
Fuzzing Binaries for Memory Safety Errors with QASan

Andrea Fioraldi
Sapienza University of Rome

andreafioraldi@gmail.com

Daniele Cono D’Elia
Sapienza University of Rome

delia@diag.uniroma1.it

Leonardo Querzoni
Sapienza University of Rome

querzoni@diag.uniroma1.it

Abstract—Fuzz testing techniques are becoming pervasive for
their ever-improving ability to generate crashing trial cases for
programs. Memory safety violations however can lead to silent
corruptions and errors, and a fuzzer may recognize them only
in the presence of sanitization machinery. For closed-source
software combining sanitization with fuzzing incurs practical
obstacles that we try to tackle with an architecture-independent
proposal called QASan for detecting heap memory violations.
In our tests QASan is competitive with standalone sanitizers
and adds a moderate 1.61x average slowdown to the AFL++
fuzzer while enabling it to reveal more heap-related bugs.

1. Introduction

Memory safety is one of the most desirable properties for
software programs: violating it can bring difficult-to-analyze
errors, inconsistent results, silent memory corruptions, and
ultimately security vulnerabilities [1], [2]. Language design-
ers and runtime architects have come up over the years with
different approaches, including automatic safety provers [3],
conservative garbage collectors [4], transformation systems
for safe dialects [5], and ultimately runtime checks for
languages that run in managed environments like Java [6].

Memory unsafe languages like C and C++ are however
indispensable for many tasks, such as system programming
and performance-sensitive scenarios. Building techniques
and tools to identify safety violations in programs before
their use in production today is still a heartfelt necessity.

From a security standpoint, memory corruption exploits
are getting more sophisticated over time: an attacker may
leverage safety violations to carry out control flow hijacking,
privilege escalation, and information leakage [7]. While
mainstream system defenses such as Address Space Layout
Randomization raised the bar for attackers, their reactive
nature cannot prevent such attacks in the general case.

Software developers today can benefit from multi-
faceted solutions for program testing, with publicly avail-
able frameworks for static techniques such as symbolic
execution [8], [9], abstract interpretation [10], and bounded
model checking [11], and for dynamic approaches such as
fuzzing [12] and sanitization [7]. In particular the last few
years have seen fuzz testing techniques getting the spotlight
due to their ability of efficiently generating crashing test
cases for programs [13]. However not all memory safety vi-
olations lead to an immediate crash [14], as for instance with
accesses to padding bytes inserted for alignment purposes.

Best practices nowadays often combine fuzzing with

sanitization [15]. Sanitization tools, or colloquially sani-
tizers, can directly observe incorrect behavior for specific
classes of violations as it happens. Sanitizers usually operate
by augmenting the program representation to insert tripwires
that expose violations of predefined policies.

Instrumenting the source code for sanitization usually
brings limited performance overhead, and developers can
naturally compose it with fuzzing techniques. This combi-
nation is unfortunately precluded to closed-source libraries
and programs, which prevail in the software landscape [15].

Sanitization tools available for binary programs typi-
cally build on dynamic binary translation frameworks [16].
Two practical factors hinder their composition with binary
fuzzing solutions: their standalone nature and the high over-
heads from the underlying translation technology.

Recently, researchers have prototyped static instrumen-
tation solutions that modify binaries to insert the probes as if
they were added during compilation [15]. While rewriting
systems have significantly improved, they remain incom-
plete as they rely on structural properties of the code. For
instance, 32-bit platforms are presently out of their reach,
while today they are still relevant for e.g. IoT devices [7].
Our Proposal. In this paper we address the practical gap
between binary fuzzing and sanitization by proposing a san-
itization design that naturally complements existing fuzzing
solutions. Its QASan implementation can mimic the capabil-
ities in detecting heap memory violations of ASan (Address
Sanitizer [17]), which according to recent research [7] is by
far the most widely adopted sanitizer today.

To facilitate its integration in existing fuzzing proposals,
QASan builds on top of the QEMU translation framework.
In the design we handle memory-related metadata in a
way that makes it compatible with heterogeneous architec-
tures, supporting binary rehosting scenarios and reducing
the memory pressure on the analyzed target application.

The paper describes a two-pronged evaluation. In the
first part we measure the accuracy of QASan in detecting
heap violations using a well-known test suite. We then show
the end-to-end utility of our proposal by evaluating its inte-
gration in the popular AFL++ fuzzer [18]. On a selection of
well-tested programs, QASan reveals non-crashing bugs that
would be missed by standard fuzzers. When integrated in
the normal working of a fuzzer, we measure a performance
overhead of 1.26-2.74x for our sanitization scheme, which
can be appealing in dynamic testing scenarios.

To foster further research in the area, we share QASan
as open source at https://github.com/andreafioraldi/qasan.

2. Background

In this section we describe the main elements behind
sanitizers, focusing on heap safety violations. We then in-
troduce instrumentation solutions available for the design of
sanitization and fuzzing tools that operate on binary code.

2.1. Memory Sanitization

A recent work [7] describes sanitizers as dynamic bug
finding tools that produce precise results valid for the ob-
served execution instance. Unlike exploit mitigations de-
ployed in production by operating systems, the goal of
sanitizers is finding errors before a software gets released.
For this reason, sanitizers are allowed a bigger resource
budget to precisely locate a bug (instead of only detecting
a generic error later in time), and possible false alerts can
be tolerated as long as their number is manageable [7].

Sanitizers are available for different categories of bugs,
such as memory safety violations, type errors, and undefined
behavior. A common trait of many solutions is to instrument
the code of the program and/or the surrounding software
stack with explicit detection sequences that expose viola-
tions of a policy, which otherwise could go unnoticed or later
cause difficult-to-diagnose crashes or incorrect results [1].

The focus of this paper are memory safety violations
occurring in the heap regions, which as we mentioned earlier
are widespread in real-world software and can pave the way
to several classes of exploitation attacks. A safety violation
happens when a pointer references an area other than the
one belonging to the object that the pointer was initially
defined for. Such violations can be spatial or temporal.

Spatial safety violations happen when an access is (par-
tially) outside the bounds of the intended object for the
pointer. Allocation defines such bounds: any following arith-
metic shall keep a pointer inside one object of interest.

There are two main approaches to detecting spatial viola-
tions [1]. Object-based approaches track allocated memory
objects and check whether memory dereferences fall entirely
within a single object. Boundaries of adjacent objects can be
distinguished either through range lookup operations, which
however can incur very high overheads [1], or by altering
the layout of objects to enforce protection mechanisms,
trading increased memory usage for better performance. For
instance, some sanitizers pad objects with redzones of bytes
that get marked as invalid in an internal representation,
known as shadow memory, that they use to validate accesses.

Pointer-based approaches track base and bounds for
each pointer, and are more complete than object-based
solutions as they can catch for instance dereferences of
pointers that point to memory from an object other than their
intended one. However they are generally incompatible with
uninstrumented code [7] and incur higher overheads as they
need to propagate metadata through pointer manipulations.

Temporal safety violations occur instead when a memory
dereference happens through a pointer that is no longer
valid, i.e. the pointed object is no longer the same as when
the pointer was created [19]. Dangling pointers are a com-

mon case of temporal violations, as they lead to bugs and
also to security vulnerabilities in use-after-free scenarios [7].

Our proposal extends the popular ASan sanitizer to work
over binaries and boost fuzzing scenarios. ASan follows an
object-based approach for detecting spatial violations. It uses
compile-time instrumentation to capture memory operations
for their validation, and interposes on memory allocations to
update its shadow memory and to pad objects with redzones.
It also supports sound, but incomplete detection of temporal
violations by delaying memory reallocation operations. We
will further detail its internals throughout §3.2 and §3.3.

2.2. Instrumentation for Binary Analysis

The design of instrumentation frameworks for support-
ing program analyses over binary-only software is a largely
studied problem in the programming language, systems, and
security research communities [16]. A common requirement
for sanitizers, also shared with the fuzz testing scenario that
we target for QASan, is the support for probe insertion
into the program. Probes monitor and mediate classes of
instructions that contribute to the object of the analysis, such
as memory accesses when detecting memory violations or
control flow transfers when tracking path exploration.

To this end binary rewriting techniques have been
studied since the early ’90s [20]. Frameworks such as
DynInst [21] provide static instrumentation using trampo-
lines that overwrite the instructions of interest to invoke
analysis code. While this research area keeps evolving [22],
supporting real-world COTS binaries has historically proved
elusive for a number of factors, such as accurate disassembly
without symbol information, ambiguity on indirect-branch
targets, use of shared libraries, and dynamic code generation.

Other works explored reassembly [23] to turn the hard-
coded code and data references from the output of disas-
semblers into labels, heavily simplifying subsequent code
manipulations and recompilation. Recently RetroWrite [15]
uses reassembly to add sanitization probes to x64 position-
independent code. Albeit very efficient, these approaches are
not general as they depend on characteristics of the compiled
code and the platform, with only few settings supported.

A different approach is to build analyses around dynamic
binary translation (DBT) systems, which can monitor and
potentially alter every instruction as the program is about to
execute it [24]. DBT solutions can cover all the cases men-
tioned earlier as difficult for static techniques, albeit at the
price of slower execution, and expose to a (non-adversarial)
program the same addresses and data that it would see in a
native execution [16]. Among popular frameworks, Pin [25]
and DynamoRIO [26] work by manipulating copies of the
original instructions, while Valgrind [27] and QEMU [28]
translate them to a compilable intermediate representation.

Valgrind is the basis of the popular memcheck mem-
ory error detector [27], while DynamoRIO is behind
the Dr. Memory tool [29]. With the notable exception
of WinAFL [30], neither framework became popular for
fuzzing. On the other hand, QEMU has become the tech-
nology of choice for a large body of binary fuzzing research

(e.g., [31]–[33]). Some of the reasons behind its popularity
are the support for many platforms with a unified design,
the simplicity of its Tiny Code Generator component when
inserting instrumentation of different kinds, and the perfor-
mance improvements seen for its User Emulation mode.

3. QASan

This section presents our design, with an initial overview
followed by discussions of the main components of QASan
(Figure 1) and by an examination of its integration with
QEMU-based fuzzers, its limitations, and future directions.

3.1. Overview

QASan follows the object-based approach of ASan to
enact its sanitization capabilities over heap accesses made
in binary programs. It builds around QEMU User Emu-
lation to intercept read and write operations in the code
under analysis, represented by the executable sections of a
program and/or libraries of interest. QASan then performs
interposition in the address space of the target program for
events involving the allocation and release of heap memory.

The design comprises two main components. The first
is a QEMU extension that maintains a shadow memory for
the target’s heap within the address space of the emulator,
and augments the Tiny Code Generator (TCG) to insert
probes for memory accesses. When the program executes
an instrumented memory access, we execute an analysis
code inlined in the compiled emulated code to validate the
operation or detect an error. Finally, this component also
maintains a shadow stack to provide contextual information
for allocation sites later involved in memory violations.

The second component is a runtime library preloaded
when starting the target program. Its main role is to intercept
heap allocation operations, padding objects with redzones
for underflow and overflow accesses. It also enforces a quar-
antine for free operations to detect temporal heap violations.

Once execution starts, the runtime interacts with the
QEMU extension through hypercalls to update the shadow
representation upon heap memory allocation or release. It
also uses hypercalls for faster validation when the target
calls commodity library functions for memory manipulation.

3.2. QASan Extension for QEMU

The primary tasks of the QEMU component of QASan
are instrumenting memory accesses and hosting the shadow
memory representation necessary for their validation.
Memory Accesses. The TCG is a pivotal element in QEMU
as it transforms instructions from the target binary archi-
tecture to RISC-like emulated TCG operations, and in turn
compiles them to instructions that execute natively on the
host architecture that runs QEMU.

Intercepting memory accesses at TCG level is rather
convenient. QEMU lifts heterogeneous primitives from dif-
ferent architectures using the same load and store TCG
operations. Instrumentation completeness easily follows, as

QEMU

TCG

Code under test

read
write

call
ret

QASan runtime
alloc free

pad with
redzones

delay with
quarantine

shadow memory
shadow stack

OK FAULT

hooks hooks

+

hypercalls

alloc context
verifier

Em
ula

te
d

ta
rg

et
Q

AS
an

 e
xte

ns
ion

off
-th

e-
sh

el
f f

uz
ze

r

Figure 1. Architecture of QASan and its main components.

SIMD instructions and unbounded rep-like patterns are
translated with repetitions of such operations.

void t cg gen qemu ld i64 (TCGv i64 va l , TCGv addr ,
TCGArg idx , TCGMemOp memop) {

[. . .]
g e n l d s t i 6 4 (INDEX op qemu ld i64 , va l , addr , memop , i d x) ;
sw i t ch (memop & MO SIZE) {

cas e MO 64 : q a s a n g e n l o a d 8 (addr , i d x) ; break ;
cas e MO 32 : q a s a n g e n l o a d 4 (addr , i d x) ; break ;
cas e MO 16 : q a s a n g e n l o a d 2 (addr , i d x) ; break ;
cas e MO 8: q a s a n g e n l o a d 1 (addr , i d x) ; break ;
d e f a u l t : q a s a n g e n l o a d 8 (addr , i d x) ;

}
}

The excerpt above shows how we instrument a memory
load from the TCG engine. After the instruction generation,
we add a switch construct to determine the operand size and
invoke the QASan helper for that size. The helper verifies if
the instruction belongs to a code module to be sanitized and
instruments it for validity checking accordingly. Handling
memory stores is analogous and omitted for brevity.
Shadow Memory. The design of ASan relies on a shadow
memory to deem the validity of a memory read or write
access. Instead of mirroring memory with a shadow repre-
sentation of the same size, ASan uses only a 1/n fraction
of it building on the observation that heap allocations return
addresses aligned to 2n bytes, with n ≥ 3 typically.

In particular, in the default setting of n = 3 ASan uses
1 byte to store which bytes in a 8-byte memory region
are addressable: all of them, the first k ∈ {1..7}, or none.
ASan hosts the shadow memory in the address space of
the program, which is as big as max bytes, by reserving a
partition of size max/8 at address offset . Whenever instru-
mentation needs to validate an access to an address addr , it
can efficiently retrieve the corresponding entry in the shadow
memory by accessing address offset + (addr � 3).

In QASan we chose to allocate the shadow memory
region inside the emulator. This approach brings two ad-
vantages: we reduce the memory pressure on the analyzed
program, which is a known problem for memory-intensive
applications and 32-bit architectures [7], and we can use
the same indexing scheme for architectures with different
addressing modes (e.g., x86 and MIPS) as in the TCG we
operate on addresses normalized for the host platform.

To store and check validity information we follow ASan.
A zero entry indicates a fully valid 8-byte region, and when
fewer a positive integer equals the number of valid first
bytes. As unaligned unsafe accesses are very rare [17], for 8-
byte load and store operations we only check if the shadow
memory entry for the address is zero. For shorter sizes we
use a bitmask, for instance for a 1-byte load we check:

u i n t p t r t h = (u i n t p t r t) add r ;
i n t 8 t * shadow addr = (i n t 8 t *) (h >> 3) + SHADOW OFFSET;
i n t 8 t k = * shadow addr ;
re turn k != 0 && (i n t p t r t) ((h & 7) + 1) > k ;

The access is valid on a zero return value: this holds if k
is zero or larger than the last three bits of the address [17].
Additional Tasks. The QEMU component of QASan ships
two further facilities that assist the runtime in the target.

The first one is a hypercall mechanism that lets the
runtime transfer control to analysis code running in the emu-
lator. As we will explain in the next section, this mechanism
is essential to update the shadow memory when the pro-
gram allocates or releases memory. Similarly to most DBT
schemes, the design of QEMU establishes a barrier between
the regions accessible to the emulated target and those for
emulator and analysis code. This barrier can however be
broken for instance for system call translation, when the
emulator executes such a call on behalf of the target.

We thus introduce a fictional system call number to trig-
ger a hypercall for QASan. This mechanism is architecture-
agnostic and allows the runtime to yield control and transfer
data to the analysis code, for instance regarding an allocation
operation. We then devise a more efficient, architecture-
specific variant that triggers the QASan analysis code di-
rectly, avoiding the switch operation on the number in the
QEMU system call handler. Namely, we introduce a custom
opcode in the instruction set that the TCG lifter for the
architecture (e.g., x86) recognizes and translates efficiently.

The second facility is a shadow stack to track the calling
context (i.e., the sequence of functions currently active on
the stack [34]) of heap allocations. This information is cru-
cial to track the origin of heap blocks that later get involved
in memory violations. While ASan determines the calling
context by unwinding the stack on an allocation event, this
solution would not work in our scenario as binaries are often
compiled without stack frame pointers used for unwinding.
We thus track call and ret instructions to maintain a
shadow stack that mirrors the program’s call stack.

3.3. QASan Runtime for Target Execution

The runtime component operates alongside the target
program to interpose on heap manipulations for updating
the shadow memory and enforcing quarantine policies for
detecting temporal violations, and on commodity memory
manipulation functions for faster and accurate validation. To
implement the runtime we use a dynamically linked library
that we preload at program startup to hook function symbols.
Memory Allocation and Release. Similarly to ASan, we
hook and replace with specialized implementations func-
tions like malloc, free, realloc, posix_memalign,

and others used for heap allocation. Interposition is neces-
sary for two tasks: keeping the shadow memory up to date,
and padding each buffer with surrounding redzones to detect
underflow and overflow errors when dereferencing pointers.

For a newly allocated object we issue a single hypercall
to update the shadow memory representation and to mark its
surrounding redzones as inaccessible. The hypercall speci-
fies metadata such as address and size for the object, while
the size of redzones is a user-configurable global parameter.

One difference with ASan is that it stores allocation
metadata (size, thread id, context) within redzones, thus their
minimum size is 32 bytes [17]. In QASan we maintain
this information—retrieving the calling context from the
shadow stack—in the emulator using an interval tree. This
choice enables the user to choose smaller redzones when
they seek better performance at the cost of possibly more
false negatives, while from a design perspective minimizing
the intrusiveness in the target memory may turn out useful
for extending QASan to whole-system sanitization.

Finally, QASan may detect use-after-free temporal vio-
lations like ASan by using a quarantine strategy to delay
immediate reallocation of buffers freed by the program. We
poison the freed area in the shadow memory so that if the
application dereferences a dangling pointer that falls in the
region (not yet reallocated) of a previously freed object, the
hooks for memory accesses will detect the violation.
Commodity Functions. Programs typically make use of
standard library functions to perform routine tasks for mem-
ory byte (e.g., memcpy) and string (e.g., strcmp, atoi)
manipulation. ASan uses interceptors for several such func-
tions from libc to validate the involved memory regions
before executing them. In QASan we follow a similar strat-
egy, as we can see in interposition excerpt below for atoi:

i n t a t o i (c o n s t char * s t r) {
s i z e t l e n = l i b q a s a n s t r l e n (s t r) + 1 ;
QASAN LOAD(s t r , l e n) ;
re turn l q l i b c a t o i (s t r) ;

}
The symbol hooking mechanism of the runtime rewires

program calls to the standard atoi function to our special-
ized version, which makes a single QASAN_LOAD hypercall
to validate the involved memory buffer efficiently at once
before invoking the original libc implementation.

When looking for subtle bugs, the user may wish to
sanitize memory accesses made in other functions of the
library. In ASan this usually implies compiling and linking
a sanitized libc version for the program. The design of
QASan allows for using a standard uninstrumented libc,
and makes special provisions for its load widening uses.

To explain load widening we borrow from a popular
discussion on the LLVM mailing list [35]: consider a char
a[22] array and an operation a[16]+a[21]. The LLVM
compiler may emit a 8-byte load from &a[16] to read both
bytes at once when the array is 16-byte aligned and located
on stack, yet this load results out of bounds by 2 bytes.
The discussion eventually led to introducing optimization
metadata that ASan uses to ignore such cases, while binary-
only approaches like RetroWrite and QAsan can only detect
them as false positives [36]. However when found in stan-

dard library code false alerts of this kind could be a show-
stopper for the analysis causing an early termination. We
found many load widening instances in libc from SIMD
instructions defined as inline assembly in its source code1.

In QASan we opted to rewire a selection of commodity
memory manipulation functions, for which in our experience
we encountered load widening cases in their implementation
(§A), to semantically equivalent, memory-safe counterparts.
We then use hot patching to intercept internal calls to such
“troublesome” functions from other functions of the libc
library: since these calls would not be caught by symbol
hooking, we insert a trampoline in the entry block of the
called functions to forward them to our safe variants.

3.4. Discussion

Fuzzer Integration. The design of QASan can naturally
complement existing fuzzing solutions based on QEMU
User Emulation. We implemented our QEMU extension in
the 3.11 release of the emulator, adding ∼500 LOCs for han-
dling hypercalls and maintaining a shadow stack, and ∼200
for hooking memory accesses and generating validation
code in the TCG emulator. Transferring our patches to the
AFL++ [18] fuzzing framework required only very few, su-
perficial changes. We believe extending other QEMU-based
fuzzers would be similarly simple: our extension does not
interfere with the normal working of TCG that they extend
with instrumentation, nor alters the code layout and transfers
that drive coverage-guided fuzzing [12]. The startup scripts
from a testing harness need then a modification to set an
environment variable to preload our runtime.
Strengths and Limitations. QASan brings off-the-shelf
heap memory sanitization for binary fuzzing, which as we
experimentally explore in §4.2 can reveal bugs otherwise
likely to be missed. We build it around QEMU due to
the latter’s practical relevance, however the instrumentation
features we strictly need (i.e., memory hooks and system call
forwarding) are available in nearly any DBT system [16].
The design is compatible with different architectures, open-
ing the door to rehosting scenarios for, e.g., firmware testing.

Compared to ASan, our main limitation is the inability to
check access validity for global variables, stack objects, and
intra-object fields. These are well-known pitfalls of binary
approaches [7], [15]: such data units are difficult to locate
in the first place due to information loss from compilation,
then their layout cannot be altered with redzones without
patching all the references to them in the code.

The insertion of hooks to validate memory accesses may
be suboptimal in terms of performance. This happens for
accesses that do not involve the heap or that a compiler
can optimize. For the first case we whitelist stack-specific
instructions like pop in lifters, while a static analysis could
exclude more instructions whose access target is statically
determinable. The second case applies mainly to unopti-
mized binary code, for instance when the compiler did not
hoist a loop-invariant memory read outside a loop.
Future Directions. A promising avenue for further research
is to extend our implementation to full-system sanitization.

Fuzzing kernel code is an active research area [37], [38],
but sanitizers have traditionally been out of reach for kernel
code [7]. Two Google projects [39], [40] can now sanitize
64-bit Linux kernels using source instrumentation, while
Windows and 32-bit architectures are presently out of reach.

Another direction could be the integration of MSan [41],
a sanitization technique for uninitialized memory reads.
With source-based instrumentation ASan and MSan cannot
be used together as each would interfere with accesses made
to the shadow representation of the other, while keeping such
representations in the emulator as in QASan would avoid it.

4. Evaluation

This section describes a two-pronged evaluation. We first
review the ability of QASan to find violations in a collection
of benchmarks for which the ground truth is known. We then
evaluate its end-to-end utility, showing it can expose bugs
otherwise missed by a state-of-the-art fuzzer, and measure
the overhead added to the fuzzing process by sanitization.

4.1. Memory Violations

We evaluate the memory violation finding abilities of our
implementation using the Juliet C/C++ test suite v1.3, which
contains a large collection of test cases for over 100 classes
of vulnerabilities. Among those we select those pertaining to
memory safety violations, namely: CWE-121 (Stack-based
Buffer Overflow), CWE-122 (Heap-based Buffer Overflow),
CWE-124 (Buffer Underwrite), CWE-126 (Buffer Over-
read), CWE-127 (Buffer Under-read), CWE-415 (Double
Free), CWE-416 (Use After Free), CWE-590 (Free Memory
not on the Heap). We leave out test cases that depend
on external sources or seek specific values from random
oracles, as they inherently demand for static analyses.

Table 1 reports figures collected when compiling the
tests for an x64 Linux target. We arranged the categories
so that the violations in the first group may involve global
storage, heap, or stack memory, while in the second group
they are heap-only. Half of the test cases in each group are
by design true negatives (TN), i.e., they are memory-safe.

We compare QASan against source-based instrumenta-
tion with ASan and a DBT-based approach with the popular
Valgrind memcheck. Note that both tools cover more sources
of errors than QASan, such as spatial safety violations for
stack and global storage in ASan (§3.4), and memory leaks
and reading uninitialized memory in Valgrind. To allow for a
fair comparison, we disable the latter detections in Valgrind
as they are not spatial and temporal violations (§2.1, [7]),
while for ASan we use the default configuration.

Interestingly, none of the three tools incur false positives
(FP) in our tests, thus the sum of true positives (TP) and false
negatives (FN) will account for 50% of the tests, or less when
the budget of 3 seconds expires for some tests. In the heap-
only group highlighted in bold, QASan is as accurate as

1. ASan handles inline assembly sequences only partially, implying that
memory access instrumentation may not be complete for some functions.

TABLE 1. RESULTS FOR THE JULIET TEST SUITE. COLUMNS TP AND FN
ARE IN %. TN AND FP WERE ALWAYS 50% AND 0%, RESPECTIVELY.

Category Tests QASan ASan memcheck
TP FN TP FN TP FN

CWE-121 5720 21.75 27.55 49.86 0.14 25.82 23.48
CWE-124 1856 39.28 10.72 50.0 0.0 39.28 10.72
CWE-126 1260 22.86 27.14 47.46 2.54 22.86 27.14
CWE-127 1856 25.86 24.14 50.0 0.0 25.86 24.14
CWE-122 6780 47.88 2.12 47.17 2.83 47.88 2.12
CWE-415 1636 50.0 0.0 50.0 0.0 50.0 0.0
CWE-416 786 50.0 0.0 50.0 0.0 50.0 0.0
CWE-590 4560 49.98 0.0 50.0 0.0 50.0 0.0

Total 25030 38,75 11,08 49,05 0,95 39,71 10,13
2nd group 13954 48,95 1,05 48,6 1,4 48,95 1,05

TABLE 2. REPORTED BUGS AND THROUGHPUT FOR AFL++ .

Program Reported bugs Executions per second (avg)
standard QASan standard QASan overhead

c-ares 0 1 859 618 1.39x
guetzli 1 1 642 426 1.51x

json 1 2 662 472 1.40x
libxml2 0 2 441 350 1.26x
openssl 0 1 118 43 2.74x
pcre2 16 29 613 457 1.34x
re2 0 0 653 448 1.46x

woff2 0 0 550 246 2.24x

memcheck, and they both outperform ASan as they explore
standard library code not modeled by ASan. When we
disable libc instrumentation, the TP percentage drops to
45.04% for CWE-122 as QASan currently implements less
models than ASan, while it stays unaltered for the other 7
categories. For the mixed group of the first four table entries,
in three of them QASan and memcheck detect essentially the
same errors, i.e., those that involve heap objects. For CWE-
121, which comprises only stack violations, memcheck has
special provisions to detect accesses that overrun the top of
the stack and do not lead to an immediate crash. For the
time being we opted not to add extra instrumentation (and
thus overhead when fuzzing) for handling such cases. On the
contrary, the possibility for ASan to alter the stack layout
at the source level brings much higher TP percentages.

4.2. Sanitized Fuzzing

As anticipated in §3.4, we integrated QASan in AFL++,
a greybox fuzzing framework that implements state-of-the-
art techniques like input-to-state correspondence [42] and
single-byte compare coverage [43]. For its QEMU backend,
AFL++ uses an efficient forking mechanism to reduce the
overhead of DBT recompilations across different executions.

To explore the end-to-end utility of our proposal, we
test a subset of 8 programs from the Google Fuzzer Test
Suite (FTS) [44] reported in the first column of Table 2. The
programs feature memory corruptions and other subtle bugs
and are commonly used in the literature: they derive from
real-world software tested by the OSS-Fuzz initiative [45],
thus are not expected to contain shallow bugs. We make
runs of 12 hours on an Intel i7-8565U machine with low
background activity, using FTS seeds when available2.

The number of bugs found when QASan is active is
higher than with the standard configuration of AFL++.

We verified that all the additional bugs would only be
revealed with sanitization enabled, with the exception of a
segmentation fault for json missed by AFL++ due to fuzzing
entropy. For pcre2 we found many bugs not listed in the
documentation of the suite. Among all benchmarks, QASan
identified 4 (heap) read overflow, 3 write overflow, 4 read
underflow, and 11 use-after-free violations (details in §B).

As for time overheads, we should consider that while
DBT approaches are expensive on a single execution, in
a well-engineered fuzzer code-cache sharing upon forking
amortizes a large fraction of the translation overhead. We
thus compare how many executions per second AFL++
completes: with QASan enabled we observe overheads in
the range 1.26-2.74x, with a geometric mean of 1.61x.

5. Related Work

This section details related research not covered in §2.
Developers have explored custom allocators to detect vio-
lations in binaries without instrumenting memory accesses.
Guard pages are used in e.g. [47]–[49] to allocate an in-
dividual page for each object—to be placed at the end
of the page—followed by one unaccessible page to detect
overflows. These solutions are incomplete and typically
probabilistic, have a high memory footprint, miss underflows
in read operations, and may violate alignment rules.

BaseSAFE [50] is a specialized system for testing cel-
lular basebands that combines a drop-in allocator with heap
canaries checked with the heavyweight hooks of the Unicorn
emulation engine. While its design is tightly coupled to a
custom software stack and to partial rehosting of a memory
dump, BaseSAFE brings prompt advances to the fuzz testing
practice for low-level parsers in embedded targets.

HQEMU [51] reduces the overhead of QEMU using
additional threads to reoptimize TCG traces with online
profiling information and the heavy-duty LLVM compiler.
DBILL [52] later extends it to insert sanitization machinery.
While efficient on long-running executions, this approach
seems not appealing for fuzzing: a fuzzer attempts a very
high number of executions, often with shared code caches,
and available CPU cores can be used for concurrent fuzzing.

Song et al. provide an excellent and up-to-date overview
of sanitization research in [7]. The interplay of fuzzing and
memory violations is studied in ParmeSan [53], which uses
sanitization tripwires to steer a fuzzer and expose violations
earlier, and in UAFuzz [54], which extends grey-box fuzzing
with direct metrics to look for use-after-free bugs.

6. Concluding Remarks

QASan brings a timely addition to the fuzzing realm for
exposing memory safety errors in binaries. While its design
opens the door to directions like whole-system sanitization,
its implementation is mature enough to handle complex
software like gcc and LibreOffice with no false positives
when invoking libc code. We share QASan as open source.

2. For libxml we borrow seeds from the fuzzdata project [46], while for
pcre we use an empty seed and provide AFL++ with a dictionary.

References

[1] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“Softbound: Highly compatible and complete spatial memory
safety for C,” in Proc. of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser.
PLDI ’09. ACM, 2009, pp. 245–258. [Online]. Available:
https://doi.org/10.1145/1542476.1542504

[2] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy, 2013,
pp. 48–62.

[3] J. Berdine, B. Cook, and S. Ishtiaq, “Slayer: Memory safety for
systems-level code,” in Computer Aided Verification. Springer Berlin
Heidelberg, 2011, pp. 178–183.

[4] H.-J. Boehm, “Space efficient conservative garbage collection,”
in Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation, ser. PLDI ’93.
Association for Computing Machinery, 1993, pp. 197–206. [Online].
Available: https://doi.org/10.1145/155090.155109

[5] G. C. Necula, S. McPeak, and W. Weimer, “Ccured: Type-
safe retrofitting of legacy code,” SIGPLAN Not., vol. 37,
no. 1, pp. 128–139, Jan. 2002. [Online]. Available: https:
//doi.org/10.1145/565816.503286

[6] A. Lochbihler, “Making the java memory model safe,” ACM Trans.
Program. Lang. Syst., vol. 35, no. 4, Jan. 2014. [Online]. Available:
https://doi.org/10.1145/2518191

[7] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: Sanitizing for security,” in 2019 IEEE Symposium
on Security and Privacy (SP), 2019, pp. 1275–1295.

[8] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Comput. Surv.,
vol. 51, no. 3, 2018.

[9] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proc. 8th USENIX Conf. on Operating Systems Design
and Implementation, ser. OSDI’08. USENIX Association, 2008, pp.
209–224.

[10] D. Distefano, M. Fähndrich, F. Logozzo, and P. W. O’Hearn, “Scaling
static analyses at facebook,” Commun. ACM, vol. 62, no. 8, pp. 62–
70, Jul. 2019. [Online]. Available: https://doi.org/10.1145/3338112

[11] D. Kroening and M. Tautschnig, “CBMC – C bounded model
checker,” in Tools and Algorithms for the Construction and Analysis
of Systems. Springer Berlin Heidelberg, 2014, pp. 389–391.

[12] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, “The
Fuzzing Book,” https://www.fuzzingbook.org/, 2019, [Online; ac-
cessed 25-May-2020].

[13] M. Payer, “The fuzzing hype-train: How random testing triggers
thousands of crashes,” IEEE Security Privacy, vol. 17, no. 1, pp.
78–82, 2019.

[14] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing
embedded devices,” in NDSS 2018, Network and Distributed Systems
Security Symposium, 18-21 February 2018, San Diego, CA, USA, 02
2018. [Online]. Available: http://www.eurecom.fr/publication/5417

[15] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically
instrumenting cots binaries for fuzzing and sanitization,” 2020.

[16] D. C. D’Elia, E. Coppa, S. Nicchi, F. Palmaro, and L. Cavallaro,
“SoK: Using dynamic binary instrumentation for security (and how
you may get caught red handed),” in Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security, ser.
Asia CCS ’19. Association for Computing Machinery, 2019, pp.
15–27. [Online]. Available: https://doi.org/10.1145/3321705.3329819

[17] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in Proceedings of the 2012
USENIX Conference on Annual Technical Conference, ser. USENIX
ATC’12. USENIX Association, 2012, p. 28.

[18] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combin-
ing incremental steps of fuzzing research,” in 14th USENIX Workshop
on Offensive Technologies (WOOT 20). USENIX Association, 2020.

[19] M. Payer, Software Security: Principles, Policies, and Protection,
0th ed. HexHive Books, April 2019. [Online]. Available:
http://nebelwelt.net/SS3P/

[20] A. Srivastava and A. Eustace, “Atom: A system for building
customized program analysis tools,” in Proceedings of the ACM
SIGPLAN 1994 Conference on Programming Language Design and
Implementation, ser. PLDI ’94. ACM, 1994, pp. 196–205. [Online].
Available: http://doi.acm.org/10.1145/178243.178260

[21] B. Buck and J. K. Hollingsworth, “An api for runtime code
patching,” Int. J. High Perform. Comput. Appl., vol. 14, no. 4, pp.
317–329, Nov. 2000. [Online]. Available: http://dx.doi.org/10.1177/
109434200001400404

[22] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar, “A platform
for secure static binary instrumentation,” in Proceedings of the
10th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, ser. VEE ’14. ACM, 2014, pp. 129–140.
[Online]. Available: http://doi.acm.org/10.1145/2576195.2576208

[23] S. Wang, P. Wang, and D. Wu, “UROBOROS: Instrumenting stripped
binaries with static reassembling,” in 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, 2016, pp. 236–247.

[24] P. Feiner, A. D. Brown, and A. Goel, “Comprehensive kernel
instrumentation via dynamic binary translation,” SIGPLAN Not.,
vol. 47, no. 4, pp. 135–146, Mar. 2012. [Online]. Available:
https://doi.org/10.1145/2248487.2150992

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proc. of the
2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’05. ACM, 2005, pp. 190–200.
[Online]. Available: http://doi.acm.org/10.1145/1065010.1065034

[26] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic
instrumentation,” in Proceedings of the 8th ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environments, ser. VEE ’12. ACM,
2012, pp. 133–144.

[27] N. Nethercote and J. Seward, “Valgrind: A framework for heavy-
weight dynamic binary instrumentation,” in Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’07. ACM, 2007, pp. 89–100.

[28] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Pro-
ceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’05. USENIX Association, 2005, p. 41.

[29] D. Bruening and Q. Zhao, “Practical memory checking with dr.
memory,” in International Symposium on Code Generation and Op-
timization (CGO 2011), 2011, pp. 213–223.

[30] Google Project Zero, “WinAFL,” 2020. [Online]. Available:
https://github.com/googleprojectzero/winafl

[31] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-
afl: high-throughput greybox fuzzing of iot firmware via augmented
process emulation,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1099–1114.

[32] V. Pham, M. Boehme, A. E. Santosa, A. R. Caciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, 2019.

[33] A. Fioraldi, D. C. D’Elia, and E. Coppa, “WEIZZ: Automatic
grey-box fuzzing for structured binary formats,” in Proc. of the 29th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2020. Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3395363.3397372

[34] D. C. D’Elia, C. Demetrescu, and I. Finocchi, “Mining hot
calling contexts in small space,” Software: Practice and Experience,
vol. 46, no. 8, pp. 1131–1152, Aug. 2016. [Online]. Available:
https://doi.org/10.1002/spe.2348

[35] LLVMdev Mailing List, “Load widening conflicts with Address-
Sanitizer,” https://lists.llvm.org/pipermail/llvm-dev/2011-December/
046322.html, 2011, [Online; accessed 25-May-2020].

[36] RetroWrite project, “Issue #6: Load widening,” https://github.com/
HexHive/retrowrite/issues/6, 2019, [Online; accessed 25-May-2020].

[37] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels,” in
USENIX Security Symposium, 2017.

[38] H. Liang, Y. Chen, Z. Xie, and Z. Liang, “X-afl: A kernel fuzzer
combining passive and active fuzzing,” in Proc. of the 13th European
Workshop on Systems Security, ser. EuroSec ’20. ACM, 2020, pp.
13–18. [Online]. Available: https://doi.org/10.1145/3380786.3391400

[39] Google, “KernelAddressSanitizer (KASAN),” 2020. [Online].
Available: https://github.com/google/kasan

[40] ——, “KMSAN (Kernel Memory Sanitizer),” 2020. [Online].
Available: https://github.com/google/kmsan

[41] E. Stepanov and K. Serebryany, “MemorySanitizer: Fast detector of
uninitialized memory use in C++,” in 2015 IEEE/ACM Int. Sympo-
sium on Code Generation and Optimization (CGO), 2015, pp. 46–55.

[42] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: fuzzing with input-to-state correspondence,” in 26th
Annual Network and Distributed System Security Symposium, NDSS,
2019. [Online]. Available: https://www.ndss-symposium.org/ndss-
paper/redqueen-fuzzing-with-input-to-state-correspondence/

[43] M. Jurczyk, “CompareCoverage,” https://github.com/
googleprojectzero/CompareCoverage/, 2020, [Online; accessed
25-May-2020].

[44] Google, “Set of tests for fuzzing engines,” https://github.com/google/
fuzzer-test-suite, 2020, [Online; accessed 20-May-2020].

[45] ——, “OSS-Fuzz: continuous fuzzing of open source software,” https:
//github.com/google/oss-fuzz, 2020, [Online; accessed 20-May-2020].

[46] Mozilla Security, “fuzzdata: Fuzzing resources for feeding vari-
ous fuzzers with input,” https://github.com/MozillaSecurity/fuzzdata,
2020, [Online; accessed 20-May-2020].

[47] “libdislocator,” https://github.com/mirrorer/afl/tree/master/
libdislocator, 2020, [Online; accessed 20-May-2020].

[48] “GWP-ASAN,” http://llvm.org/docs/GwpAsan.html, 2020, [Online;
accessed 20-May-2020].

[49] B. Perens, “Electric fence malloc debugger,” 1993.

[50] D. Maier, L. Seidel, and S. Park, “BaseSAFE: BasebandSAnitized
Fuzzing through Emulation,” in 13th ACM Conference on Securityand
Privacy in Wireless and Mobile Networks (WiSec ’20), Jul. 2020.

[51] D.-Y. Hong, C.-C. Hsu, P.-C. Yew, J.-J. Wu, W.-C. Hsu, P. Liu,
C.-M. Wang, and Y.-C. Chung, “Hqemu: A multi-threaded and
retargetable dynamic binary translator on multicores,” in Proceedings
of the Tenth International Symposium on Code Generation and
Optimization, ser. CGO ’12. ACM, 2012, pp. 104–113. [Online].
Available: https://doi.org/10.1145/2259016.2259030

[52] Y.-H. Lyu, D.-Y. Hong, T.-Y. Wu, J.-J. Wu, W.-C. Hsu, P. Liu,
and P.-C. Yew, “Dbill: An efficient and retargetable dynamic binary
instrumentation framework using llvm backend,” in Proceedings
of the 10th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, ser. VEE ’14. Association for
Computing Machinery, 2014, pp. 141–152. [Online]. Available:
https://doi.org/10.1145/2576195.2576213

[53] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “ParmeSan:
Sanitizer-guided Greybox Fuzzing,” in USENIX Security, Aug. 2020.

[54] M.-D. Nguyen, S. Bardin, R. Bonichon, R. Groz, and M. Lemerre,
“Binary-level directed fuzzing for use-after-free vulnerabilities,”
ArXiv, vol. abs/2002.10751, 2020.

Appendix A: Load Widening from libc

In the development of QASan we encountered several
libc functions that make use of load widening for perfor-
mance purposes. This led us to the implementation of slow
variants that we use upon interposition on program calls
(§3.3). The list of semantically equivalent functions that we
ship in the runtime currently comprises 25 functions:
bzero, explicit bzero, bcmp, memcmp, memmove, memcpy, mempcpy, mem-

chr, memrchr, memmem, strchr, strrchr, strcasecmp, strncasecmp, strcat, str-

cmp, strncmp, strcpy, strncpy, stpcpy, strdup, strlen, strnlen, strstr, strcasestr

In our experiments this selection was sufficient to avoid
false positives when instrumenting the libc implementa-
tion shipped with the Ubuntu Linux 18.04 releases.

Appendix B: Additional Experimental Findings

In the following we provide additional details on the
experiments described in §4.2. We report the version of
the FTS benchmarks used in our tests, and the heap safety
violations that QASan found when fuzzing them:

Program Version Reported violations
c-ares 51fbb47 1 write overflow
guetzli 9afd0bb -

json b04543e -
libxml2 v2.9.2 1 read overflow, 1 write overflow
openssl 1.0.1f 1 read overflow
pcre2 183 (SVN) 11 use-after-free, 2 read overflow, 1

write overflow, 4 read underflow
re2 499ef7e -

woff2 9476664 -

To distinguish crashes we do not use the value reported
by AFL-derived fuzzers based on code coverage, but we
use the instruction pointer value registered for the offend-
ing memory violation. Below we report a screenshot of a
violation report from QASan when fuzzing libxml2:

