and L2 cache miss rates, reported in Figure 16 (b) and

Figure 16 (c), we noticed that performance degrades due to

poor memory access locality. We believe this to be an issue

of our current implementation of k-BLPP, in which we did

not make any effort aimed at improving cache efficiency in

accessing the k-SF, rather than a limitation of the general ap-

proach we propose. Indeed, as nodes may be unpredictably

scattered in memory due to the linked structure of the for-
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Figure 16: Hardware performance counters for k-BLPP: (a) cycles per instruction, (b) L1 cache miss rate, (c) L2 cache miss rate.
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Figure 17: Space requirements: number of hash table entries in BLPP and number of nodes in the k-SF.
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Figure 18: Number of paths profiled by BLPP and k-BLPP.

386



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

avrora
chart

eclipse

hsqldb
jython

luindex

sunflow

xalan
compiler.compiler

compress

mpegaudio

scimark.montecarlo

scimark.sor.large

scimark.sparse.large

heapsort

md

A
v
e
ra

g
e
 n

o
d
e
 d

e
g
re

e

Average node degree for k-IPF

k=2
k=3

k=4
k=6

k=8
k=11

k=16

Figure 19: Average degree of k-IPF internal nodes.

Figure 20: Average depth of k-IPF leaves.

est, pathological situations may arise where node scanning

incurs several cache misses.

Notice that, since we never delete either entries from the

hash table or nodes from the k-SF, our implementation does

not place any additional burden on the garbage collector.

The profiler causes memory release operations only when a

thread terminates, dumping all of its data structures at once.

Space usage. Figure 17 compares the space requirements

of BLPP and k-BLPP for different values of k. The chart

reports the total number of items stored in the hash table

by BLPP and the number of nodes in the k-SF. Since both

BLPP and k-BLPP exhaustively encode exact counters for

all distinct taken paths of bounded length, space depends on

intrinsic structural properties of the benchmark. Programs

with intense loop iteration activity are characterized by sub-

stantially higher space requirements by k-BLPP, which col-

lects profiles containing up to several millions of paths. No-

tice that on some benchmarks we ran out of memory for

large values of k, hence some bars in the charts we report

in this section are missing. In Figure 18 we report the num-

ber of nodes in the k-IPF, which corresponds to the number

of paths profiled by k-BLPP. Notice that, since a path may

be represented more than once in the k-SF, the k-IPF repre-

sents a more compact version of the k-SF.
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Techniques Profiled paths Average cost w.r.t. BLPP Variables Full accuracy Inter-procedural

BLPP [4] BL paths - 1
√

SPP [2], TPP [16], PPP [11] subset of BL paths smaller 1 or more
√

Tallam et al. [20] overlapping paths larger many
√

Roy et al. [19] k-iteration paths larger many
√

Li et al. [17] finite-length paths larger 1 or more
√

Young [23] general paths larger -
√

This paper k-iteration paths smaller 1
√

Table 1: Comparison of different path profiling techniques.

Structural properties of collected profiles. As a final ex-

periment, we measured structural properties of the k-IPF

such as average degree of internal nodes (Figure 19) and the

average leaf depth (Figure 20). Our tests reveal that the av-

erage node degree generally decreases with k, showing that

similar patterns tend to appear frequently across different it-

erations. Some benchmarks, however, such as sunflow and

heapsort exhibit a larger variety of path ramifications, wit-

nessed by increasing node degrees at deeper levels of the

k-IPF. The average leaf depth allows us to characterize the

loop iteration activity of different benchmarks. Notice that

for some benchmarks, such as avrora and hsqldb, most

cycles consist of a small number of iterations: hence, by in-

creasing k beyond this number, k-BLPP does not collect any

additional useful information.

Discussion. From our experiments, we could draw two

main conclusions:

1. Using tree-based data structures to represent intraproce-

dural control flow makes it possible to substantially re-

duce the performance overhead of path profiling by de-

creasing the number of hash operations - and also by op-

erating on smaller tables. This approach yields the first

profiler that can handle loops that extend across mul-

tiple loop iterations faster than the general Ball-Larus

technique based on hash tables for maintaining path fre-

quency counters, while collecting at the same time signif-

icantly more informative profiles. We observed that, due

to limitations of our current implementation of k-BLPP

such as lack of cache friendliness for some worst-case

scenarios, on a few outliers our profiler was slower than

Ball-Larus, with a peak of 3.76x slowdown on one bench-

mark.

2. Since the number of profiled paths in the control flow

graph typically grows exponentially for increasing val-

ues of k, space usage can become prohibitive if paths

spanning many loop iterations have to be exhaustively

profiled. We noticed, however, that most long paths have

small frequency counters, and are therefore uninteresting

for identifying optimization opportunities. Hence, a use-

ful addition to our method, which we do not address in

this work, would be to prune cold nodes on-the-fly from

the k-SF, keeping information for hot paths only.

7. Related Work

The seminal work of Ball and Larus [4] has spawned much

research interest in the last 15 years, in particular on pro-

filing acyclic paths with a lower overhead by using sam-

pling techniques [10, 11] or choosing a subset of interesting

paths [2, 16, 21]. On the other hand, only a few works have

dealt with cyclic-path profiling.

Tallam et al. [20] extend the Ball-Larus path numbering

algorithm to record slightly longer paths across loop back

edges and procedure boundaries. The extended Ball-Larus

paths overlap and, in particular, are shorter than two itera-

tions for paths that cross loop boundaries. These overlap-

ping paths enable very precise estimation of frequencies of

potentially much longer paths, with an average imprecision

in estimated total flow of those paths ranging from −4% to

+8%. However, the average cost of collecting frequencies

of overlapping paths is 4.2 times that of canonical BLPP on

average.

Roy and Srikant [19] generalize the Ball-Larus algorithm

for profiling k-iteration paths, showing that it is possible to

number these paths efficiently using an inference phase to

record executed backedges in order to differentiate cyclic

paths. One problem with this approach is that, since the

number of possible k-iteration paths grows exponentially

with k, path IDs may overflow in practice even for small

values of k. Furthermore, very large hash tables may be

required. In particular, their profiling procedure aborts if the

number of static paths exceeds 60, 000, while this threshold

is reached on several small benchmarks already for k =
3 [17]. This technique incurs a larger overhead than BLPP:

in particular, the slowdown may grow to several times the

BLPP-associated overhead as k increases.

Li et al. [17] propose a new path encoding that does not

rely on an inference phase to explicitly assign identifiers to

all possible paths before the execution, yet ensuring that any

finite-length acyclic or cyclic path has a unique ID. Their

path numbering algorithm needs multiple variables to record

probe values, which are computed by using addition and

multiplication operations. Overflowing is handled by using

breakpoints to store probe values: as a consequence, instead

of a unique ID for each path, a unique series of breakpoints is

assiged to each path. At the end of program’s execution, the

backwalk algorithm reconstructs the executed paths starting

from breakpoints. This technique has been integrated with
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BLPP to reduce the execution overhead, resulting in a slow-

down of about 2 times on average with respect to BLPP, but

also showing significant performance loss (up to a 5.6 times

growth) on tight loops (i.e., loops that contain a small num-

ber of instructions and iterate many times). However, the ex-

periments reported in [17] were performed on single meth-

ods of small Java programs, leaving further experiments on

larger industry-strength benchmarks to future work.

Of a different flavor is the technique introduced by

Young [23] for profiling general paths, i.e., fixed-length se-

quences of taken branches that might span multiple loop

iterations (see Section 3.2). Unfortunately, this technique

scales poorly for increasing path lengths l both in terms of

space usage and running time. In particular, the running time

is proportional not only to the length of the stream of taken

branches, but also to the number of possible sequences of

length l, that is likely to be exponential in l. In order to re-

duce the per-taken-branch update time, the algorithm uses

also additional space with respect to that required for storing

the path counters and identifiers; such space is proportional

to the number of possible sequences of length l as well.

A comparison of different path profiling techniques

known in the literature with our approach is summarized

in Table 1. The “variables” column reports the number of

probes required to construct path IDs and does not apply to

the work by Young [23], which uses a different approach.

8. Conclusions

In this paper we have presented a novel approach to cyclic-

path profiling, which combines the original Ball-Larus path

numbering technique with a prefix tree data structure to

keep track of concatenations of acyclic paths across multiple

loop iterations. A large suite of experiments on a variety

of prominent benchmarks shows that, not only does our

approach collect significantly more detailed profiles, but it

can also be faster than the original Ball-Larus technique by

reducing the number of hash table operations.

An interesting open question is how to use sampling-

based approaches such as the one proposed by Bond and

McKinley [10] to further reduce the path profiling over-

head. We believe that the bursting technique, introduced by

Zhuang et al. [24] in the different scenario of calling-context

profiling could be successfully combined with our approach,

allowing an overhead reduction while maintaining reason-

able accuracy in mining hot paths. In particular, a bursting

profiler allows the analyzed application to run unhindered

between two sampling points, then it collects a burst of pro-

filing events for an interval defined as burst length. Overhead

is further reduced through adaptive mechanisms that inhibit

redundant profiling due to repetitive execution sequences.

Another way to reduce the profiling overhead may be

to exploit parallelism. We note that our approach, which

decouples path tracing from profiling using an intermediate

data stream, is amenable to multi-core implementations by

letting the profiled code and the analysis algorithm run on

separate cores using shared buffers. A promising line of

research is to explore how to partition the data structures

so that portions of the stream buffer can be processed in

parallel.

Finally, we observe that, since our approach is exhaustive

and traces taken paths regardless of their hotness, it would be

interesting to explore techniques for reducing space usage,

by pruning cold branches of the k-SF on the fly to keep the

memory footprint smaller, thus allowing us to deal with even

longer paths.
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