
1

Designing Robust API Monitoring Solutions
Daniele Cono D’Elia, Simone Nicchi, Matteo Mariani, Matteo Marini, and Federico Palmaro

Abstract—Tracing the sequence of library calls and system calls that a program makes is very helpful to characterize its interactions
with the surrounding environment and, ultimately, its semantics. However, due to the entanglements of real-world software stacks,
accomplishing this task can be surprisingly challenging as we take accuracy, reliability, and transparency into the equation. In this
article, we identify six challenges that API monitoring solutions should overcome in order to manage these dimensions effectively and
outline actionable design points for building robust API tracers that can be used even for security research. We then detail and evaluate
SNIPER, an open-source API tracing system available in two variants based on dynamic binary instrumentation (for simplified in-guest
deployment) and hardware-assisted virtualization (realizing the first general user-space tracer of this kind), respectively.

Index Terms—API monitoring, API hooking, anti-analysis, call interposition, binary instrumentation, hardware virtualization, malware.

F

1 INTRODUCTION

A modern operating system (OS) typically comes with large,
heterogeneous software components that developers can
build on when writing a program. Consequently, to expose
their functionalities the OS provides Application Program-
ming Interfaces (APIs) that any compiled code can access
through well-defined calling conventions and prototypes.

The sequence of APIs that a piece of code may invoke
during its execution characterizes its externally observable
behavior and, ultimately, its semantics. Therefore, monitor-
ing API calls is a common practice for analyzing programs.

In security research, API monitoring is popular for in-
stance in malware analysis and code reverse engineering ac-
tivities in order to track how an untrusted piece of software
interacts with the surrounding environment [1]. Similarly,
in dependability research API monitoring is useful for, e.g.,
run-time monitoring [2] and troubleshooting [3] tasks.

Researchers have often explored specialized forms of
API monitoring, tailoring the implementations to different
contexts. For instance, malware sandboxes interpose most
of the time on system calls [4] to capture the events of
interest for sketching the behavior of a sample. Thanks
to this design, sandboxes can collect in a single spot the
events originating from the many alternative library-level
APIs that a sample can use (sometimes in unexpected or
undocumented ways) from the upper layers of the software
stack. Several academic works [5], [6], [7] have then explored
how to implement system call interposition in increasingly
covert and efficient ways, benefiting from the hardware
virtualization extensions available in modern CPUs.

However, whenever a notable sample calls for manual
intervention for its dissection [8], malware analysts often re-
sort to monitoring solutions capable of tracing first and fore-

• D.C. D’Elia, S. Nicchi, M. Mariani, and M. Marini are with Sapienza
University of Rome, 00185 Rome, Italy (e-mail: delia@diag.uniroma1.it).

• F. Palmaro is with Prisma S.r.l., 00142 Rome, Italy.

Manuscript received Mar. 11, 2021; revised Dec. 1, 2021; accepted Dec. 2,
2021. Date of publication MMM. XX, 202Y; date of current version Dec. 2,
2021.
(Corresponding author: D.C. D’Elia.)
Digital Object Identifier: XXXX/TDSC.202Y.XXXXXX

most library calls. Such fine-grained information can be very
useful to understand how a sample achieves some func-
tionality. Consider, for instance, an attempt to connect to an
HTTP server via some OS feature (e.g., WinHttpConnect):
intercepting a generic TCP packet transmission event down
in the software stack may not be as informative as logging
the API call that originated it. Furthermore, for several APIs,
the sole observation of system call events would not be
sufficient to infer their use [9].

Tracing high-level facts from library code is in general
valuable for many other tasks involving monitoring, trou-
bleshooting, and reverse engineering of programs. Appar-
ently though, prior literature seems to have given little
attention to the problem of designing robust API monitoring
solutions, especially for the accuracy, reliability, and trans-
parency dimensions that characterize the tracing process.

This gap seems to be reflected in how current main-
stream API monitoring systems fall short in one or more
of these three respects. Common flaws that we observed
are an incomplete symbol and argument tracing, missed
calls to dynamically solved APIs, and instrumentation ar-
tifacts that are easy prey of adversaries [10]. Furthermore,
most systems overwhelm users with calls that originate
within the implementation of a high-level API, since they
recursively log all the APIs that its code invokes for its
working. Unfortunately, logging such calls does not bring
users any actionable information but only reflects how the
OS implements some functionality.

Motivated by these observations, in the first part of
this article we identify six key challenges along the way
towards accurate, reliable, and transparent API monitoring
solutions. We analyze the problem space and discuss a
general-purpose design that can address such challenges
and work with different instrumentation technologies. We
then present our SNIPER system, detailing common traits
and distinctive features of two implementation variants.

The first variant builds on dynamic binary instrumen-
tation [11]. It can operate as a standalone in-guest agent
or work as an extension for the many program analysis
systems from the literature that make use of this technology.

The second variant builds on hardware virtualization

2

extensions. While much literature used them for system
call tracing [5], [7], the article will detail how we automati-
cally locate and instrument an arbitrary selection of library
functions and how we filter the events belonging to the
monitored program or an execution flow derived from it.

SNIPER targets the Windows platform, covering a large
collection of libraries and system calls, and can be extended
to other systems. We evaluate its capabilities using API
testing suites, real-world programs, and complex malware.

While our implementations can work in different con-
texts, we incubated them as part of our malware analysis
research: the tricky patterns found in this realm, combined
with quirks of Windows internals, have been a tough train-
ing ground for their development. The code is available at:

https://github.com/dcdelia/sniper

2 BACKGROUND

This section covers the main traits and underpinnings of the
API handling process for Windows programs and libraries;
then, it compares instrumentation technologies available to
date for implementing an API monitoring system.

2.1 Windows API Resolution and Internals

Windows programs can access functionalities of the sur-
rounding software environment by importing API functions
from dynamic-link library (DLL) modules. To this end, the
Portable Executable format provides for an .idata section
for listing any required external API symbols. The section
contains an array called import address table (IAT) that the
Windows loader will populate at run-time with pointers
to the desired functions, importing them from known DLL
modules. The program can then call such an API function
by simply retrieving its address from the IAT.

DLL modules come with an .edata section for their
public functions and storage, commonly known as exports.
Each export address table (EAT) entry hosts a relative virtual
address (RVA), i.e., the offset of the export from the begin-
ning of the module. For an executable importing a function
from a DLL, the loader will typically populate the involved
IAT entry by looking up the RVA of the export in the EAT of
the DLL and adding it to the base address that the system
chose for the DLL when loading it.

However, there are alternative methods to locate API
addresses. A program may manually load a DLL and re-
trieve its exports using the GetProcAddress Windows
API that does not touch the IAT. Furthermore, regardless of
automatic or manual DLL loading, a program may covertly
solve symbols by manually navigating the code modules
in memory and parsing their .edata section. As we will
discuss in §3.3.1, this behavior can be found in malware and
in programs shielded with executable protectors.

When it comes to the internal structure of a DLL, an
exported API can be of different kinds. The recurrent case is
when its logic is entirely contained in the code starting at the
given RVA. For other APIs, the code may be partial, ending
with a tail jump to another function (private or exported)
in the module or imported from another DLL1. Finally, in
other cases, the RVA does not point to code but represents
a forwarder export [12]: this instructs the loader to silently

rewire any IAT entry referencing it to point to another export
from another DLL. Due to these factors, determining for an
export what are the “exit points” to the caller function is
therefore not always immediate.

As for API prototype information, the Windows SDK
provides header files that list for each API the calling
convention [13] (typically stdcall) and the input modifier of
each argument, that is, when it identifies an input (IN) or an
output (OUT) value, or both (INOUT) [14]. In practice, for
an output argument the caller provides a pointer to a buffer
where the API can write data. Finally, headers also define a
large number of primitive types and data structures.

System calls (or syscalls for short) operate differently. Pro-
grams normally access them through user-space wrappers
accessible as exports of ntdll.dll. Each wrapper writes
in the EAX register the ordinal corresponding to the syscall
and triggers a software interrupt. However, adversaries can
elude the monitoring of such wrappers by identifying the
ordinals for the current Windows version (e.g., by parsing
ntdll.dll) and then triggering an interrupt with a custom
assembly stub. This technique is known as direct syscall.
Furthermore, experienced writers may use undocumented
syscalls to complicate the analysis, as their prototypes may
be available only in reverse engineering forums.

2.2 Instrumentation Technologies

As we will see throughout the article, the type of instrumen-
tation that a system uses to interpose on API calls affects
several dimensions of the overall monitoring efficacy.

A possible avenue is to patch the in-memory image of
the program under analysis or the libraries of interest. For
instance, in the approach known as IAT hooking, one can
overwrite an IAT entry to make it point to a tracing stub
that logs the call and then invokes the intended API. A more
reliable alternative is to instrument library code, modifying
the prologue of monitored functions with the insertion of a
trampoline (also known as inline hook) to a tracing stub.

Mainstream commercial API tracers follow either ap-
proach. As we will also in §4.5, a major weakness of both
schemes is that an adversary can easily recognize the mod-
ifications they introduce [10]. Generally speaking, instru-
mentation artifacts are a well-known problem for dynamic
analyses that operate through patching or rewriting: for
this reason, other instrumentation technologies have gained
popularity in security research [11].

Dynamic binary translation (DBT) systems can trap ex-
ecution at arbitrary instructions based on their type (e.g.,
control transfer instructions) or address while providing the
running code with the illusion that instrumentation is not
present. A popular DBT technique for user-space monitor-
ing of programs is dynamic binary instrumentation (DBI) [11],
[15], [16]. When a dynamic analysis has to deal with kernel-
level or system-wide execution flows, researchers have used
instead whole-system emulators like QEMU [17] as a DBT
engine to instrument an entire virtual machine (VM). In
such out-of-VM scenarios, virtual machine introspection (VMI)
tools come into play to overcome the semantic gap [18] from

1. We observed this pattern, for instance, with APIs partially imple-
mented in kernel32.dll that rely in turn on kernelbase.dll.

https://github.com/dcdelia/sniper

3

having to retrieve high-level features of the underlying OS
and processes by accessing the raw memory of the VM.

The advent of CPU virtualization extensions like Intel VT
favored new instrumentation primitives with better perfor-
mance and transparency. By maintaining a split view of code
and data pages in the Extended Page Table, the authors of
SPIDER [6] create invisible breakpoints for registering analysis
callbacks at physical page addresses. This design defeats
introspective attacks: to insert a breakpoint, SPIDER creates
a code page for instruction fetching and modifies it, leaving
the original code untouched in a data page visible to read
and write operations. The DRAKVUF [7] sandbox uses a
variant of this mechanism to hook kernel code for syscalls
and few selected user-space APIs from DLLs. However, as
we will explain later in the article, lazy loading mechanisms
and other OS entanglements get in the way when one
wishes to use VT-based instrumentation to trace arbitrary
user-space APIs from heterogeneous libraries.

3 DESIGN SPACE OF API MONITORING SYSTEMS

In this section, we identify and analyze common problems
of API monitoring systems, discussing design alternatives
that are not bound to specific instrumentation technologies.
The possibilities that we outline are readily actionable, as §4
will detail for our DBI and VT-based implementations.

3.1 Challenges in API Monitoring
We identified six challenges along the way to accurate,
reliable, and transparent API monitoring solutions:
[C1] Transparency. Adding probes or other instrumenta-

tion for intercepting calls to an API may introduce
artifacts that an adversary can look for [1]. Also, they
may collide with recently introduced OS mitigations
against API hijacking in exploits and malware [19].

[C2] Recall. The points in the software stack where instru-
mentation takes place also determine how many of the
actual calls a tracer can capture.

[C3] Coverage. Tracing argument values for an API call is
more informative than its function name alone. With an
ample universe of libraries, a programmatic approach
to extract prototypes and data type declarations can
avoid incomplete information retrieval.

[C4] Output values. A tracer should capture the return
value of an API call and any data that the API wrote
to output locations supplied by the caller.

[C5] Relevant calls. An API call from program code may
lead to many intra- and inter-component API calls
down the software stack. These internal calls bloat mon-
itoring logs but are hardly informative: therefore, a
tracer should filter them out.

[C6] Derived flows. A tracer should cover derived execu-
tion flows like child processes and remote threads (i.e.,
created in other processes). Adversaries may also use
such flows to hide API calls from the analysis [20].

We observe that [C1] and [C6] are compelling aspects
in many security and dependability settings; [C2-4] impact
the soundness and completeness of high-level analyses that
require API monitoring; finally, [C5] affects the temporal
and spatial overhead of a monitoring system as well as its
usability when a human agent is involved.

We reviewed publicly documented API monitoring so-
lutions and identified2 three commercial products popular
among security professionals and two DBT-based research
systems. After careful analysis and testing, we found all of
them to fall short in one or more of the six [C1-6] respects
(Table 1). We defer the discussion of each system to §4.5 to
allow for a detailed comparison with our solutions.

To come up with robust solutions for API monitoring, in
this article we reason on the key design choices that impact
these respects. The coming sections will discuss possible
alternatives (where applicable) and motivate our choices.
Also, one of our goals is to pursue the accuracy and relia-
bility of the tracing process without tying our design to an
instrumentation technology and its transparency properties.

3.1.1 Threat Model
As we devote special attention to security uses, we assume
that the program under analysis may run introspective
sequences to reveal API monitoring mechanisms. These
sequences may verify the integrity of its code and data
(Test T1) or of DLL code in memory by using pre-computed
signatures or reading its counterpart on disk (Test T2). We
craft an adversarial program for testing purposes [C1] that:
• for T1, it compares each IAT entry of the running pro-

gram with the expected address for its symbol (found
through the EAT of the DLL exporting it);

• for T2, it reads the DLL from the disk, applies reloca-
tions to its contents (to match where Windows loaded
the original DLL), and compares the first 8 code bytes
of every imported DLL symbol with our copy.

Eventually, T1 will expose stubs for IAT hooking, while
T2 will reveal hooking trampolines in API code prologues.
From a technical standpoint, these tests closely resemble
techniques used in defensive literature to detect hooks that
rootkits and other malware use to alter API results [21].

3.2 Scope of Monitoring
We find that two elements help determine the scope of an
API tracer: the breadth and level of detail of API prototype
information available to it and the treatment of internal calls.

3.2.1 Prototypes
Windows offers an extensive collection of DLLs to pro-
grammers. Each DLL file comes with information only for
its exported symbols and their relative locations (§2.1). A
sound way to obtain information on their arguments [C3-4]
is to cross-reference DLL symbols with function declarations
from the header files of the Windows SDK3: the Deviare
system [22] offers an infrastructure to this end.

This approach is general and can also apply to third-
party libraries if their headers are available. Note that a
programmatic extraction shall include the size of each argu-
ment so as to be able to fetch their values at run-time; also,
pointer types require a recursive valuation. Input modifiers
are not present in header files and should be retrieved from
the MSDN documentation (e.g., using a crawler [23]).

2. We involved in the selection an independent malware analyst with
ten years’ experience as a principal malware analyst in security firms.

3. And hand-written headers for uncounted structures and syscalls.
Those may be found in reverse engineering forums and in ReactOS.

4

3.2.2 Relevant Calls
We reasoned on what makes a traced call informative for
a user [C5]. Internal calls happening within one or more
DLLs do not provide valuable insights to the user but only
describe how the OS implements any API from the upper
layers that exercises them.

Eventually, internal calls make up a large fraction of the
logs and drain resources for their tracing. To spot them, we
define the scope of a call to be relevant only when the call is
made in code belonging to the program under analysis and
eventually returns to it.

This definition rules out internal calls and jumps to other
exports and redirections within API code (§2.1); also, it
captures syscalls that programs invoke directly. For derived
flows [C6], by “program under analysis” we mean the
process where the code first runs, the child processes and
remote threads it creates, and any recursive byproduct.

3.3 Hook Insertion
As part of its working, an API monitoring system must
interpose on specific events: the invocation of an API (API
entry) and the moment it returns to its caller (API exit). The
placement of hooks through instrumentation impacts the
recall of a tracer [C2] and its call argument extraction [C3,4].

3.3.1 API Entry Events
In principle, to interpose on API entry events, one may
target either the means for a program to reach external
symbols or the code of the corresponding functions.

Locating with a static analysis the code places where a
program may make an API call faces known soundness and
completeness issues (e.g., with code pointers) that obfusca-
tion and other anti-analysis measures make only worse [1].

One possibility is to interpose on control transfer instruc-
tions dynamically. For instance, PyREBox captures every
call (optionally jmp and ret too) instruction in the execu-
tion and checks its target against a list of API addresses. Un-
fortunately, this approach introduces unnecessary overhead
for control transfers unrelated to APIs, which are dominant
in practice. It also requires an instrumentation facility that
can hook instructions by type as the CPU sees them during
fetching, ruling out static rewriting (self-modifying code
breaks it [11]) and VT-based instrumentation.

As we anticipated in §2.2, IAT hooking adds instead one
level of indirection to API calls done through the IAT of a
module by redirecting them to an analysis stub. Typically,
a distinct stub is required for each function of interest in
order to track the intended target. In a tracing scenario,
the stub logs any input arguments from the caller, issues a
control transfer to the desired API, and eventually logs any
output arguments before returning to the caller. While this
strategy also helps in ignoring internal calls, it captures only
calls that a program makes using the IAT. Programs, how-
ever, can resort to dynamic symbol resolution through the
GetProcAddress API for many reasons4. Even worse, they
may use custom implementations of GetProcAddress that
go unnoticed by monitoring tools. Such sequences are com-
mon among covert malware and software shielded with
packers and executable protectors (which are a popular
choice for both malicious and benevolent programs [1])

…
call RegQueryValueExW

mov ecx, eax
…

smith.exe

0x13B1A19

0x13B1A1F

RegQueryValueExW
…

cmp [ebp+lpReserved], esi
jnz loc_xxx

kernel32.dll

…
ret

…
ret

0x77E33218

0x77E33247
0x77E3324A

0x77E33294

0x77E33327

Strategy (b): return address
à onEntry: 0x77E33218
à onExit: 0x13B1A1F

Strategy (a): exit points
à onEntry: 0x77E33218
à onExit: 0x77E33294,0x77E33327

Fig. 1. API call handling with strategy (a) or (b) for exit events. Arrows
placed next to instruction addresses represent hooks.

and are a standard feature in shellcode and other injected
payloads [24]. Furthermore, an adversary may use a custom
IAT-like lookup table for API addresses during compilation
and populate it covertly when the program starts.

We believe that the only reliable and efficient choice to
capture all the API entry events of interest is to intercept
when execution touches code belonging to APIs. Therefore,
in the design of a tracer, we argue for placing instrumenta-
tion in the prologue of API implementations: interposition
will happen only and every time an API function is invoked,
either by the program or internally down the software stack.

To locate addresses for probe insertion, we target every
unique RVA that appears in the EAT of a loaded DLL
and is not a forwarder. For forwarders, we postpone the
instrumentation until we process the APIs that serve the
forwarded calls. This design maximizes recall [C2].

3.3.2 API Exit Events
Intercepting when the execution returns to the caller of an
API is necessary to log return values and output arguments
[C4]. Figure 1 depicts two viable options to this end:
(a) at DLL load time, placing hooks on the single or multi-

ple exit points for the code that implements the API;
(b) on API entry, placing a hook on the instruction that

represents the return address for the call.
Strategy (a) of chasing exit instructions is not immediate

to pursue due to the redirections present in many API im-
plementations (§2.1). Based on the insights from analyzing
many DLLs, we wrote a static analysis that processes partial
implementation stubs and tail calls in APIs to determine
their exit points. We found exotic cases where an export
makes a tail call to an export from another DLL that even-
tually leads to a tail call to another export from a third DLL.

Strategy (b) of chasing return addresses looks easier at
first, but the hooking logic should be carefully designed to
process only real API exits. In fact, the instruction following
the call may be a join point in the control flow graph later
reached from basic blocks that do not end with an API call.
We found many instances of this pattern in our tests (we
provide an example in the supplementary material §A).

Unless a program contains such instances in a patho-
logical number, strategy (b) is more attractive as it brings
fewer invocations of the analysis callback for API exit events
since our design discards internal calls. Instead, strategy

4. We can name, among others, locating symbols in a library loaded
at run-time with LoadLibrary, checking if an API is available in
the current Windows version before using it, and accessing low-level
ntdll.dll functions that are not available in common header files.

5

(a) would trigger the callback even for such latter calls,
requiring the analysis code to ignore them. Choosing one
scheme over the other has no impact on other design compo-
nents but depends mainly on the capabilities and efficiency
of the instrumentation technology in use: we detail this
aspect in §4.3.2, explaining why and when the two may also
profitably coexist when implementing an API tracer.

3.3.3 Argument Extraction
For retrieving input and output arguments of API calls, the
instrumentation facility should grant the tracer access to
CPU register values and program memory.

Upon API entry events, the stack pointer value suffices
to locate the arguments under 32-bit stdcall (Windows)
and cdecl (UNIX-like systems) calling conventions. 64-bit
code requires accessing dedicated registers for the first 4
arguments, then any additional one is passed on the stack.
Similar considerations apply to floating-point arguments,
which we omit in the remainder of the article for brevity.

For exit events, the return value is available in register
EAX, plus EDX for wider data types. The tracer can save
at API-entry time any pointer values for 64-bit output argu-
ments passed via registers, which would otherwise be lost.
We also remark that prototype information is essential on
API entry and exit events for computing offsets for stack
arguments by taking into account their size and order.

4 OUR TRACING SOLUTIONS

Figure 2 portrays the architecture of SNIPER, which em-
bodies the design points that emerged from the discussions
of §3. We detail next its DBI and VT-based implementations
in their common traits and distinctive features.

4.1 Instrumentation Technologies
The design options outlined throughout §3 are general:
therefore, one can implement them using different instru-
mentation technologies. However, choosing one technology
over others can lead to transparency concerns [C1].

We implement the first variant of SNIPER in Pin [16],
a popular DBI choice in programming language, software
testing, and security research. The DBI abstraction behind
it ensures that every address or value manipulated by the
program matches the one expected in a native execution.
Under the hood, Pin operates by JIT-compiling and instru-
menting code in a designated cache area: any hook we
insert will not be visible to introspective attempts from the
threat model (§3.1.1) of [C1]. We then shield Pin for DBI
artifacts by using the mitigations of [11]. Ultimately, these
factors contribute to making our tracer less conspicuous
than commodity systems based on binary patching.

The second variant brings a new piece to the research
landscape: an API tracer compatible with modern designs
for efficient out-of-VM analyses via VT extensions. For
placing hooks, we build on the implementation of invisible
breakpoints from DRAKVUF [7], a whole-system analysis
framework based on the Xen hypervisor. As we detail next,
we extend it with a VMI component to restrict monitoring
to selected processes and identify their derived flows.

Our implementation variants can serve complementary
tasks and provide different trade-offs in terms of ease of

Monitor DLL
loading

Hook
insertion

Blacklist of
return ranges

Interval tree

onEntry
callback

RVAs of DLL
export
tables

Database of
prototypes

prototype

onExit
callback

Program
memory & regs

Code of
API functions

Dynamic hook
for strategy (b)

Static hook for
strategy (a)

hard-coded
pointer (no
DB lookup)

Action
Input

Shadow
stack

Fig. 2. Bird’s eye-view of the proposed SNIPER system.

deployment, breadth of monitoring, and transparency. The
DBI variant ships as a high-level library suitable either for
standalone usage as an in-guest API monitoring tool (like
current mainstream API tracers) or for being plugged in ex-
isting analysis systems based on Pin (which are numerous in
security research [11] as well as in other communities). The
VT-based variant is particularly suitable for scenarios where
minimal invasiveness is desirable (e.g., with code sensitive
to environment artifacts [7] or slowdowns [25]) and for
monitoring groups of unrelated processes and system-wide
flows. However, it must execute in a modified hypervisor.

4.2 Relevant Calls and Execution Units

In §3.2 we mentioned the advantages of restricting tracing
to calls explicitly made by the program under analysis [C5].
In this section, we first describe how to identify relevant
processes and threads [C6]—a task that requires different
provisions for different instrumentation technologies—and
then move to the filtering policies for internal calls.

Pin naturally operates on a single process but offers APIs
to intercept the creation of child processes and of a remote
thread in an existing process [11]. We use such APIs to
extend the instrumentation to derived flows automatically.

In the VT-based scenario, the subject of instrumentation
becomes the entire system. While libraries belong to the
private virtual address space of a process, the OS can share
physical pages for DLL modules among multiple processes
as long as their contents do not change. Therefore, an
invisible breakpoint in API code may also be triggered by
processes unrelated to the one(s) of interest.

To identify relevant execution units, we wrote a VMI
component that, starting from a process under analysis,
tracks the creation of child processes and remote threads
recursively. The component maintains a pool of IDs for mon-
itored threads and their enclosing processes. To this end,
we hook the kernel code of syscalls NtCreateThreadEx
and NtTerminateThread when they return to user mode.
For thread creation, we read the ThreadHandle output
argument of the syscall: since its value is valid only for the
caller, we look into the Windows Object Manager to locate
the referred _ETHREAD data structure and extract from there
the process ID (different than the caller’s when dealing with
remote threads) and the thread ID. For thread termination,
we discriminate whether the caller thread is terminating
itself or another thread, accessing the related _ETHREAD
data in the latter case.

With those IDs, we maintain and update the pool of rele-
vant units. Whenever execution hits an invisible breakpoint

6

from an API hook, the analysis callback checks whether the
current execution unit belongs to the pool. In the case of
code injection patterns, this design also allows us to ignore
activities from the “authentic” threads of a victim process.

To filter out internal calls happening in Windows com-
ponents [C5], we then check, under any instrumentation, in
which region the return address of an API call falls.

We observe that a whitelisting policy that logs only
calls that return to code regions belonging to the program
can be a slippery road. Not only malware and protected
executables, but even COTS programs can exercise exotic
behaviors such as executing code from the heap or changing
section permissions [25].

We find it safer to build a blacklist of return ranges for
calls to discard, populating it with code section ranges of
Windows DLLs (such addresses would indicate an internal
call) as those get loaded and unloaded. This scheme turns
out to be robust and efficient: as intervals are disjoint, we
use an interval tree with a lookup cost that is logarithmic in
the number of Windows DLLs in use. We then complement
the range lookup operation with ad-hoc measures for tail
jumps (§2.1) that we present in the next section.

4.3 Hook Insertion and Callbacks
This section details the registration and functioning of anal-
ysis callbacks that we use to log API calls from program
code along with their input and output values.

4.3.1 API Entry
For the reasons discussed in §3.3.1, we target the RVAs of
the function symbols exported by Windows DLLs to place
the hooks needed to interpose on API entry events.

DBI engines offer facilities to intercept loader activities.
Once we identify the base address of a DLL module of
interest, we locate its EAT, cross-reference the names of
exported functions with a database of prototypes5, and
compute the run-time addresses of functions using their
RVAs. We instrument the first instruction in each function
with onEntry analysis callback and hard-code the address
of the API prototype information as its argument, thus
avoiding an expensive lookup at run-time. This approach
is independent of the Windows version in use and has
performance advantages as we can use Pin’s IMAGE mode
to place efficient ahead-of-time instrumentation [26].

In the VT-based scenario, we can equally parse EATs
for RVAs or load Rekall profiles [27] precomputed for the
current Windows version. In a similar way to the DBI case,
we insert an invisible breakpoint at the first instruction in
each function, associating to it an onEntry analysis callback
with the address of its prototype information as hard-coded
argument. The difference with the other variant is that the
callback will first determine whether the intercepted thread
belongs to the pool of units that we wish to monitor.

Following the approach of SPIDER [6], an invisible
breakpoint (§2.2) takes the form of an int 3 sequence
replacing the original instruction: when hit, the hypervi-
sor intercepts the raised #BP exception, invokes the call-
back, executes the original instruction in single-step, and
re-enables the breakpoint. As we anticipated in §2.2, de-
synchronization of data and code views for pages hides the
presence of such a breakpoint from an adversary.

Invisible breakpoints operate on physical pages: adding
instrumentation to logical addresses requires their trans-
lation to physical ones. Unfortunately, when we intercept
the loading of a DLL, due to the lazy loading mechanism
of Windows, not all the DLL pages may be amenable to
hook insertion when we intercept its loading: put in other
words, for a logical address there might be no physical page
yet [28]. To mitigate this issue, we wrote a component that
loads DLLs of interest in a separate process and reads code
from their sections, forcing page materialization: since such
pages are normally shared among processes, we can place
hooks also for the program of interest.

This scheme still misses a few corner cases, but luckily
other researchers concurrently developed a mechanism [9]
to force page faults and materialize pages upon DLL load-
ing [29], using a new feature of libvmi [30] that meanwhile
became available. We have started to extend our implemen-
tation to integrate their technique.

onEntry Callback: This analysis routine takes as input
the ESP register value (to access the return address and stack
arguments), a pointer to the prototype information for the
current API, and other register values where needed (e.g.,
with 64-bit code). Its simplified pseudocode provided in
Figure 3 is agnostic to the instrumentation technology.

The onEntry callback maintains a thread-local shadow
stack of currently monitored functions6. Line 1 restricts
logging to calls made from program code, otherwise we
would be mirroring also API calls happening within DLLs.
Line 5 discards internal jumps and tail calls to other ex-
ported functions, which would see the same return address
from program code of their caller (current top stack entry).
Line 6 deals with hooking the return address when we use
strategy (b) for handling API exit events. Line 7 sanitizes
stale stack frames in case of instrumentation glitches: if ESP
is at higher addresses than the ones stored, those calls have
likely returned already since the stack grows downwards to
lower addresses. Finally, lines 8 and 9 update the shadow
stack and log the call, respectively.

4.3.2 API Exit Events
In §3.3.2, we presented two strategies for tracing API re-
turns: hooking exit instructions (a) or return addresses (b).
For strategy (a), we place hooks at DLL load time at the exit
points identified with static analysis, while for (b) we place
them dynamically upon API entry events (line 6).

We implement strategy (a) in Pin using the IMAGE mode
as we did with entry events. For strategy (b), Pin lacks a
neat way to place callbacks on instruction addresses dur-
ing execution without resorting to heavy-duty features like
TRACE mode (while its ROUTINE mode is unreliable for
exit events [26]). We instead build on the recently introduced
PIN_RemoveInstrumentationInRange primitive to force Pin to
recompile and reanalyze only the instruction located at the
return address. Recompilation is required only the first time

5. The authors of PyREBox released a large one that we use and refine
in a few aspects, e.g., to distinguish INOUT arguments from OUT ones.

6. We say functions as in a thread the concurrently active functions
that return to user code may be multiple: this happens, for instance,
when a program loads a custom DLL (hence we equate it with program
code that we seek to monitor) with LoadLibrary and its DllEntryPoint
function invokes one or more APIs before LoadLibrary returns.

7

function onEntry(threadID, ESP, prototype, ...):
1 if *ESP ∈ RangeBlacklist then return
2 SStack = getTLS(threadID) // thread-local storage
3 if not SStack.empty() then
4 cInfo = SStack.peek() // recorded call information
5 if *ESP == cInfo.ra && ESP == cInfo.esp then return
6 hookReturnAddress(*ESP) // skip under strategy (a)
7 removeStaleEntries(SStack, ESP)

// from top while cInfo.esp ≤ ESP
8 SStack.push(<*ESP, ESP, prototype>)

// <ra, esp, proto> call info
9 parseArgsOnEntry(ESP, prototype, ...)

function onExit(threadID, ESP, EIP, EAX, ...):
10 SStack = getTLS(threadID)
11 if SStack.empty() then return
12 idx = SStack.size() - 1
13 cInfo = SStack[idx]
14 while true do
15 if cInfo.ra == EIP ‖ - -idx < 0 then break
16 cInfo = SStack[idx]
17 if idx == -1 then return
18 if ESP == cInfo.esp + 4 + cInfo.prototype.retN then
19 parseArgsOnExit(cInfo.esp, cInfo.prototype, EAX, ...)
20 SStack.resize(idx) // pops one or more elements

Fig. 3. Analysis callbacks executed upon API entry and exit events.

a given return address occurs at line 6. As we will explain
shortly, the onExit callback ignores subsequent spurious
raises of the hook, so we are not forced to unregister the
callback once the handling of an exit event completes.

In the VT-based scenario, invisible breakpoints naturally
back both strategies, as they can target arbitrary addresses.

On a different note, in §3.3.2 we mentioned that strategy
(b) reduces the fraction of times onExit is invoked for un-
interesting events that must be discarded. However, there
could be cases where strategy (b) may be more intrusive
for the program under analysis (e.g., due to recompilation
events in Pin), or an adversary knowing the details of the
system may tamper with return addresses on the stack.
SNIPER retains support for both schemes, which can co-
exist seamlessly and profitably.

In more detail, let us consider a DLL or function for
which we did not precompute exit points: we can still
instrument the return addresses for them and use the
other scheme for the rest of the APIs. Similarly, this flex-
ibility helped us when developing the VT-based version:
DRAKVUF failed the breakpoint insertion at some exit
instructions with no apparent reason, but we could fall back
to hooking the return addresses for the related APIs.

onExit Callback: The pseudocode in Figure 3 of the
analysis routine for exit events is instrumentation-agnostic
and embodies strategy (b). Initially, the routine looks up the
most recent shadow stack entry that matches the instruction
pointer EIP, which corresponds to a return address under
this strategy. It then invokes a routine for processing the
return value and output arguments. The routine takes the
ESP value and the prototype stored in the shadow stack
during the entry event for the call (and any saved output
arguments passed via registers for 64-bit code), along with
registers EAX and (where needed) EDX for the return value.

The checks at lines 11 and 17 intercept when a previously
hooked return address is reached by blocks that did not
make an API call (§3.3.2, §A). This logic is semantically
equivalent to disabling instrumentation at the return ad-

dress, which may not always be cheap (e.g., requires extra
recompilations in Pin). A sanity check at line 18 compares
the current ESP value against the one stored by onEntry
for the frame, “undoing” the effects of the ret N instruc-
tion7. In practice, we observed that simply checking for
ESP > cinfo.esp is a reliable approximation of the condition.

For strategy (a), since the callback would trigger on an
exit point, we would see that the instruction pointer EIP
has not been diverted yet to the return address (which can
be found however at *ESP) and that the stack pointer has
not been adjusted with the displacement associated with the
return sequence. We adapt the code for onExit from Figure 3
to this strategy by replacing EIP with *ESP at line 15 and the
condition at line 18 with simply ESP == cinfo.esp.

4.3.3 Argument Extraction
The subroutines that onEntry and onExit call at lines 9
and 19, respectively, are conceptually similar.

Both may have to locate data from the stack, computing
offsets based on the size of each previous argument in
the prototype. Logging primitive types is a straightforward
task. With pointers, we need to distinguish the type and size
of a pointed object. Even before, we should verify whether
a pointer is meaningful—that is, if it points to valid data.

Ideally, a sound way would be to take into account the
API semantics (e.g., checking its return code to discriminate
errors), but this may be unrealistic for a general-purpose
tracer. Instead, we can check whether the pointed object falls
into valid memory and then call a print helper for its con-
tents. This operation is immediate for fixed-size objects such
as primitive types or structures. For variable-size objects like
strings, we cannot rely on the presence of some terminator
when an API fails: we conservatively fetch a predefined
amount of bytes from the address, reducing it if the chunk
would span two pages with the second being invalid.

4.4 System Calls
In the presentation flow, we postponed the discussion of
how our implementations address syscalls because there are
some unique aspects to their handling.

From the program’s perspective, syscalls are self-
contained: they happen over a privilege mode change (to
kernel mode when invoked, back to user mode upon termi-
nation). Hence, no shadow stack update is needed.

A good source of prototype information is the database
from the drsyscall module of DynamoRIO [15]. We build on
it as it covers many undocumented syscalls and provides
auxiliary data needed to determine an argument type for
cases where the latter depends on another syscall argument.

For syscall instrumentation, a DBT system naturally
intercepts the privileged sequences involved in their in-
vocation and return [16]. In Pin, we register two callback
routines for syscall entry and exit events: from there, we
extract the syscall ordinal, use it as array index to retrieve
the corresponding prototype from the drsyscall database,
and extract the current syscall arguments.

7. After the instruction, the stack pointer value will be higher than
the ESP value seen by onEntry by r+N bytes: r is 4 for 32-bit code and 8
for 64-bit code, while N is the stack space used for argument passing for
stdcall APIs (we remind our readers that in stdcall functions the callee
has to clean the stack for the caller) and zero for cdecl ones.

8

In the VT-based scenario, as we cannot interpose on
instructions by type, we follow the design proposed by the
authors of DRAKVUF in [7]—that is, we instrument the
entry and exit instructions of the syscall implementations
found in the code of the Windows NT kernel.

Finally, we deem a syscall relevant if it returns either
to program code directly (as with direct syscalls found in
malware) or to some Nt library wrapper from ntdll.dll
called in turn from program code. For the latter case, we
walk back the stack mimicking the effects of the epilogue
instructions of the wrapper: we check if the stack frame of
the method returns to an address in the blacklist of return
ranges and discard the call accordingly.

4.5 Comparison with Other API Tracing Systems

Having completed the presentation of our tracing solutions,
we can now discuss the qualitative assessment of existing
systems given in Table 1. In §5.1, we will substantiate our
claims further with figures from an experimental compari-
son on heterogeneous benchmarks.

The first three entries represent commodity monitoring
systems. Some evident limitations are present in all of them:
the introduction of classic artifacts [C1], the inability to
intercept direct syscalls [C2], and the incomplete handling of
derived flows [C6]. Each system then suffers from additional
limitations that we describe next. On the positive side, all of
them can trace output arguments [C4] as they capture API
exit events by issuing API calls from logging stubs.

API Monitor applies IAT hooking to the main program
module and also to libraries, which—besides Windows
APIs—may host third-party code or other application com-
ponents. To deal with dynamically solved APIs [C2], API
Monitor rewrites the output of GetProcAddress invoca-
tions so that the caller will receive the address of a logging
stub instead of the actual API. This strategy, however, is
not only trivial to detect (with the stub even placed in
a different code module) but is already defeated by the
standard means for covert API resolution that we discussed
in §3.3.1. With ~15K DLL functions supported, API Monitor
has one of the richest sets of API prototypes [C3] among all
the tested systems. Discarding internal calls [C5] is left to the
user upon termination of the logging. Finally, API Monitor
automatically follows child processes and injected threads
[C6]. However, it traces the own activities of the injected
process too and, above all, misses all the APIs solved with
covert methods routinely used in injected payloads.

SpyStudio adds trampolines to API code [C2] using the
Deviare In-Proc hooking library (we will discuss it in §7).
In our understanding8, SpyStudio predominantly targets
DLL APIs of common usage, resulting in a coverage of
prototypes more limited than in other systems [C3]. As with
API Monitor, discarding internal calls [C5] is left to the user
upon termination. Finally, SpyStudio automatically follows
child processes but misses remote threads [C6].

WinAPIOverride works by adding trampolines to API
code too [C2], with a prototype collection of ~7.7K DLL
APIs [C3]. To cope with internal calls [C5], the user can
enable an online whitelisting filter to track only calls from
the main module of an executable (we discussed common
pitfalls of this strategy in §4.2) or specify custom inclusion

C1
Tracing system Technology Test T1 Test T2 C2 C3 C4 C5 C6
API Monitor v2α-r13 IAT hooking 7 3
SpyStudio v2.9.2 Trampolines 3 7
WinAPIOverride 6.6.6 Trampolines 3 7
drltrace [31] DBI 3 3
PyREBox [32] QEMU-TCG 3 3
SNIPER DBI, VT 3 3

TABLE 1
Mainstream tools and research systems for API monitoring. Circles are
filled to indicate if an aspect is met to a basic, good, or optimal extent.

or exclusion lists for specific modules. To cope with derived
flows [C6], they can add rules to extend the monitoring to
other processes [C6] (e.g., by their name). WinAPIOverride
also offers orthogonal capabilities for process manipulation
that may be useful for binary reverse engineering tasks.

Both the DBT-based systems of Table 1 do well with clas-
sic artifacts [C1] thanks to the instrumentation technology in
use: drltrace builds on the DynamoRIO DBI engine9, while
PyREBox uses QEMU-TCG for whole-system emulation.

drltrace places instrumentation on API prologues. Its
authors left syscalls out [C2] since DynamoRIO offers the
drsyscall component to this end. drltrace comes with much
fewer prototypes than most systems [C3] (~2K APIs) and
does not trace return values and output arguments [C4].
It has automatic filtering capabilities for internal calls by
whitelisting the text and heap regions of the main module
but does not expunge tail transfers from internal calls [C5].
Finally, its support for derived flows is limited as it can
automatically follow only child processes [C6].

PyREBox interposes on every call, jmp, and ret in-
struction to hook API entry events [C2]. While this choice
guarantees high recall, it can add an important overhead
(§3.3.1) to the one already high [33] from the full-system
emulation of QEMU. PyREBox has a remarkable collection
of ~19K prototypes [C3] that we borrow in SNIPER. It logs
return values and output arguments by hooking the ret
instructions in the execution [C4]. For internal calls, users
may only encode manual filtering policies that discard calls
between specific pairs of DLLs [C5]. Finally, for derived
flows [C6], PyREBox follows child processes and conserva-
tively monitors, by tracking NtOpenProcess, any process
that the program interacts with. Our solution is generally
less noisy as it tracks selected threads, ignoring the API calls
from the legitimate activities of a victim process.

5 EVALUATION

This section evaluates the capabilities of SNIPER and its
performance and security aspects. We ran our implementa-
tions on Pin 3.15 and Xen 4.12 (DRAKVUF commit 376c03d),
respectively. To collect the experimental figures reported in
the following, we used an Intel i9-8950HK CPU, 3 GB of
RAM, Windows 7 SP1 build 7601 32-bit, and strategy (b) for
handling API exits. The DBI and VT-based variants yielded

8. Through reverse engineering work on its main executable, we
identified controls for tracing ~700 functions. We believe that more may
still be added by its developers (or enabled in ways that we did not
foresee in the GUI) using the Deviare2 DB that comes with the bundle.

9. The instrumentation mechanism of drltrace passes Test T2 for all
but a few APIs: the test incidentally reveals artifacts of DynamoRIO,
which alters several kernel32.dll APIs for its working [34].

9

consistent results in the events recorded for each experi-
ment. We observed no significant changes when repeating
a subset of the tests on Windows 10. Our tracers currently
support 446 syscalls and ~19K APIs from 194 DLLs. Users
can select on startup the DLLs or groups of APIs to monitor.

5.1 Validation and Assessment of Other Systems
We initially tested our implementations using system util-
ities and programs shipped with Windows since they
use heterogeneous, numerous APIs and occasionally make
syscalls from program code. We then stressed them using:
• the extensive conformance tests [35] of the Wine emu-

lator, which cover ~10K Windows APIs [C3, C4, C5];
• tools popular in the context of malware sandbox testing

like Al-Khaser [36] as they use many low-level, seldom
undocumented primitives [C2, C3];

• synthetic programs that we shielded with state-of-the-
art executable protectors [C1, C2]; some exercised de-
rived flows using injection patterns [C6].

In short, the outcome of the testing backed our expectations
for all the dimensions behind [C1-6]. As a byproduct of
this validation process, we were also able to corroborate
our qualitative claims from §4.5 on other tracers with re-
producible tests for accuracy (in addition to the adversarial
tests of §3.1.1). We make available the programs and config-
urations that we used on the project web page of SNIPER.

More in detail, we selected 12 popular DLLs that cover
different Windows features: advapi32, crypt32, gdi32,
iphlpapi, kernel32, kernelbase, ole32, oleaut32,
shell32, user32, wininet, and ws2_32.dll. We then
chose for an experimental comparison the Wine confor-
mance tests specific to such libraries, as they exercise in
their code a large deal of APIs. As most Wine tests come
with multiple workloads per library, we selected the one
that would at once: i) yield a deterministic sequence of API
calls from program code, ii) not cause a crash on more than
one of the tracers involved in the comparison, and iii) yield
the highest count of API calls from program code among the
workloads that met the two previous conditions.

We configured each system to simultaneously track all
the APIs they support from the 12 DLLs (if any), as the Wine
tests for a DLL frequently invoke also APIs from other DLLs
for their working—and those calls are of interest as well.
We then attempted to discard internal calls from the logs
of each tracer by using caller module information, directly
from the tracer when possible or via offline processing.
Unfortunately, we were unable to test PyREBox due to
excessive resource usage and high slowdowns that did not
allow many of our tests to terminate in a reasonable time.

As our readers can see from Table 2, API Monitor stands
out among existing systems as the most accurate tracer on
these benchmarks. As we test benevolent programs, hook-
ing IATs and rewriting the output of GetProcAddress
(§4.5) is sufficient to capture all the APIs called from pro-
gram code as long as their prototypes are known. The
smaller values for the other tracers are a direct consequence
of their more limited API databases [C3]. For SpyStudio, our
filtering attempts were insufficient to discard a high number
of internal calls on some subjects. For instance, for hundreds
of internal API calls involving the Windows registry in

Test SNIPER API Monitor SpyStudio WinAPIOv. drltrace
kernel32 2 853 159 2 853 160 51 - 2 853 159

gdi32 499 755 500 184 127 - 63 682
user32 791 233 791 558 266 139 2 314 791 105
ole32 69 476 69 481 92 418 31 474 64 157

oleaut32 299 101 299 105 0 20 23 132
shell32 8 947 8 943 15 008 2 466 6 944
crypt32 14 741 14 782 57 3 227 12 960

advapi32 3 215 3 257 - 760 3 001
wininet 5 668 5 709 1 057 984 4 718
iphlpapi 1 614 1 646 83 59 1 342
ws2_32 1 253 1258 24 350 927

kernelbase 138 139 41 119 138

TABLE 2
API call count for subjects chosen from the Wine conformance tests.
The count refers to calls that we could identify as from program code,
albeit some internal calls are still included for SpyStudio (especially in

tests ole32 and shell32) due to unreliable caller module information.

SNIPER API Monitor

Test Total # of
DLL calls

From
prog.

Log
size

Log
time

Total # of
DLL calls

From
prog.

Log
size

Log
time

kernel32 5 953 607 47.9% 850.0 51.9 3 148 988 90.6% 792.7 124.6
gdi32 3 346 379 14.9% 343.0 26.6 666 752 75.0% 186.3 37.4
user32 2 395 059 33.0% 307.0 17.0 1 573 131 50.3% 429.5 207.0
ole32 968 831 7.2% 31.0 4.7 567 052 12.2% 188.5 32.5

oleaut32 343 784 87.0% 74.0 3.9 313 281 95.5% 138.2 3.8
shell32 342 873 2.6% 2.6 3.7 182 529 4.9% 62.0 8.2
crypt32 179 716 8.2% 4.6 1.6 66 999 22.1% 21.8 3.2

advapi32 108 764 3.0% 1.1 2.5 66 519 4.9% 22.0 5.1
wininet 91 633 6.2% 1.7 2.2 65 502 8.7% 21.5 3.6
iphlpapi 66 731 2.4% 0.5 1.2 55 898 2.9% 19.0 4.1
ws2_32 37 533 3.3% 0.3 0.7 45 664 2.7% 17.9 3.0

kernelbase 2 260 6.1% 0.1 0.3 1 793 7.7% 0.6 1.4

TABLE 3
API call counts for the subjects of Table 2 when including also internal
calls. Calls from program code are reported here as the percentage of

all calls. Log sizes are in megabytes, log times are in seconds.

the shell32 test, SpyStudio erroneously reports the main
executable as the caller module, while those calls originated
internally in APIs that were truly called from program code.
As for WinAPIOverride, the call counts are often the lowest
among all tracers: while its database of prototypes is larger
than the ones of drltrace and SpyStudio (§4.5), it misses key
APIs that the Wine tests routinely invoke.

The call counts for SNIPER are almost identical to
the ones for API Monitor. By manual investigation of the
logs (details available in the supplementary material §A),
we found that most of the differences came from a single
API that SNIPER did not instrument: HeapAlloc from
kernel32.dll. The function turned out to be a forwarder
export to RtlAllocateHeap from ntdll.dll, which was
not part of the tracer configuration. SNIPER also found a
few additional calls missed by API Monitor in the gdi32
(13 from 6 functions), user32 (28 from 3 functions), and
shell32 (7 from 2 functions) tests. Therefore, SNIPER
was just as accurate as the best performer among existing
systems while offering higher transparency and recall guar-
antees in the face of adversarial code (§4.5).

Table 3 provides the total call counts for the benchmarks
and two resource usage metrics that help us highlight other
architectural advantages of SNIPER also for non-security
scenarios. We considered only API Monitor as a reference
since the other systems traced too few API events for a
meaningful comparison. We tracked the total number of
DLL calls10 that the tracer witnesses, the size of the logs

10. For some benchmarks, the calls seen by both systems can change
slightly between trials. However, this difference comes exclusively from
internal calls that Windows DLLs issue depending on the system state.

10

of syscalls # of DLL calls DLL APIs (from program code) Avg call processing time (µs)
from

program internal
from

program
internal

distinct
write to

output args
avg #

of args
program code internal syscalls (int.)

Subject tail call normal onEntry onExit onEntry enter exit
APT28 0 408 045 50 577 1 934 1 153 200 130 29 3.20 14.38 15.76 3.16 3.28 2.33

BlackSquid 0 12 172 4 667 988 55 715 151 38 2.82 17.42 17.81 14.27 10.76 3.71
Furtim 88 1511 541 371 2 365 887 71 25 2.49 16.53 30.79 2.69 3.61 4.27
Gootkit 0 3 068 4 737 4 478 31 507 79 23 1.37 5.61 8.27 8.69 4.17 2.86

Gozi-ISFB 19 1 509 13 449 11 019 22 180 75 28 1.54 5.60 6.45 3.18 4.13 9.45
Grobios 4 419 225 144 1 275 27 10 2.97 19.18 27.17 5.39 6.36 2.40
Olympic 0 1 129 434 298 4 726 64 26 3.26 18.38 23.36 4.59 8.22 16.83

SmokeLoader 15 485 49 27 1 019 28 10 3.94 29.50 21.20 9.86 5.39 2.53
Softpulse 1 1 552 1 163 628 10 702 83 26 2.82 15.37 20.65 8.61 6.39 2.44
Swisyin 0 7 058 1 392 451 81 456 22 8 4.38 27.52 20.76 3.47 17.17 1.83

Untukmu 0 105 646 23 978 21 195 4 459 691 25 8 2.19 10.63 11.29 2.51 3.46 1.92
7zip 0 28 398 5 922 294 139 152 112 26 3.80 24.36 23.37 4.55 3.89 2.41

BitTorrent 0 113 742 268 804 109 608 913 214 366 109 2.73 16.44 16.87 4.98 6.83 3.26
Chrome 1 821 263 839 1 586 718 684 236 755 054 398 145 2.99 19.68 21.56 8.83 9.21 2.64

Foxit Reader 2 150 490 946 903 205 319 818 568 396 93 3.45 17.78 19.69 4.33 5.23 2.12
Notepad++ 0 315 440 2 955 873 1 645 034 725 638 231 36 2.04 8.63 10.57 3.90 3.15 2.24
TeamViewer 0 307 126 489 341 52 778 1 795 308 328 87 3.36 21.75 23.95 4.22 6.75 7.80

TABLE 4
API calls recorded on complex malware samples and common productivity programs.

that it produces, and the time spent logging during the
execution, reporting the median value from 5 trials. Since we
do not have access to the code of API Monitor, we measured
its logging time by taking the difference between the first
and the last timestamp in the logs and subtracting from it
the execution duration with no DLLs selected for tracing. We
followed the same approach for SNIPER and made a sanity
check on the measurement by also computing it directly,
adding counters to the analysis callbacks.

SNIPER witnesses a number of internal calls signifi-
cantly higher than for API Monitor. This is a direct con-
sequence of our design choice of maximizing recall [C2],
as hooks placed in API code see also intra-module calls
done without resorting to the IAT, and to a lesser extent of
our larger collection of prototypes. However, our analysis
callbacks quickly discard them, resulting in a logging time
that is smaller by a factor of 2 or more for 8 of the 12 subjects.

Discarding internal calls also results in much smaller
logs for SNIPER except for the kernel32 and gdi32 tests.
By manual inspection of the logs, we found out that the two
(especially gdi32) make use of APIs for which input modi-
fier information is not available for some of the arguments:
in these cases, SNIPER conservatively logs them on both
API entry and exit, while API Monitor often does not.

5.2 Capabilities and Performance
Whereas the Wine benchmarks are well-suited for an an-
alytical comparison with other systems, for a more thor-
ough evaluation of the capabilities and the performance of
SNIPER, we studied 11 complex malware samples analyzed
in [4] for their assorted anti-analysis patterns and 6 classic
productivity programs. Table 4 reports the results.

We remark that the nature of these subjects is mainly
non-deterministic. Therefore, to allow for an indirect quan-
titative comparison with other tracers, the table comes with
dedicated columns for the respects where those would
struggle most (i.e., internal calls, syscalls, output arguments)
under the fictitious assumption that they survived the anti-
analysis provisions from malware [C1, C2, C6]. We select for
monitoring the same DLLs used for the experiments of §5.1.

The collected figures back our claim on the importance
of distinguishing calls originating in program code from

internal ones [C5]: the latter may be orders of magnitude
more numerous. For DLL APIs, we further qualify internal
calls as normal or tail call invocations: the ability to discard
tail calls in onEntry (line 5) proved useful, as those can be
as numerically relevant as the calls from program code (e.g.,
Gootkit and Gozi-ISFB). Syscalls from program code were
few compared to those made within DLL code, yet they
can reveal interesting details: for instance, for the Furtim
malware, they proved vital for analysts to understand its
adversarial strategies according to [4], [37].

Table 4 also reports how many distinct DLL APIs pro-
gram code invoked, how many of them had output argu-
ments, and the average number of arguments of all kinds
from their prototypes [C3, C4]. Output arguments turned
out relevant in practice as well, as they were present in 15–
40% of the APIs we observed.

We also studied in greater detail the time spent executing
our callbacks. The numbers shown in Table 4 refer to analy-
sis code only, as probe insertion is a well-studied problem in
DBI and VT-based research [2], [6], [15] that leaves us little
optimization room. The average processing time for DLL
APIs called from program code was 5-31 µs for each API
entry or exit event, with a high correlation with the number
of arguments to process (0.94 Pearson correlation between
the onEntry processing time and the average number of
arguments handled by parseArgsOnEntry), and with a minor
role played by variable-size arguments.

Filtering out internal calls is cheaper than logging them.
In particular, onEntry took 3–15 µs to terminate after the
range (line 1) or the tail call (line 5) checks; onExit executed
faster (<1 µs) likely due to locality effects and, therefore,
we omit its figures since hardly significant. For syscalls, we
report figures only for internal ones as they are dominant;
note that their enter analysis includes the verification step
for the return address (§4.4). Finally, the additional cost for
logging arguments in case of syscalls from program code
was around a couple of dozens of µs.

As for the end-to-end logging time, we report on the two
samples with the highest counts of DLL calls from program
code (APT28) and internal ones (Untukmu), respectively.
For APT28, SNIPER spent 1.52s to record ~50K DLL calls
from program code, 3.65s to discard ~1.1M internal ones,

11

and 2.29s to discard ~408K internal syscalls. For Untukmu,
it took 11.77s to process ~4.4M internal calls, 0.52s for those
from program code, and 0.57s for ~105K internal syscalls.

5.3 Security

We conclude our evaluation by discussing the security
aspects of the design and its implementations. As threat
model for the transparency challenge [C1] (§3.1.1), we con-
sidered introspective attempts on the in-memory contents
for the executable (T1) and the DLLs (T2): both our variants
successfully pass those tests. By design, the analysis code
and data structures are kept separate from the monitored
application: they reside in the VM monitor in the VT-based
scenario and we use the shielding techniques of [11] for Pin.
We make no visible changes to the executable or the DLLs.

Let us consider a sophisticated malware scenario where
an adversary aware of the inner workings of SNIPER tries
to either evade or break its tracing process.

By evasion, we mean that the program makes a call
that SNIPER misses or erroneously discards as internal. We
remark that our instrumentation is exhaustive in terms of
recall and copes with derived execution flows. Therefore,
to deceive the tracer, the only option we foresee for an
adversary is a TOCTTOU (time of check to time of use)
attack: at API call time, the adversary push on the stack
a fake return address falling in the blacklist of return ranges
and later replaces it from a concurrent thread with the
intended return address before the API terminates. While
the reliability of such an attack is yet to be explored in
practice, strategy (a) for API exits would come to the rescue:
the intended return address has to be visible when an API
reaches one of its exit points, so we could use that moment
to decide whether or not to log the call.

By breaking the tracing process, we mean that the ad-
versary tries to make SNIPER crash or to subvert its control
flow. As analysis code and data are in regions distinct from
program ones, the adversary should aim for data handling
bugs by feeding poisonous data to the tracer. We picture two
avenues: exhausting the shadow stack and targeting print
helpers for argument types. We rule out the first possibility
because, irrespectively of the size chosen for the stack (we
also remark that our implementations use a resizable C++
vector), constructing an arbitrarily long sequence of nested
API calls is not plausible, plus our callbacks discard internal
calls. As for arguments, we only copy them: primitive types
have fixed sizes, and we make conservative provisions for
variable-length data (§4.3.3). We thus foresee no direct way
to break the print helpers either.

6 DISCUSSION

This section sets out reflections on the generality of the
design principles behind SNIPER and examines its residual
attack surface, highlighting further research opportunities.

Instrumentation Technologies

The design points that we recommend do not make use
of primitives that are exclusive to specific instrumentation
technologies. For this reason, they are amenable to different

instrumentation solutions: for SNIPER, we chose two tech-
nologies that can cope well with the threat model of [C1]
and the other requirements [C2-6] of §3.1.

While those technologies are well-known in security
research, their deployment required careful implementation
work to pursue accuracy and efficiency in the tracing pro-
cess. For instance, we had to augment invisible breakpoints
with a filtering mechanism for execution units, for which
we trace creation and termination events in a separate VMI
component. This aspect was not handled in DRAKVUF,
while the authors of SPIDER only discuss the case of single
processes. Furthermore, prior literature did not cover the
lazy loading of Windows DLLs (§4.3.1).

We did not consider using QEMU as a whole-system
DBT engine because VT-based schemes execute at native
speed and bring fewer artifacts. However, we foresee no ma-
jor obstacle to a QEMU-based implementation: infrastruc-
ture to hook instruction addresses can be found in projects
like [33], while the VMI component for tracking execution
units would need only QEMU-specific adaptations.

Compatibility with Other Platforms
Early in the article, we claimed that the design points behind
SNIPER are compatible with other mainstream operating
systems. In the following, we detail the implementation
changes required for Linux and briefly discuss macOS.

Linux programs and libraries rely on the Global Offset
Table (GOT) and the Procedure Linkage Table (PLT) to solve,
respectively, position-independent address calculations and
function calls to absolute locations. Unlike the IAT mecha-
nism of Windows, a Linux program typically solves external
functions via lazy binding. On the first invocation of a
dynamically linked API, the executed PLT stub references
a GOT entry value that will cause the dynamic linker to
retrieve the absolute address of the function and write it
to the GOT before calling it. In this way, any subsequent
API invocations will see the PLT stub jump directly to the
previously found function address. To insert our instrumen-
tation, it would suffice to intercept at load time any external
module that needs monitoring and parse its symbol table
to locate the addresses of its public functions. A similar
strategy may be used for statically linked libraries. As for
instrumenting syscalls, DBI runtimes naturally interpose on
their execution (§4.4); for a VT-based solution, we may place
hooks in kernel code as we did in the Windows case.

For API prototypes, one may start from existing collec-
tions of symbols for the popular user-space ltrace tracer11,
as they include type and modifier information for each
argument. The analysis callbacks must then account for the
different calling conventions: for instance, in Figure 3 at
line 18 the field cInfo.prototype.retN would be always zero.
Finally, the VMI component responsible for tracking any de-
rived flows should monitor (at least) the fork, clone, and
execve syscalls and the do_exit kernel function, while
DBI runtimes can follow child processes also on Linux.

While our experience with macOS is more limited, we
observe that the dyld loader for Mach-O files supports
static symbols, weakly linked symbols, and lazy binding for

11. Also ltrace faces transparency issues: for interposition, it places
a conspicuous int 3 instruction in PLT stubs with PTRACE_POKETEXT.

12

dynamic linking. In all these cases, one can always locate
destination symbols upon program/module loading and
place instrumentation in the body of the involved functions.
As for analysis callbacks, macOS follows the same calling
conventions of Linux. At the time of writing, we are not
aware of public implementations of invisible breakpoints on
macOS, while the developers of Pin are actively working on
providing full macOS support [38].

On a related note, one may explore our design also on
other architectures, adapting the callbacks in the stack anal-
ysis and CPU register contents retrieval parts. In the ARM
realm, Proskurin et al. in [39] present implementations of
invisible breakpoints for ARMv7 and ARMv8, whereas Dy-
namoRIO currently supports AArch32 and AArch64 Linux
programs for DBI. We leave this possibility to future work.

Residual Attack Surface

In the arms race of anti-analysis techniques and countermea-
sures, a principled approach to API monitoring may give de-
fenders an edge against sophisticated malware. Researchers
and practitioners may devise our design principles over
ever-improving instrumentation technologies and compose
them with other techniques to cope with present and future
attacks that are outside the current threat model of SNIPER.

The design of SNIPER does not address evasions tar-
geting the peculiarities of the underlying instrumentation
technique. For this well-studied problem [34], [40], [41], the
implementation can resort to existing mitigations, such as
patching the Time Stamp Counter in the VM monitor upon
VM exit events or hiding artifacts of a DBI runtime as we
did by using the mitigation library of [11].

Kawakoya et al. in [20] use taint analysis for an ad-
versarial model for API monitoring where an attacker can
evade hooks by emulating with own instructions the ini-
tial portion of an API before jumping in the middle of
its canonical implementation. We may cope with popular
forms of such stolen code attacks by moving the hook from
the initial instruction of an API to a later basic block (for
instance, one that post-dominates the entry block in the
control flow graph) where the arguments are still visible.
The authors also consider code injection attacks to elude
monitoring using other processes: we tackled this surface by
tracking child processes and remote threads. We can extend
our implementations to recognize new exotic injections [42]
since SNIPER captures the API calls needed to mount them.

Our system is deceived by attacks against API name
resolution based on non-standard loading of DLLs. One
described in [20]—and countered by the authors using disk-
level taint analysis—copies a system DLL to a non-standard
path and alters its exported symbols before loading it. A
more fragile and conspicuous variant copies from a loaded
DLL the code of individual APIs to program RWX memory;
note that internal calls may still leak, as the outermost
ones would appear as from program code. In a more com-
plex attack [43], the adversary reimplements the Windows
loader and recursively rewires every import referencing
other DLLs to use stealth copies of such libraries so that
the program never calls “standard” API functions. As future
work, we look at the countermeasures suggested in [43] to
extend our system for coping with these orthogonal attacks.

7 OTHER RELATED WORKS

To dynamically analyze executables, researchers have used
for a long time instrumentation and analysis schemes oper-
ating alongside the object of the analysis.

In the context of monitoring the interactions of a pro-
gram with the surrounding environment, analysis systems
have ranged from operation-specific tracers (e.g., [44]) to
fully-fledged sandboxes. A common strategy was to patch
the OS API functions of interest [1]. For instance, in its day,
the pioneering CWSandbox [45] replaced the first 5 bytes
of each API of interest with a trampoline to an analysis
callback. At present, Cuckoo Sandbox inserts similar tram-
polines to monitor ~320 API functions for its analyses [46].

When developing a program, it may be useful to in-
terpose on specific functions for a variety of reasons, such
as adding debugging instrumentation or sanitizing sensi-
tive arguments. Frameworks like Microsoft Detours [47],
Deviare In-Process [22], and EasyHook [48] allow users to
insert trampolines in functions selected among DLL exports
and program code (provided that debugging information
is available for the latter). Typically, the user writes a code
module that invokes framework primitives to register arbi-
trary callbacks for the functions of interests. The framework
then takes care of code injection, argument marshaling,
thread safety, and other low-level aspects. While these
frameworks may even support the implementation of a
general-purpose API tracer (as we mentioned in §4.5, SpyS-
tudio builds on Deviare In-Proc), they remain lackluster in
terms of transparency due to their conspicuous trampolines.
Furthermore, as we reported in §3.1, patching-based mech-
anisms like trampolines or IAT hooking (§2.2) may conflict
with recent OS mitigations for hardening processes [19].

The code changes and artifacts introduced by all the ap-
proaches above have worried researchers and practitioners
already for some time [1]. In a seminal work [49], Garfinkel
and Rosenblum propose to move an intrusion detection
system from the guest to the VM monitor, using VMI
techniques to inspect the guest with better transparency and
isolation. VMI was later adopted in many other scenarios,
first and foremost malware analysis and memory forensics.

Ether [5] pioneered low-artifact malware analysis with
a system based on VT extensions with syscall tracing ca-
pabilities. For interposition, Ether used bogus values in the
SYSENTER_EIP_MSR register and in the 0x2e interrupt de-
scriptor table entry to cause a page fault whenever the guest
triggered a syscall using sysenter or int 2e. However, it
could not capture calls to user-space code.

SPIDER [6] brought new capabilities to the table with
invisible breakpoints for instrumenting selected instruction
addresses (§2.2, §4.3.1). The paper also presents two case
studies, attack provenance and confidential data acquisition,
that see a manual hook placement. Invisible breakpoints are
a fundamental building block of our VT-based tracer, which
comes with original additions (§4.2, §4.3.1, §6) required for
the usage scenario that we pursue in this article.

To the best of our knowledge, this article is the first
work to identify and propose solutions for the challenges
that arise when trying to monitor the vast universe of APIs
offered by Windows. Also, it represents the first attempt
to extend VT-based monitoring to arbitrary user-space API
calls in an automated, general-purpose manner.

13

Our system shares similarities with hprobes [2], a frame-
work that uses VT extensions for hook insertion in user
space. The work discusses three software dependability case
studies: an emergency exploit detector, a watchdog, and an
infinite loop detector. To insert a hook, hprobes overwrites
the instruction at the address of interest with int3 to have
the VM monitor kick in and carry out the analysis. We find
hprobes to serve a purpose orthogonal to ours, as it means to
back generic, user-supplied analyses for specific events. Un-
like the invisible breakpoint from SPIDER, hprobes makes
no provisions for hiding code changes, so its technique is
not transparent to checksumming attempts (§3.1.1).

This limitation is shared by designs for secure hook
insertion in a VM with a modified OS (e.g., [50], [51]), which
are an alternative to invisible breakpoints. Recent develop-
ments in this area (e.g., [52], [53]) feature efficient isolation
using the VMFUNC feature of VT extensions but introduce
distinguishable code artifacts. Lately, the OASIS system [54]
has made promising improvements in this direction.

We conclude by discussing DBT systems. Those are
a popular choice for implementing security analyses that
require fine-grained instrumentation capabilities (such as
tracking instructions by type) or when substantial code
modifications are needed. DBT systems usually offer bet-
ter transparency and flexibility than binary patching [11],
although they may incur emulation artifacts [55].

A recent work [56] uses DBI for real-time call detection
of functions from program code. Unlike DLLs with their
export information, an executable does not declare the entry
points of those functions. The authors show how to scru-
tinize control transfer instructions to identify function calls
reliably. We believe it would be interesting to compare this
approach in terms of recall and efficiency with a solution
combining our design for entry events with recent advances
for function detection in binaries [57].

8 CONCLUSION

API monitoring is a valuable technique in many research
scenarios. In this article, we identified and addressed key
challenges towards robust API monitoring, a task for which
existing systems reveal several shortcomings. We discussed
how to build tracing solutions for Windows APIs and their
multifaceted universe of challenges, suggesting general de-
sign points amenable to different instrumentation technolo-
gies. Our techniques are general: they make no assumption
on how a program is compiled or obfuscated, but only
on the calling conventions in use and the availability of
function prototypes. Therefore, they may also be applied
to other OSes or to the own components of an application.

REFERENCES

[1] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on au-
tomated dynamic malware-analysis techniques and tools,” ACM
Comput. Surv., vol. 44, no. 2, pp. 6:1–6:42, Mar. 2008.

[2] Z. J. Estrada, C. Pham, F. Deng, L. Yan, Z. Kalbarczyk, and R. K.
Iyer, “Dynamic VM dependability monitoring using hypervisor
probes,” in 11th Europ. Dependable Computing Conf. (EDCC), 2015,
pp. 61–72.

[3] V. Golender, I. Ben Moshe, and S. Wygodny, “System and method
for troubleshooting software configuration problems using appli-
cation tracing,” US Patent 7386839B1, Jun 2008.

[4] D. C. D’Elia, E. Coppa, F. Palmaro, and L. Cavallaro, “On the
dissection of evasive malware,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 2750–2765, 2020.

[5] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware
analysis via hardware virtualization extensions,” in 15th ACM
Conf. on Computer and Communications Security (CCS ’08). ACM,
2008, pp. 51–62.

[6] Z. Deng, X. Zhang, and D. Xu, “SPIDER: Stealthy binary program
instrumentation and debugging via hardware virtualization,” in
Proc. of the 29th Annual Computer Security Applications Conference,
ser. ACSAC ’13. ACM, 2013, pp. 289–298.

[7] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl,
and A. Kiayias, “Scalability, fidelity and stealth in the DRAKVUF
dynamic malware analysis system,” in Proc. of the 30th Annual
Computer Security Applications Conf. (ACSAC ’14). ACM, 2014,
pp. 386–395.

[8] D. Plohmann, S. Eschweiler, and E. Gerhards-Padilla, “Patterns of
a cooperative malware analysis workflow,” in 2013 5th Int. Conf.
on Cyber Conflict (CYCON 2013), 2013, pp. 1–18.

[9] M. Leszczyński and K. Stopczański, “A new open-source
hypervisor-level malware monitoring and extraction system -
current state and further challenges,” in VB2020 localhost. Virus
Bulletin, 2020, https://vb2020.vblocalhost.com/uploads/VB2020-
Leszczynski-Stopczanski.pdf (Accessed: September 7, 2021).

[10] S. Z. Mohd Shaid and M. A. Maarof, “In memory detection
of Windows API call hooking technique,” in 2015 Int. Conf. on
Computer, Comms., and Control Technology (I4CT), 2015, pp. 294–298.

[11] D. C. D’Elia, E. Coppa, S. Nicchi, F. Palmaro, and L. Cavallaro,
“SoK: Using dynamic binary instrumentation for security (and
how you may get caught red handed),” in Proc. of the 2019 ACM
Asia Conference on Computer and Communications Security, ser. Asia
CCS ’19. ACM, 2019, pp. 15–27.

[12] Microsoft Developer Blogs, “Exported functions that are re-
ally forwarders,” https://devblogs.microsoft.com/oldnewthing/
?p=30473 (Accessed: March 11, 2021).

[13] Microsoft, “Argument passing and naming conventions,”
https://docs.microsoft.com/en-us/cpp/cpp/argument-passing-
and-naming-conventions (Accessed: March 11, 2021).

[14] ——, “Header annotations,” https://docs.microsoft.com/en-us/
windows/win32/winprog/header-annotations (Accessed: March
11, 2021).

[15] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure
for adaptive dynamic optimization,” in Proc. of the Int. Symp. on
Code Generation and Optimization, ser. CGO ’03. IEEE Computer
Society, 2003, pp. 265–275.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building cus-
tomized program analysis tools with dynamic instrumentation,”
in Proc. of the 2005 ACM SIGPLAN Conf. on Progr. Language Design
and Implementation, ser. PLDI ’05. ACM, 2005, pp. 190–200.

[17] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Proc. of the Annual Conference on USENIX Annual Technical Confer-
ence, ser. ATEC ’05. USENIX Association, 2005.

[18] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Vir-
tuoso: Narrowing the semantic gap in virtual machine introspec-
tion,” in 2011 IEEE Symp. on Security and Privacy. IEEE, 2011, pp.
297–312.

[19] Microsoft, “Compatibility considerations for Import address
filtering,” https://docs.microsoft.com/en-us/windows/
security/threat-protection/microsoft-defender-atp/exploit-
protection-reference (Accessed: March 11, 2021).

[20] Y. Kawakoya, M. Iwamura, E. Shioji, and T. Hariu, “API Chaser:
Anti-analysis resistant malware analyzer,” in Research in Attacks,
Intrusions, and Defenses (RAID ’13). Springer, 2013, pp. 123–143.

[21] A. Case, M. M. Jalalzai, M. Firoz-Ul-Amin, R. D. Maggio, A. Ali-
Gombe, M. Sun, and G. G. Richard, “HookTracer: A system for
automated and accessible API hooks analysis,” Digital Investiga-
tion, vol. 29, pp. S104–S112, 2019.

[22] Nektra, “Deviare API hook,” https://www.nektra.com/
products/deviare-api-hook-windows/ (Accessed: March 11,
2021).

[23] Zynamics, “MSDN crawler,” https://github.com/zynamics/
msdn-crawler/ (Accessed: March 11, 2021).

[24] D. C. D’Elia, L. Invidia, and L. Querzoni, “Rope: Covert multi-
process malware execution with return-oriented programming,”
in Computer Security – ESORICS 2021, E. Bertino, H. Shulman, and

https://vb2020.vblocalhost.com/uploads/VB2020-Leszczynski-Stopczanski.pdf
https://vb2020.vblocalhost.com/uploads/VB2020-Leszczynski-Stopczanski.pdf
https://devblogs.microsoft.com/oldnewthing/?p=30473
https://devblogs.microsoft.com/oldnewthing/?p=30473
https://docs.microsoft.com/en-us/cpp/cpp/argument-passing-and-naming-conventions
https://docs.microsoft.com/en-us/cpp/cpp/argument-passing-and-naming-conventions
https://docs.microsoft.com/en-us/windows/win32/winprog/header-annotations
https://docs.microsoft.com/en-us/windows/win32/winprog/header-annotations
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/exploit-protection-reference
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/exploit-protection-reference
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/exploit-protection-reference
https://www.nektra.com/products/deviare-api-hook-windows/
https://www.nektra.com/products/deviare-api-hook-windows/
https://github.com/zynamics/msdn-crawler/
https://github.com/zynamics/msdn-crawler/

14

M. Waidner, Eds. Springer International Publishing, Oct. 2021,
pp. 199–217.

[25] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic
instrumentation,” in Proc. of the 8th ACM SIGPLAN/SIGOPS Conf.
on Virtual Execution Environments (VEE ’12). ACM, 2012, pp. 133–
144.

[26] Intel, “Instrumentation granularity,” in Pin official documentation
(release 97998), https://software.intel.com/sites/landingpage/
pintool/docs/97998/Pin/html/ (Accessed: March 11, 2021).

[27] Rekall, http://www.rekall-forensic.com/ (Accessed: March 11,
2021).

[28] DRAKVUF project page, “Discussion on improvements around
usermode hooking,” https://github.com/tklengyel/drakvuf/
issues/669 (Accessed: March 11, 2021).

[29] ——, “memdump: Dumps based on user mode API calls,” https:
//github.com/tklengyel/drakvuf/pull/675 (Accessed: March 11,
2021).

[30] LibVMI, https://github.com/libvmi/libvmi (Accessed: March 11,
2021).

[31] M. Shudrak, D. Bruening, and J. Testa, “Drltrace,” https://github.
com/mxmssh/drltrace (Accessed: March 11, 2021).

[32] Cisco Talos, “PyREBox: Python scriptable reverse engineer-
ing sandbox,” https://talosintelligence.com/pyrebox (Accessed:
March 11, 2021).

[33] A. Davanian, Z. Qi, Y. Qu, and H. Yin, “DECAF++: Elastic whole-
system dynamic taint analysis,” in 22nd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2019). USENIX
Association, 2019, pp. 31–45.

[34] D. C. D’Elia, L. Invidia, F. Palmaro, and L. Querzoni, “Evaluating
dynamic binary instrumentation systems for conspicuous features
and artifacts,” Digital Threats: Research and Practice, 2021.

[35] Wine project, “Writing conformance tests (Wine’s developer
guide),” https://wiki.winehq.org/Wine_Developer%27s_Guide/
Writing_Conformance_Tests (Accessed: March 11, 2021).

[36] “Al-Khaser,” https://github.com/LordNoteworthy/al-khaser
(Accessed: March 11, 2021).

[37] SentinelOne, “SFG: Furtim malware analysis,” 2016,
https://www.sentinelone.com/blog/sfg-furtims-parent/
(Accessed: March 11, 2021).

[38] Intel, “Release notes for Pin 3.20,” https://software.intel.com/
sites/landingpage/pintool/docs/98437/README (Accessed:
September 7, 2021).

[39] S. Proskurin, T. Lengyel, M. Momeu, C. Eckert, and A. Zarras,
“Hiding in the shadows: Empowering ARM for stealthy virtual
machine introspection,” in Proc. of the 34th Annual Computer Se-
curity Applications Conference, ser. ACSAC ’18. ACM, 2018, pp.
407–417.

[40] M. Brengel, M. Backes, and C. Rossow, “Detecting hardware-
assisted virtualization,” in Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2016, pp. 207–227.

[41] A. Dos Santos Fh, R. J. Rodríguez, and E. L. Feitosa, “Evasion and
countermeasures techniques to detect dynamic binary instrumen-
tation frameworks,” Digital Threats: Research and Practice, 2021.

[42] A. Klein and I. Kotler, “Windows process injection in 2019 (Process
injection techniques - gotta catch them all),” Black Hat USA,
2019, https://i.blackhat.com/USA-19/Thursday/us-19-Kotler-
Process-Injection-Techniques-Gotta-Catch-Them-All-wp.pdf
(Accessed: March 11, 2021).

[43] Y. Kawakoya, E. Shioji, Y. Otsuki, M. Iwamura, and T. Yada,
“Stealth loader: Trace-free program loading for API obfuscation,”
in Research in Attacks, Intrusions, and Defenses, ser. RAID ’17.
Springer International Publishing, 2017, pp. 217–237.

[44] Microsoft, “Sysinternals suite,” https://docs.microsoft.com/en-
us/sysinternals/downloads/regmon (Accessed: March 11, 2021).

[45] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using CWSandbox,” IEEE Security Privacy, vol. 5,
no. 2, pp. 32–39, March 2007.

[46] Cuckoo Sandbox, https://github.com/cuckoosandbox/cuckoo/
wiki/Hooked-APIs-and-Categories (Accessed: March 11, 2021).

[47] G. Hunt and D. Brubacher, “Detours: Binary interception of Win32
functions,” in Third USENIX Windows NT Symposium. USENIX,
July 1999, pp. 135–143.

[48] C. Husse and J. Stenning, “EasyHook,” https://easyhook.github.
io/ (Accessed: September 7, 2021).

[49] T. Garfinkel and M. Rosenblum, “A virtual machine introspection
based architecture for intrusion detection,” ser. NDSS ’03, 2003.

[50] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An
architecture for secure active monitoring using virtualization,” in
2008 IEEE Symposium on Security and Privacy (sp 2008), May 2008,
pp. 233–247.

[51] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-VM mon-
itoring using hardware virtualization,” in Proc. of the 16th ACM
Conference on Computer and Communications Security, ser. CCS ’09.
ACM, 2009, pp. 477–487.

[52] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting memory
disclosure with efficient hypervisor-enforced intra-domain isola-
tion,” in Proc. of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15. ACM, 2015, pp. 1607–1619.

[53] B. Shi, L. Cui, B. Li, X. Liu, Z. Hao, and H. Shen, “ShadowMon-
itor: An effective in-VM monitoring framework with hardware-
enforced isolation,” in Research in Attacks, Intrusions, and Defenses.
Springer International Publishing, 2018, pp. 670–690.

[54] J. Hong and X. Ding, “A novel dynamic analysis infrastructure to
instrument untrusted execution flow across user-kernel spaces,”
in Proc. of the 2021 IEEE Symposium on Security and Privacy, ser. SP
’21. IEEE Computer Society, 2021, pp. 402–418.

[55] L. Martignoni, R. Paleari, A. Reina, G. F. Roglia, and D. Bruschi,
“A methodology for testing CPU emulators,” ACM Trans. Softw.
Eng. Methodol., vol. 22, no. 4, Oct. 2013.

[56] F. de Goër, S. Rawat, D. Andriesse, H. Bos, and R. Groz, “Now you
see me: Real-time dynamic function call detection,” in Proc. of the
34th Annual Computer Security Applications Conference, ser. ACSAC
’18. ACM, 2018, pp. 618–628.

[57] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic
function detection in binaries,” in Proc. of the 2nd IEEE European
Symposium on Security and Privacy (EuroS&P’17). IEEE, April 2017.

https://software.intel.com/sites/landingpage/pintool/docs/97998/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/97998/Pin/html/
http://www.rekall-forensic.com/
https://github.com/tklengyel/drakvuf/issues/669
https://github.com/tklengyel/drakvuf/issues/669
https://github.com/tklengyel/drakvuf/pull/675
https://github.com/tklengyel/drakvuf/pull/675
https://github.com/libvmi/libvmi
https://github.com/mxmssh/drltrace
https://github.com/mxmssh/drltrace
https://talosintelligence.com/pyrebox
https://wiki.winehq.org/Wine_Developer%27s_Guide/Writing_Conformance_Tests
https://wiki.winehq.org/Wine_Developer%27s_Guide/Writing_Conformance_Tests
https://github.com/LordNoteworthy/al-khaser
https://www.sentinelone.com/blog/sfg-furtims-parent/
https://software.intel.com/sites/landingpage/pintool/docs/98437/README
https://software.intel.com/sites/landingpage/pintool/docs/98437/README
https://i.blackhat.com/USA-19/Thursday/us-19-Kotler-Process-Injection-Techniques-Gotta-Catch-Them-All-wp.pdf
https://i.blackhat.com/USA-19/Thursday/us-19-Kotler-Process-Injection-Techniques-Gotta-Catch-Them-All-wp.pdf
https://docs.microsoft.com/en-us/sysinternals/downloads/regmon
https://docs.microsoft.com/en-us/sysinternals/downloads/regmon
https://github.com/cuckoosandbox/cuckoo/wiki/Hooked-APIs-and-Categories
https://github.com/cuckoosandbox/cuckoo/wiki/Hooked-APIs-and-Categories
https://easyhook.github.io/
https://easyhook.github.io/

15

Daniele Cono D’Elia obtained his Ph.D. in En-
gineering in Computer Science in 2016 from
Sapienza University of Rome. He is currently a
post-doc with Sapienza. His research activities
span several fields across software and systems
security, with contributions in the analysis of ad-
versarial code and in the design of program anal-
yses and transformations that help in making
software more secure.

Simone Nicchi obtained his M.Sc. in Engineer-
ing in Computer Science in 2018 from Sapienza
University of Rome. His research explores how
program analysis techniques can help in coun-
tering anti-analysis behavior from the malware
domain.

Matteo Mariani obtained his M.Sc. in Engi-
neering in Computer Science in 2019 from
Sapienza University of Rome. He is currently
with Leonardo as member of the Cyber Secu-
rity Research Lab working on endpoint security
systems.

Matteo Marini obtained his B.Sc. in Computer
and System Engineering in 2020 from Sapienza
University of Rome. He is currently a M.Sc.
student in Engineering in Computer Science in
Sapienza.

Federico Palmaro obtained his M.Sc. in En-
gineering in Computer Science in 2018 from
Sapienza University of Rome. He is currently
with Prisma researching evasive malware and
related dynamic analysis systems.

16

APPENDIX A
ADDITIONAL MATERIAL

Return Address Instrumentation
In §3.3 we mentioned that when chasing return addresses
with strategy (b) to hook API exit events, the instruction
corresponding to the return address for some API call may
be a join point in the control flow graph of the caller.

If we insert a hook there and do not remove it after the
call terminates (for instance, because hook deletion brings
overhead that we wish to avoid), the analysis callback must
distinguish whether it is intercepting a real API exit event.

In the example below, taken from the 32-bit calc.exe
shipped with Windows 7 SP1 64-bit (file version
6.1.7601.17514), we instrumented the instruction located at
address 10020cf when we first intercepted the call to the
LocalFree API (kernel32.dll) from its enclosing func-
tion. However, subsequent invocations of the latter even-
tually reach this address also when coming from another
basic block, namely the entry block, which does not end
with an API call. The logic of the analysis has to discard
these events: in fact, our implementation will find no valid
shadow stack entry for it. We found other instances of this
pattern in calc.exe (e.g., at addresses 100367e, 100aaba,
and 100cec3) and several other Windows utilities.

Fig. 4. The instruction at address 10020cf in calc.exe is a join point
in the control flow graph of its enclosing function: it can be reached either
by a conditional jump from the entry basic block of its function or as a
fall-through for the call to the LocalFree API function.

API Call Differences
In §5.1 we discussed the counts of API calls from program
code identified by SNIPER and API Monitor. Table 5 details
the workload that we used for each test (as we omitted it
from the main body of the article for space reasons) and the
calls that only one of the two systems logged during it.

For the calls not reported by SNIPER, we previ-
ously mentioned that HeapAlloc is a forwarder export
to RtlAllocateHeap from ntdll.dll, which we did
not select in the tracer configuration for these experiments.
Similar considerations apply to HeapRealloc from the
advapi32 test. In the user32 test, API Monitor found 352
additional calls to DefWindowProcA that turned out to be

Test Workload Logged by SNIPER Logged by API Monitor
kernel32 atom - HeapAlloc (1)

gdi32 metafile

GdiGradientFill (1),
SetRelAbs (1),
GetRelAbs (2),
GdiIsMetaFileDC (3),
GdiISMetaPrintDC (3),
GdiIsPlayMetafileDC (3)

HeapAlloc (442)

user32 edit
GetCharWidthInfo (6),
GdiGetCodePage (8),
GdiGetCharDimensions (14)

HeapAlloc (1),
DefWindowProcA (352)

ole32 storage32 - HeapAlloc (5)
oleaut32 safearray - HeapAlloc (4)

shell32 shellpath
DllGetVersion (3),
ShGetFolderPathEx (4)

HeapAlloc (3)

crypt32 encode - HeapAlloc (41)

advapi32 registry -
HeapRealloc (5),
HeapAlloc (37)

wininet internet -
HeapAlloc (15),
IsDomainLegalCookie
DomainW (26)

iphlapi default - HeapAlloc (32)
ws2_32 protocol - HeapAlloc (5)

kernelbase sync - HeapAlloc (1)

TABLE 5
Test workload and differences in traced API calls for SNIPER and API

Monitor for the call counts of Table 2.

internal calls at a manual inspection, whereas SNIPER cor-
rectly reports the 37 invocations issued for it from program
code. Finally, IsDomainLegalCookieDomainW was not
part of the collection of prototypes of SNIPER: therefore,
we missed its calls. Conversely, SNIPER recorded calls to
APIs not supported by API monitor in three tests.

	Introduction
	Background
	Windows API Resolution and Internals
	Instrumentation Technologies

	Design Space of API Monitoring Systems
	Challenges in API Monitoring
	Threat Model

	Scope of Monitoring
	Prototypes
	Relevant Calls

	Hook Insertion
	API Entry Events
	API Exit Events
	Argument Extraction

	Our Tracing Solutions
	Instrumentation Technologies
	Relevant Calls and Execution Units
	Hook Insertion and Callbacks
	API Entry
	API Exit Events
	Argument Extraction

	System Calls
	Comparison with Other API Tracing Systems

	Evaluation
	Validation and Assessment of Other Systems
	Capabilities and Performance
	Security

	Discussion
	Other Related Works
	Conclusion
	References
	Biographies
	Daniele Cono D'Elia
	Simone Nicchi
	Matteo Mariani
	Matteo Marini
	Federico Palmaro

	Appendix A: Additional Material

