
ROPMate: Visually Assisting the Creation of ROP-based Exploits

Marco Angelini*
Sapienza University of Rome

Graziano Blasilli*
Sapienza University of Rome

Pietro Borrello†

Sapienza University of Rome

Emilio Coppa*

Sapienza University of Rome
Daniele Cono D’Elia*

Sapienza University of Rome
Serena Ferracci†

Sapienza University of Rome

Simone Lenti*
Sapienza University of Rome

Giuseppe Santucci*
Sapienza University of Rome

ABSTRACT

Exploits based on ROP (Return-Oriented Programming) are increas-
ingly present in advanced attack scenarios. Testing systems for
ROP-based attacks can be valuable for improving the security and
reliability of software. In this paper, we propose ROPMATE, the
first Visual Analytics system specifically designed to assist human
red team ROP exploit builders. In contrast, previous ROP tools typi-
cally require users to inspect a puzzle of hundreds or thousands of
lines of textual information, making it a daunting task. ROPMATE
presents builders with a clear interface of well-defined and semanti-
cally meaningful gadgets, i.e., fragments of code already present in
the binary application that can be chained to form fully-functional
exploits. The system supports incrementally building exploits by
suggesting gadget candidates filtered according to constraints on
preserved registers and accessed memory. Several visual aids are
offered to identify suitable gadgets and assemble them into seman-
tically correct chains. We report on a preliminary user study that
shows how ROPMATE can assist users in building ROP chains.
Keywords: Malware Analysis, Return-Oriented Programming,
Code Reuse, ROP Exploits, Visual Analytics.

1 INTRODUCTION

Code reuse techniques have become prevalent attack vectors against
memory vulnerabilities, effectively circumventing traditional system
defenses against code injection [13]. Among them, return-oriented
programming (ROP) has received considerable attention as it allows
an attacker to induce arbitrary behavior in a vulnerable program
through a carefully crafted chain of redirections in the program
memory, without actually injecting any additional code [19].

A typical attack scenario is based on a controlled stack frame
where the return address can be overwritten by means of a buffer
overflow. A ROP attack uses short instruction sequences (called gad-
gets) that are already present in the vulnerable application, as their
combination allows for arbitrary computations. Each gadget usually
takes the form of a few instructions, with the last one being a return.
This allows the attacker to place on the stack a sequence, called
ROP chain, made of gadget addresses and immediate operands, that
will be executed as a whole thanks to the role of the ret assembly
instruction in transferring control between consecutive gadgets.

Building a chain of gadgets is a hard task and this paper aims at
progressing in this field by presenting a Visual Analytics system that
allows for complementing automatic tools with human intervention
– a paradigm successfully explored in other security research [5, 20].
The system provides visual cues that help a human ROP chain
builder, making the creation of part or the totality of the chain easier.

*e-mail: {angelini, blasilli, coppa, delia, lenti,
santucci}@diag.uniroma1.it

†e-mail: {borrello.1647357, ferracci.1649134}@studenti.uniroma1.it

Indeed, while existing ROP tools [1, 2] do a very good job in
finding useful gadgets, they provide limited support when building
complex chains. Recently, solutions have been proposed to build
chain portions for carrying out specific tasks only [10]. Overall,
no automatic tool currently provides a general solution for dealing
with complex dependencies and subtle side effects that often emerge
when crafting chains for real-world programs. In this scenario,
building ROP exploits remains predominantly a manual task.

The contribution of the paper aims at attacking this problem: it
introduces ROPMATE, a Visual Analytics solution supporting the
manual construction of the chain for the exploit. The analytical part
of the system analyzes the source of the gadgets, producing a list of
semantically meaningful gadgets, with the obvious advantage that
only gadgets that have a clear effect are maintained and presented
to the user. The visual component shows the list of all meaningful
gadgets, divided by class and by implemented operation; suitable
properties are visually encoded and the user can further filter the
list according to her need. Filtering may involve searching for
gadgets that implement a particular operation, but, for example, do
not modify some registers that have already been set, or access the
memory only via some controlled registers, etc.

A preliminary formative user study allowed us to get pros and
cons of the proposed approach and led to the development of a
revised version of the system.

Summarizing, the contributions of the paper are the following:

• it introduces a novel Visual Analytics environment targeted at
exploring and chaining gadgets to produce ROP exploits;

• it explores several analytical and visual solutions that support
the user’s task, presenting the most relevant gadgets and allow-
ing for considering alternative solutions, e.g., providing the
user with the information of existing gadgets similar to the one
s/he is exploring;

• it provides a first feedback about the proposed system, collect-
ing opinions from expert users and analyzing system usage
traces to detect similar patterns and improve the system.

The paper is organized as follows: Section 2 presents the scenario
in which the system has been developed; Section 3 discusses some
related proposals; Section 4 presents the proposed Visual Analytics
solution; Section 5 presents a case study; Section 6 presents a pre-
liminary user study; finally, Section 7 draws some conclusions and
presents an outlook for future work.

2 APPLICATION DOMAIN

Programs written in type-unsafe languages such as C and C++ are
vulnerable to attacks where an adversary corrupts the memory to
have execution redirected to an arbitrary code sequence. Buffer
overflows are the most frequent form of memory corruptions, with
a program input being copied to a buffer without proper bounds
checking. In particular, stack-allocated buffers have been historically
used by attackers to inject their own code along with legit input data
and eventually take control of a program.

978-1-5386-8194-7/18/$31.00 © 2018 IEEE

Table 1: Gadget categorization used in ROPMATE

CLASS DESCRIPTION
EXAMPLE

OPERATION GADGET INSTANCE

LoadConst Load constant value into a register rax = 10 pop rax; ret
ClearReg Set to zero a register rax = 0 xor rax, rax; ret
MovReg Copy value from a register to a register rax = rcx mov rax, rcx; ret
UnOp Unary arithmetic/logical oper. over a register rax += 1 inc rax; ret
BinOp Binary arithmetic/logical oper. over registers rax += rbx add rax, rbx; ret

ReadMem Read value from memory rax = [rcx + 8] mov rax, qword ptr [rcx + 8]; ret
WriteMem Write value into memory [rcx + 8] = rax mov qword ptr [rcx + 8], rax; ret
ReadMemOp Binary operation with memory input rax += [rcx + 8] add rax, qword ptr [rcx + 8]; ret
WriteMemOp Binary operation with memory output [rcx + 16] += rax add qword ptr [rcx + 0x10], rax; ret

StackPtrOp Alter stack pointer value esp += 8 add esp, 8; ret
Other Any other operation syscall syscall; ret

mov rdi, offset myGlobBuf # G1+ D1
mov rbx, 0x68732F6E69622F # G2+ D2
mov qword ptr [rdi], rbx # G3
mov rax, 0x3b # G2+ D3
mov rsi, 0x0 # G4+ D4
mov rdx, 0x0 # G5+ D5
syscall # G6

rop = ’’
rop += p64(addr_G1)
rop += p64(myGlobBuf) # D1
rop += p64(addr_G2)
rop += ’/bin/sh\x00’ # D2
rop += p64(addr_G3)
rop += p64(addr_G2)
rop += p64(0x3b) # D3
rop += p64(addr_G4)
rop += p64(0x0) # D4
rop += p64(addr_G5)
rop += p64(0x0) # D5
rop += p64(addr_G6)

Figure 1: Traditional shellcode sequence (left), ROP counterpart (center), and Python script that generates the binary representation of the ROP
chain (right) for executing system call execve("/bin/sh", NULL, NULL). Function p64 from the pwntools exploitation library is used to
encode 64-bit representations. Immediate 0x68732F6E69622F is the Little-Endian encoding of the NULL-terminated ASCII representation
for "/bin/sh". Addresses of gadgets Gi and immediate operands D j are used to implement basic operations of the original shellcode. For the
sake of readability, in the graphical representation of the chain we report the actual instructions inside each gadget instead of its address.

Once operating systems designers started incorporating defenses
such as Data Execution Prevention (DEP), which hinders code in-
jection by denying code execution from writable regions, attackers
devised more subtle and powerful exploitation techniques commonly
known as code reuse attacks. Such attacks chain together existing
code fragments from the vulnerable application, granting an attacker
the same expressive power of a custom injected sequence1.

Return-oriented programming (ROP) is the most well-known
form of code reuse, and takes its name from the ret assembly
instruction that is used to chain together existing code fragments
(called gadgets) of the application. ret is commonly used in func-
tion epilogues to update the instruction pointer with a value previ-
ously stored on the stack to resume execution in the caller function.

Gadgets can be found in libraries, and sometimes within the
program itself, using tools that implement variants of the Galileo
discovery algorithm [19] such as ROPgadget [1] or ropper [2]. De-
pending on the size of analyzed code and the maximum length, the
number of found gadgets can range from thousands for middle-sized
programs, to tens of thousands for large libraries and programs [9].
Gadgets are then analyzed and classified according to the functional-
ities they provide: in Table 1 we report a possible categorization that
we use in the gadget classifier analytical component of ROPMATE.

Example. In Figure 1 we present a simple exploit that opens

1Code reuse attack techniques are usually Turing-complete [18].

a shell on the machine with the same privileges of the vulnerable
application; such an exploit is commonly referred to as shellcode.
Before techniques such as DEP were adopted by operating systems,
a shellcode consisted of assembly instructions to be injected in the
program, as in the left portion of the figure. In particular, in this
example a "/bin/sh" string is assembled in CPU register rbx, and
then copied to a writable memory area whose address is specified
in register rdi. The shellcode then prepares the arguments for
the Linux execve system call used to spawn a shell: on a x86-
64 architecture, ordinal 0x3b for the call is put in register rax,
the address of the string in register rdi, and the remaining two
arguments – both set to NULL – in rsi and rdx, respectively. Finally,
instruction syscall is used to trigger the system call.

An equivalent ROP chain for the shellcode is shown in the middle
part of Figure 1. We assume that an attacker placed the chain on
the stack so that the stack pointer rsp points to the beginning of the
chain when the vulnerable program executes some ret instruction.
This instruction updates the instruction pointer rip with the value
currently written on the top of the stack, then adjusts the stack pointer
before execution continues from the new address in rip. As the
stack grows from high to low addresses, rsp is moved to a higher
address, i.e., it is incremented by 8 on a 64-bit machine.

In our example, ret loads the address of gadget G1 into the
instruction pointer, and the updated stack pointer now points to D1,
which contains the address &myGlobBuf of the buffer where we will

2018 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

put the "/bin/sh" string. As the code of gadget G1 is executed, we
meet one peculiarity of ROP code: constants are usually loaded to
registers by means of pop instructions, which read a value from the
top of the stack, write it to the desired register, and then increment
rsp. When the next instruction in G1 is executed, which is a ret, the
top of the stack contains the address of gadget G2: we can now see
how the ret instruction orchestrates the control flow in a ROP chain,
by loading the address of the subsequent gadget in the instruction
pointer and moving the stack pointer up the chain before executing
the gadget. Such process is iterated over the 7 gadgets that constitute
the chain, eventually invoking execve as in the original shellcode.

Challenges. Building a ROP chain is not a trivial task. While
for a traditional shellcode an attacker can choose from the entire
CPU instruction set whichever instruction s/he need to implement
the desired semantics, a ROP chain builder is strongly limited by the
gadgets that are found during the discovery phase [18]. In particular,
when looking for an instruction implementing a particular operation
the following problems may arise:

1. No available gadget contains it. For instance, the chain builder
is looking for a gadget that loads a constant value into a specific
register, say rbx, but no suitable one is found. In the chain of
Figure 1, we had to resort to a gadget G2 that loads a constant
to a different register, specifically rax. Another possibility
is to use multiple gadgets to realize the intended operation:
this happens for instance quite frequently for some arithmetic
operations for which gadgets are notoriously rare [19].

2. A gadget is available, but comes with side effects. This is
the case of gadgets with more than one instruction before the
ending ret: for instance, gadget G3 of Figure 1 not only writes
the content of rax to memory, but also performs a bitwise AND
operation, altering the contents of register rcx. In our example
we do not use rcx to hold any relevant data for later use, thus
this side effect is harmless. However, in general side effects
might clobber (i.e., overwrite) registers holding useful data,
or perform unwanted memory operations that may make the
program crash or ruin the chain.

3. A gadget is available, but is problematic for subsequent opera-
tions. This case is more subtle, as an attacker has not only to
consider the current operation, but also subsequent ones that
will use its results. This happens for instance when some data
is written to some register r, gadgets for subsequent operations
can only read from different registers, and no other gadget can
be used to move data across r and any such register.

In the light of these problems, a ROP chain builder is presented
with a large amount of information originating in: (i) having many
gadgets that differ only for subtle side effects, (ii) complex depen-
dencies that may arise as the chain grows, and (iii) limitations on
choosing a gadget on the basis of the registers that should not be
clobbered at a given point in the chain.

While automatic construction of ROP exploits has been addressed
in previous works, such as the seminal Q paper [18], most available
tools do not work properly in realistic scenarios. Due to the lack of
a publicly available working ROP compiler that meets the needs of
real-world attackers, building ROP chains remains predominantly a
manual task [10].

Applications. In recent years a remarkable number of academic
works and security reports have highlighted the power of code reuse
attacks for carrying out complex exploitations on mainstream soft-
ware. A common belief is that most ROP exploits observed in
the wild have been written manually by very experienced attackers
which, either for demonstration purposes or motivated by criminal
reasons, are willing to devote a significant effort to building a chain.

From a software house perspective, when a number of memory
bugs are discovered in the development of its products, it is important
to quickly assess whether such bugs are vulnerabilities exploitable

by an attacker, and how dangerous the possible consequences are.
For this reason, a red team made of ethical hackers – either internal
or hired in the market – can evaluate the feasibility of ROP-based
attacks, and to which extent such attacks can cause harm to the sys-
tem. For instance, an attack might take place only under unrealistic
operating conditions, or the attacker has limited freedom in carrying
out certain tasks. It is important to consider that producing a fix for
a vulnerability and validating it before releasing it publicly might
take considerable time. Also, in some cases previous ROP exploits
are adapted when variants of the original vulnerability surface later
on, such as in the case of the EPS component of Microsoft Office2.
Similar considerations might also apply for instance to companies
that have to employ possibly buggy third-party components in, e.g.,
mission-critical systems.

3 RELATED WORK

In cybersecurity, software vulnerabilities are considered one of the
main attack vectors: the Visualization field presents several propos-
als coping with software analysis, ranging from code and structure
analysis [11,24] to reverse engineering [8], malware analysis [12,16],
and support for red team activities [25]. Given the specific nature
of the ROP chain building activity, to the best of our knowledge
no Visual Analytics solution has been previously proposed. In the
remainder of this section, we discuss aspects of the ROP literature
that are most related to our ideas.

ROP Defenses. In the arms race between OS designers and
exploit writers, a number of defenses [22] have been proposed during
the last decade to counter code reuse attacks. Address Space Layout
Randomization (ASLR) [15] is one of the first defenses integrated
into modern operating systems: by randomly arranging the address
space positions of key areas of a process, ASLR makes hard for
an attacker to identify gadget addresses. However, ASLR does not
typically randomize the base address of the main executable, leaving
a fruitful source for gadgets. Additionally, ASLR is often defeated
by leveraging a vulnerability that leaks the base address of a library.

Several other defenses can be deployed to limit ROP attacks. For
instance, G-Free [14] rewrites the application code to reduce the
number of available gadgets, while TypeArmor [23] makes gadgets
for function calls unusable outside legitimate control flows. The
main drawback of sophisticated ROP defenses [22] is that they either
come with non-negligible overheads or require heavily customized
compilation toolchains, making them less suitable for production en-
vironments. With respect to ROP mitigations shipped with the latest
releases of Microsoft Windows [3], a recent work [7] shows how
these countermeasures can be bypassed. The work also discusses
how to find find realistic expressive gadget sets even in the presence
of advanced ROP defenses.

Automatic ROP Chain Builders. One missing element in the
research landscape is a ROP chain building tool that meets the needs
of real-world attackers, for which building a chain remains mainly
a manual task [10]. Conversely, recent years have witnessed an
increase in the complexity of ROP chains, which moved from being
short sequences aiming at bypassing DEP to enable code injection,
to very complex behaviors encoded entirely in ROP [13]. Gadget
finders, such as ROPgadget [1] and ropper [2], provide very limited
support to a user when building complex chains. While the most
sophisticated tools can attempt to generate chains for a few prede-
fined tasks, such as making the stack executable, they lack flexibility
to support custom actions in an attack, and mostly importantly a
robust methodology for dealing with gadget dependencies and subtle
side effects automatically. As a consequence, they often fail and
generate only partial chains that an attacker must complete manually,
although in some cases such chains turn out to be a dead end.

2https://www.fireeye.com/blog/threat-research/2017/05/

eps-processing-zero-days.html.

2018 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

Figure 2: Overview of the ROPMATE visual component. (A) The top bar is divided in three parts, from left to right: (A1) the Filter Bar
allows explicitly filtering the available gadgets by entering a search text; (A2) through the Memory Threshold it is possible to set a limit to
the memory usage of gadgets; (A3) through this button it is possible to load the binary from which to extract the gadgets. (B) The Registers
Pane lists all the registers and allows defining a filter on gadgets based on the preservation of certain registers; (C) the Tree Pane shows all the
available gadgets organized in a three-level taxonomy; (D) the Analysis Pane shows the details of a chosen gadget, while (E) the Similarity
Pane shows all the gadgets that execute the same operation using MDS. Finally, (F) the Chain Pane shows the current state of the built chain.

4 THE VISUAL ANALYTICS SOLUTION

The proposed solution aims at supporting the user in the whole
process from the gadgets extraction to the ROP chain deployment.
This section introduces this process, then describes the analytical
and visual components that support it.

As first step, the program under inspection is parsed by the an-
alytical component that extracts the set of available gadgets; each
gadget is analyzed to identify its semantics and how it interacts
with memory and registers. The subset of semantically meaningful
gadgets is then loaded in the visual component and the user can start
her analysis. In order to build the chain, the user has to iteratively
repeat the following steps:

• S/he selects an operation to add to the chain and chooses a
gadget with that semantics based on memory and registers
constraints (see also Table 1);

• S/he analyzes more deeply the chosen gadget and adds it to the
chain if it is appropriate or looks for similar gadgets otherwise;

• When a gadget is added to the chain, the user checks the chain
behavior and optionally modifies it by reordering or deleting
its gadgets.

When the chain is complete, s/he can export it to a Python script for
its binary encoding, a step that is common in the ROP practice.

4.1 The Analytical component

ROPMATE relies on different analytics, used in all the steps of the
process, from the preprocessing step in which gadgets are character-
ized, to the management of the developed chain.

Gadgets Semantics: Classification and Filtering. During the
preprocessing step, the analytical component analyzes the available
gadgets extracted from the program and identifies their semantics
using a classification algorithm based on symbolic execution [6]. It
groups gadgets that execute the same operation (excluding useless
gadgets) and that differ from each other in terms of memory and
registers usage. The identified operations are further grouped in
classes (see Table 1), thus creating a three-level taxonomy that makes
easier to navigate through the different gadgets. The taxonomy
allows the user to quickly identify a subset of suitable gadgets;
however selecting the right gadget(s) among them require to take
into account side effects like the clobbering of registers or unwanted
memory operations. For this reason, each gadget representation is
enriched with information regarding the reading, modification, or
dereferencing of registers and memory operations. This information
will be then conveyed through visual means to the user during the
chain building process and can be used as further filter mechanisms.

Gadgets Similarity. Once a subset of gadgets that execute the
same operation is identified, ROPMATE is able to compute a dissim-
ilarity function among them in order to facilitate their exploration.
Given a gadget Gi, it analyzes its semantics and builds the set Si
containing Gi and all the gadgets that execute the same operation.
Si is then partitioned in Pi = {Q0, ...,Qn} such that each subset Qh
contains all the gadgets that modify the same set of registers. For
every pair (Q j,Qk) ∈ Pi×Pi, the dissimilarity function d(Q j,Qk) is
computed as follows:

d(Q j,Qk) = |(R j ∪Rk)− (R j ∩Rk)|
with Rh being the set of registers modified by the gadgets of set Qh,

2018 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

(a) Classes (b) Semantics

Figure 3: Details of the Tree Pane showing the first two levels of the taxonomy of gadgets: (a) the first level of the tree shows the list of 11
classes available for the binary and a histogram suggesting the number of operations for each class, (b) the second level of the tree shows the
list of 5 operations available for the UnOp class and a histogram to convey information regarding the number of gadgets for each such operation.

and the relative dissimilarity matrix is built. That allows for quickly
locating substitutes of Gi when, for any reasons, Gi cannot be used.

4.2 The Visual component
The first step while using ROPMATE is to load the program under
examination (see Figure 2.A3); after that it is parsed by the analytical
component that extracts and characterize gadgets as discussed in
Section 4.1. Once the list of gadgets is extracted from the program,
the user can start to build the ROP chain.

The Tree Pane (see Figure 2.C) shows the taxonomy of gadgets,
grouped by operations and classes. The taxonomy is represented
as a tree allowing to quickly locate suitable gadgets based on the
desired operation by descending the tree. The first level of the tree
shows the classes (see Figure 3a); a histogram aligned to the list of
classes suggests the number of available operations for each class,
with the width of the bars proportional to this number. Clicking on
a class reveals the list of its operations (see Figure 3b). A second
histogram is aligned to the list of operations; the width of the bars is
now proportional to the number of available gadgets.

Once the desired operation is identified, the list of corresponding
gadgets, partially ordered by ascending complexity (modeled as a
heuristic of: number of dereferenced registers, number of modified
registers, and stack pointer displacement, in this order) is available
by clicking on it (see Figure 4). A gadget is identified by its assem-
bly code and its representation is enriched by means of two visual
elements. Each gadget has an associated memory requirement bar
on its right; the width of the bar represents the space in the stack re-
quired by the gadget to work properly (i.e., to execute its instructions
and being able to transfer execution to the next gadget), according to
a logarithmic scale that allows for perceiving the differences among
small values. The color of the bar encodes the stack occupation with
respect to a memory threshold. A green color indicates that the size
does not exceed the threshold, while a red color indicates that it does.
The memory threshold has a predefined value but at any time the
user can change this value according to her needs (see Figure 2.A2).

The second visual mean is the dereferenced registers matrix,
aligned to the right of the gadgets and showing the registers used
to access the memory; each column represents a register and the
rows are aligned with the gadgets. Each entry of the matrix is filled
by a rectangle if the gadget dereferences the register (suggesting
that the register has to be properly set to safely use it to access the
memory). The rectangle has a full height if the condition is not
currently satisfied by the chain and it has half height otherwise; this
visual encoding has been chosen to prioritize the identification of
dependencies to resolve in case of gadget selection. Each rectangle
has a color associated to the register, but the possibly high number
of registers in 64-bit code led us to use this matrix representation

Figure 4: Details of the 18 available gadgets for the rdi+=1 oper-
ation of Figure 3b. Gadgets are identified by their assembly code;
the width of the memory requirement bars, attached to the right, is
proportional to the binary logarithm of the required memory occu-
pation (the red color of 2 boxes means that the requirement of the
gadgets exceeds the memory threshold); the aligned dereferenced
registers matrix shows which registers are dereferenced by each
gadget, the entries are rectangles with full height if the dependency
is not satisfied (e.g., rax register encoded in green), and have half
height otherwise (e.g., rsi and rdi registers encoded in gray and
light blue.)

instead of the listing of the registers for each gadget to take advantage
of the horizontal positioning and make usage patterns evident.

The Registers Pane (see Figure 2.B) allows for further refining
the search space in order to face the possible side effects: the user is
able to select which registers should be preserved, for example to
safely choose gadgets without clobbering registers already set in the
chain. The pane contains all the registers, identifiable by their name
and color and a checkbox that, when is checked, filters from the Tree
Pane all the gadgets that modify the register. The user has also the
possibility to display only gadgets that do not access memory to be
able to choose simpler gadgets first, by checking the Avoid Memory
check-box. Furthermore, through the Filter Bar (see Figure 2.A1),
the user is allowed to explicitly define the filter by entering a search
text: e.g., “rdi” filters gadgets using that register. S/he is able to
select all and only the gadgets that execute a specific operation, that
explicitly set up a certain register, or that use it to access memory.

Once the user selects a gadget, additional information is displayed
in the Analysis Pane (see Figure 2.D). The box shows the operation
carried out by the gadget, its assembly code, its memory address,

2018 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

Figure 5: The box in the Analysis Pane provides details about one of
the gadgets available for the rdi+=1 operation: the gadget modifies
the rcx and rdi registers, dereferences rdi and rax, and needs 8
bytes in memory to work properly; furthermore, its assembly code is
detailed in the bottom of the box. By clicking on the box, the gadget
will be added to the chain.

the registers that it modifies and the ones that it dereferences; an
example is provided in Figure 5. By clicking on the box, the gadget
is added to the chain.

While analyzing a gadget, the user might realize that it does
not respect certain constraints and thus seeks equivalent gadgets
with different side effects. The Similarity Pane (see Figure 2.E and
Figure 6 for details) presents all the gadgets that execute the same
operation as the selected one using the dissimilarity matrix presented
in Section 4.1. MultiDimensional Scaling (MDS) is applied to the
matrix to obtain a pair of coordinates for each subset and all the
subsets are shown in a scatter-plot, highlighting in green the set
containing the selected gadget. Since each point of the scatter-plot
represents a set of gadgets, the radius of a point is proportional to
the cardinality of the set that it represents. By clicking on a point of
the scatter-plot, the relative set is shown in the Tree Pane allowing
the user to inspect the contained gadgets in detail.

Adding a gadget to the chain will trigger the recomputation for
the registers set so far. By default, the Registers Pane is updated
to preserve these registers, thus showing in the Tree Pane only the
gadgets that are safe with respect to already set registers. The current
state of the built chain is visible in the Chain Pane (see Figure 2.F).
The chain is represented as a sequence of rectangles in which each

Figure 6: The Similarity Pane shows all the subsets of gadgets that
execute the rdi+=1 operation as the one visible in Figure 5; subsets
are displayed in a scatter-plot by applying MDS to the dissimilarity
matrix presented in Section 4.1. The size of the points encodes
the cardinality of the related subset; (a) the green set contains the
selected gadget, (b) the user has chosen to explore the set that does
not modify rcx with respect to the first one.

Figure 7: Details of the Chain Pane containing a chain of 3 gadgets.
From left to right, the first gadget sets a constant value (i.e., 0x0) in
rax; the second one dereferences 2 registers: one is already set by
the previous gadget (the green rectangle has half height) while the
other is not. The third gadget reads from an unset register (visible
on the right) and dereferences two others.

rectangle corresponds to a gadget; the background color of the
rectangle is the color of the register set by the gadget. Inside a
rectangle, registers used by the gadget are shown by distinguishing
between dereferenced registers (on the left of the rectangle) and
source registers (on the right). These registers are represented as ver-
tical rectangles using the same convention seen for the dereferenced
registers matrix: full height indicates that the dependency is not
satisfied at that point of the chain; conversely, half height indicates
that it is. This encoding becomes increasingly important as the chain
grows to manage complex dependencies between gadgets. Below
the rectangle, the operation of the gadget is reported and, for gadgets
that set a register to a value, there is a textbox to specify that value
(see Figure 7). The sequence can also be changed by reordering
gadgets via drag and drop or by removing them.

Once the built chain is complete, clicking on Dump the system
will produce a Python script that generates the binary encoding of
the chain as shown, for instance, in the right portion of Figure 1.

5 CASE STUDY

In this section we present our case study, showing how ROPMATE
has been used to produce a ROP chain for a vulnerable program that
has been the subject of the SECCON 2017 capture-the-flag3 security
competition [21]. The application is written in Go: as compiled Go
programs ship with the language runtime embedded in the binary,
such runtime usually represents a rather rich source of gadgets. How-
ever, such gadgets come with subtle side effects that are less frequent
for instance in gadgets from compiled C programs. Impersonating a
red team member, we will build a ROP chain to spawn a shell from
the attacked application, as in the running example from Section 2
used to illustrate the ROP technique.

Security Bug. The application is amenable to a buffer overflow
originating in the lack of bounds checking on one of its input param-
eters. Our goal is to show a way to turn this defect into a security
vulnerability that could be exploited by an attacker to execute arbi-
trary code on the machine. A common practice is to try to build a
ROP chain that is able to replace the running process with a shell in
the hands of the attacker: we will attempt to execute the system call
execve("/bin/sh", NULL, NULL) as in Section 2.

ROP Chain Structure. To execute the Linux system call imple-
menting the execve functionality, we remind the reader that a chain
has to place the corresponding system call ordinal 0x3b in register
rax, and the three parameters for the call in registers rdi, rsi, and
rdx. Also, as the first argument is a pointer to the string "/bin/sh",
the chain has to write the string to some memory region and place
its address in the corresponding register rdi.

Due to complex register dependencies that might arise, in the
ROP practice it is common to first assess whether there are fairly

3Such competitions propose challenges that reflect real-world problems,
but with an artificially higher level of complexity aiming at stressing the
abilities of the participants. For instance, binaries may miss some useful
ROP gadgets that instead are usually available in real-world programs.

2018 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

simple gadgets to load values to registers, as this is a operation
is prerequisite of most tasks. The builder will then worry about
how to make data movements between two registers, or a register
and memory. Following this approach, we will build a chain that
performs three steps: (i) load constant values to mandatory register
destinations for the system call; (ii) write the string "/bin/sh" to
memory and have its address available for the call; and (iii) trigger
the system call using a gadget containing the syscall instruction.

Crafting the ROP Chain. A possible chain implementing the
attack can be constructed as follows (the case study can be followed
live in the provided supplemental video):

1. We start by temporarily filtering out gadgets that perform mem-
ory accesses by using the Avoid Memory checkbox. This will
help us to quickly identify gadgets that are unlikely to make
the program crash due to possibly invalid memory operations
reducing the number of classes in the Tree Pane from 11 to 3.

2. We look into operations from the LoadConst class to deter-
mine which registers can be initialized with an immediate read
from the stack using a single gadget. For this program, we
find such gadgets for registers rax, rbp, rsi, and rcx. By
clicking on the rax operation (required to set up the ordinal
of the system call), we identify the 6 possible gadgets that
implement it and add to the chain the simplest one in terms
of memory requirement identifiable by using the memory re-
quirement bars. We then repeat the same workflow for the rsi
operation, required to set up the second argument of the sys-
tem call, and assign the proper input values to the two gadgets
(i.e., 0x3b and 0x0, respectively) using the textbox under each
newly added gadget in the Chain Pane.

3. The Tree Pane shows that there are no available gadgets for the
remaining registers to set up (i.e., rdi and rdx), consequently
we are forced to resort to gadgets that access memory by re-
moving the Avoid Memory filter. We move to setting up rdi by
typing its name in the Filter Bar and ROPMATE presents us
with two alternatives. The dereferenced registers matrix shows
us that both of them dereference rax to write to memory, so
we choose the first one due to its smaller memory requirement.

4. ROPMATE will highlight for the newly added gadget in the
chain a dependency on the contents of rax, which we pre-
viously assigned with the 0x3b value. However, rax at this
point should contain an address such that the memory write
performed by the gadget takes place in a safely writable region.
To this aim, we change the 0x3b value for the first gadget with
an identifier valid address that will eventually be assigned4

in the Python script. Finally, we write the constant value that
will be loaded to rdi: we choose another writable-address
identifier bin sh address.

5. We then proceed by “restoring” the system call ordinal in rax:
we copy the gadget that loads a constant to it by clicking on
the Analysis Pane; the gadget is duplicated and added at the
end of the chain. We then set its value to 0x3b.

6. For loading register rdx with the third argument of the call, we
follow a similar workflow as for rdi. Using the Filter Bar, 10
gadgets implementing the required LoadConst operation can
be found: the combination of memory requirement bars and
dereference registers matrix leads us to choose one of the first
3 gadgets that will perform a memory write controlled by rax,
which we can make happen within the same safe region as for
the gadget that sets rdi. The required 0x0 value is assigned to
the operation, then the gadget is dragged with the mouse right
before the one that loads 0x3b to rax, so that valid address
will be used for the memory access. At this stage, step (i) has

4A natural choice is to pick an address within the .data segment.

been carried out by the chain.

7. We now need to make provisions to assemble "/bin/sh" in
the memory location bin sh address pointed by rdi. Using
the Filter Bar, we type *rdi to highlight the relevant gadgets
that write to the pointed location. We choose the first operation
among the three available as it conveniently reads the value
to write from rax. Among the 6 possible gadgets for it we
choose the one that dereferences only rdi as suggested by the
dereferenced registers matrix. Similarly as when assigning
rdi, we add a duplicate instance of the gadget that loads to
rax at the end of the chain, and then we modify the second-
last instance of such gadget to hold the required string, which
is encoded along with its terminator using the handy Python
function u64("/bin/sh\x00"). Step (ii) is thus completed.

8. Step (iii) is straightforward: we look for a gadget containing
a syscall instruction by looking within the Other class in
the Tree Pane, and find a gadget that implements the intended
semantics without any side effects. The ROP chain is thus
complete, and can be exported to a Python script using the
Dump functionality.

6 USER EVALUATION

We have conducted a formative user evaluation in order to obtain
some preliminary feedback on the general usability and effectiveness
of ROPMATE. The involved subjects were 4 ethical hackers having
experience in red teaming processes, ROP exploits, and hacking
competitions for more than one year.

Participants were first exposed to a practical use of ROPMATE
and, after that, they were asked to accomplish some tasks on the
system and to express their thoughts, feelings, and opinions while
interacting with it. In order to further improve the obtained feed-
backs, we have used an evaluation environment [4] that is able to
encapsulate ROPMATE and trace the participants’ actions.

Concerning the received feedbacks, all participants reported the
visual approach to the problem was very useful and user-friendly. In
particular, P2 and P3 observed that ROPMATE acted as an interac-
tive recommender for the next gadget to add to the chain. Participant
P4, instead, commented that the proposed way to create the ROP
chain allowed him to not be overwhelmed by useless gadgets. Fur-
thermore, all participants thought that the interaction technique of
clicking and filtering gadgets in the Tree Pane was easy to under-
stand and found the classification helpful for searching efficiently the
right gadget. Participant P1 and P2 appreciated that the histograms
near the classes allowed them to have a visual hint of the number
of different operations among which they can choose. Participant
P3 expressed some frustration about the dragging of gadgets in the
presence of a long chain, and participant P4 commented that it would
have been nice to support advanced filters.

This preliminary feedback allowed us to improve the system us-
ability by modifying the visual component of the first prototype: for
example, a participant observed that the information of how many
gadgets were present in each subset of MDS could be useful for get-
ting an overview of register modifications for a single operation and
therefore we added it to the system. The first prototype represented
the registers dereferenced by a gadget as a list of colored rectangles.
After the evaluation, we changed the list into the matrix representa-
tion because some participants asked for a better representation of
them in order to better distinguish different registers. Concerning the
current state of the built chain, the registers dependency of each gad-
get was added to the prototype after some participants highlighted
the usefulness of this information, specifying also to encode whether
the dependency is satisfied or not.

Moreover, the analysis of traces pointed out that users were fre-
quently inspecting the actual size of the gadgets (likely to understand
whether they will fit the available stack room for the chain) so we

2018 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

Figure 8: The ROPMATE visual interface before the formative user
evaluation.

have added a user configurable threshold to the system triggering a
color scale that allows quickly identifying gadgets below the thresh-
old. As a comparative example with respect to Figure 2, Figure 8
shows the ROPMATE interface before the user evaluation.

7 CONCLUSION

Building a ROP chain is not easy: understanding the semantics of
each gadget and finding the right one amidst data dependencies and
side effects can be a heavy burden in the ROP coding activity.

In this paper we have proposed ROPMATE, a novel Visual Ana-
lytics solution specifically designed to assist human red team ROP
builders providing a visual interface based on semantically meaning-
ful gadgets that can be filtered according to user needs and chained to
form fully-functional exploits. This approach has been demonstrated
through an example of usage and a formative evaluation.

In the following, we discuss some limitations of the proposed
solution, limitations that will constitute the basis for future work.

Filtering Effectiveness. Although the system include means for
filtering the gadgets, it does not support complex filtering activities,
being the underlying query language somehow limited.

Gadget Chain Overview. User experience suggests that, the
longer the size of the chain, the harder the task of assembling it.
As an aid for the construction of long chains, we are currently
designing an Overview Pane that allows visualizing the whole chain
by preserving its main features while inspecting, on demand, details
on gadget subsequences.

Guidance. An interesting future work would be to increase the
analytical component in order to suggest some combinations of gad-
gets that perform a specific operation (possibly selected through a
more powerful filtering language). This would allow the user to
emulate the semantics of a single missing gadget, with the combi-
nation of a few others. Such combination of gadgets would then be
added as a whole to the ROP chain. However, implementing such
a guidance is not an easy task due to the inherently combinatorial
nature of the problem. We regard Progressive Visual Analytics [17]
as a promising technique that can provide approximate early results
in this context.

REFERENCES

[1] ROPgadget. https://github.com/JonathanSalwan/ROPgadget.
[2] Ropper. https://github.com/sashs/Ropper.
[3] Windows 10 security features. https://docs.microsoft.com/en-
us/windows/security/threat-protection/overview-of-

threat-mitigations-in-windows-10.
[4] M. Angelini, G. Blasilli, S. Lenti, and G. Santucci. STEIN: Speeding up

Evaluation Activities With a Seamless Testing Environment INtegrator.
In EuroVis 2018 - Short Papers. The Eurographics Association, 2018.

[5] R. Baldoni, E. Coppa, D. C. D’Elia, and C. Demetrescu. Assisting
malware analysis with symbolic execution: A case study. In Proc.
of the First Int. Conf. on Cyber Security Cryptography and Machine
Learning, CSCML. Springer International Publishing, 2017.

[6] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi.
A survey of symbolic execution techniques. ACM Computing Surveys
(ACM CSUR), 51(3), 2018.

[7] A. Biondo, M. Conti, and D. Lain. Back to the epilogue: Evading
control flow guard via unaligned targets. In NDSS ’18, 2018.

[8] G. Conti, E. Dean, M. Sinda, and B. Sangster. Visual reverse engineer-
ing of binary and data files. In Visualization for Computer Security, pp.
1–17. Springer Berlin Heidelberg, 2008.

[9] A. Follner, A. Bartel, and E. Bodden. Analyzing the gadgets. In Proc.
of the 8th International Symposium on Engineering Secure Software
and Systems, ESSoS 2016, pp. 155–172. Springer-Verlag, 2016.

[10] A. Follner, A. Bartel, H. Peng, Y.-C. Chang, K. Ispoglou, M. Payer,
and E. Bodden. Pshape: Automatically combining gadgets for arbitrary
method execution. In G. Barthe, E. Markatos, and P. Samarati, eds.,
Security and Trust Management, STM’16, pp. 212–228, 2016.

[11] J. R. Goodall, H. Radwan, and L. Halseth. Visual analysis of code
security. In Proceedings of the Seventh International Symposium on
Visualization for Cyber Security, VizSec ’10, pp. 46–51. ACM, 2010.

[12] R. Gove, J. Saxe, S. Gold, A. Long, and G. Bergamo. Seem: A scalable
visualization for comparing multiple large sets of attributes for malware
analysis. In Proceedings of the Eleventh Workshop on Visualization for
Cyber Security, VizSec ’14, pp. 72–79. ACM, 2014.

[13] M. Graziano, D. Balzarotti, and A. Zidouemba. ROPMEMU: A frame-
work for the analysis of complex code-reuse attacks. In Proceedings of
the 11th ACM on Asia Conference on Computer and Communications
Security, ASIA CCS ’16, pp. 47–58. ACM, 2016.

[14] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-free:
Defeating return-oriented programming through gadget-less binaries.
ACSAC ’10, pp. 49–58, 2010.

[15] PaX Team. Address Space Layout Randomization (ASLR). https:
//pax.grsecurity.net/docs/aslr.txt, 2016.

[16] G. R. Santhanam, B. Holland, S. Kothari, and J. Mathews. Interactive
visualization toolbox to detect sophisticated Android malware. In 2017
IEEE Symp. on Visualization for Cyber Security (VizSec), pp. 1–8,
2017.

[17] H.-J. Schulz, M. Angelini, G. Santucci, and H. Schumann. An enhanced
visualization process model for incremental visualization. IEEE Trans.
on Visualization and Computer Graphics, 22(7):1830–1842, 2016.

[18] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening
made easy. In USENIX SEC’11, pp. 25–25, 2011.

[19] H. Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In ACM CCS ’07, pp. 552–561,
2007.

[20] Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang,
C. Kruegel, and G. Vigna. Rise of the HaCRS: Augmenting au-
tonomous cyber reasoning systems with human assistance. In ACM
CCS ’17, pp. 347–362, 2017.

[21] TeamRocketIST. SECCON 2017 ROP challenge report, 2017.
https://teamrocketist.github.io/2017/12/13/Pwn-

SECCON-Baby-Stack/.
[22] V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos,

and C. Giuffrdia. The dynamics of innocent flesh on the bone: Code
reuse ten years later. In ACM CCS ’17, 2017.

[23] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida. A
tough call: Mitigating advanced code-reuse attacks at the binary level.
IEEE SP’16, pp. 934–953, 2016.

[24] L. Voinea, A. Telea, and J. J. van Wijk. Cvsscan: Visualization of code
evolution. In Proceedings of the 2005 ACM Symposium on Software
Visualization, SoftVis ’05, pp. 47–56. ACM, 2005.

[25] J. Yuen, B. Turnbull, and J. Hernandez. Visual analytics for cyber red
teaming. In 2015 IEEE Symposium on Visualization for Cyber Security
(VizSec), pp. 1–8, Oct 2015.

2018 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

