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Motivation

• in industrial robots, the presence of transmission elements such as
– harmonic drives and transmission belts (typically, Scara arms)
– long shafts (e.g., last 3-dofs of Puma)

introduce flexibility effects between actuating inputs and driven outputs

• desire of mechanical compliance in arms (or in legs for locomotion) leads to the
use of elastic transmissions in robots for safe physical interaction with humans
– actuator relocation plus cables and pulleys
– harmonic drives and lightweight (but rigid) link design
– redundant (macro-mini or parallel) actuation
– variable elasticity/stiffness actuation (VSA)

• these phenomena are captured by modeling the flexibility at the robot joints

• neglected joint flexibility limits dynamic performance of controllers (vibrations,
poor tracking, chattering during environment contact)
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Robots with joint elasticity — DEXTER

• 8R-arm by Scienzia Machinale

• DC motors with reductions for joints 1,2

• DC motors with reductions, steel cables and

pulleys for joints 3–8 (all located in link 2)

• encoders on motor sides
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Robots with joint elasticity — DLR and KUKA LWR

• LWR-II and LWR-III by DLR Institute of Robotics and Mechatronics, and the

latest industrial version by KUKA

• 7R robot arms with DC brushless motors and harmonic drives

• encoders on motor and link sides, joint torque sensors

• modular, lightweight (< 14 kg), with 7 kg payload!
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Robots with joint elasticity — DECMMA

• 2R and 4R prototype arms by Stanford University Robotics Laboratory

• parallel macro (at base, with elastic coupling) – mini (at joints) actuation
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Robots with joint elasticity — UB Hand

• dextrous hand mounted as end-effector of a Puma robot

• tendon-driven (static compliance in the grasp)
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Robots with Variable Stiffness actuation — VSA-II

• 1-dof prototype by University of Pisa (being extented to 3R robot arm)

• two DC motors, with nonlinear and variable stiffness transmission

• linear springs, with nonlinear geometric four-bar linkages
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Joint elasticity in harmonic drives — industrial robots

• compact, in-line, high reduction (1:200), power efficient transmission element

• teflon teeth of flexspline introduce small angular displacement

video HD

9



Dynamic modeling

• open-chain robot with N (rotary or prismatic) elastic joints and N rigid links,

driven by electrical actuators

• Lagrangian formulation using motor variables θ ∈ IRN (as reflected through

reduction ratios) and link variables q ∈ IRN as generalized coordinates
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• standing assumptions

A1) small displacements at joints (linear elasticity domain)

A2) axis-balanced motors (i.e., center of mass of rotors on rotation axes)

• further assumption on location of actuators in the kinematic chain

A3) each motor is mounted on the robot in a position preceding the driven link
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• link (linear + angular) kinetic energy

T` =
N∑
i=1

T`i =
N∑
i=1

(
TL,`i + TA,`i

)
=

N∑
i=1

1

2

(
m`iv

T
c,`i
vc,`i + ωT`iI`iω`i

)
=

1

2
q̇TM`(q)q̇

• motor linear kinetic energy —the mass mmi = msi+mri of each motor (stator

+ rotor) is just an additional mass of the carrying link

TL,m =
N∑
i=1

TL,mi
=

N∑
i=1

1

2
mmiv

T
c,mi

vc,mi =
1

2
q̇TMm(q)q̇

• summing up, a symmetric inertia matrix M(q) > 0 results

T` + TL,m =
1

2
q̇T (M`(q) +Mm(q)) q̇ =

1

2
q̇TM(q)q̇
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• link and motor potential energy due to gravity

Ug = Ug,` + Ug,m =
N∑
i=1

(
Ug,`i(q) + Ug,mi(q)

)
= Ug(q)

• A2) ⇒ both M , Ug are independent from θ

• potential energy due to joint elasticity

Ue =
1

2
(q − θ)TK(q − θ)

with diagonal, positive definite N ×N matrix K of joint stiffness
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• simplifying assumption ⇒ reduced dynamic model of (Spong, 1987)

A4) angular kinetic energy of each motor is due only to its own spinning

TA,m =
1

2
θ̇TB θ̇

with constant, diagonal, positive definite motor inertia matrix B (reflected

through the reduction ratios: Bi = Jmir
2
i , i = 1, . . . , N)

• system Lagrangian

L = T − U = (T` + TL,m + TA,m)− (Ug + Ue)

= 1
2 q̇

TM(q)q̇ + 1
2 θ̇

TB θ̇ − Ug(q)− 1
2 (q − θ)TK(q − θ)

= L(q, θ, q̇, θ̇)
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Euler-Lagrange equations

• given the set of generalized coordinates p = (qT θT )T ∈ IR2N , the Lagrangian

L satisfies the usual vector equation

d

dt

(
∂L

∂ṗ

)T
−
(
∂L

∂p

)T
= u

being u ∈ IR2N the non-conservative forces/torques performing work on p

• assuming no dissipative terms and no external forces (acting on links), since the

motor torques τ ∈ IRN only perform work on the motor variables θ we obtain

M(q)q̈ + C(q, q̇)q̇ + g(q) +K(q − θ) = 0

Bθ̈ +K(θ − q) = τ

link equation

motor equation

with centrifugal/Coriolis terms C(q, q̇)q̇ and gravity terms g(q) = (∂Ug/∂q)
T
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Coriolis/centrifugal terms

• being the generalized coordinates p = (qT θT )T , these quadratic terms in the

generalized velocity ṗ are computed by (symbolic) differentiation of the elements

of the 2n× 2N robot inertia matrix

M(p) =

(
M(q) 0

0 B

)
=
(
M1 M2

... M2N

)
(columns)

using the Christoffel symbols (of the second type):

C(p, ṗ)ṗ = col {ṗTCi(p)ṗ}

Ci(p) =
1

2

(∂Mi

∂p

)
+

(
∂Mi

∂p

)T
−
(
∂M
∂pi

) i = 1,2, . . . ,2N

• thanks to the simple structure ofM =M(q), the computation is relevant only

for the upper left block M(q) ⇒ only C(q, q̇)q̇ in link equation
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Model properties

• Ṁ(q)− 2C(q, q̇) is skew-symmetric

• nonlinear dynamic model, but linear in a set of coefficients a = (ar, aK, aB)
(including K and B)

Yr(q, q̇, q̈) ar + diag{q − θ} aK = 0

diag{θ̈} aB + diag{θ − q} aK = τ

• for K → ∞ (rigid joints): θ → q and K(q − θ) → finite value, so that the
equivalent rigid model is recovered (summing up link and motor equation)(

M(q) +B
)
q̈ + C(q, q̇)q̇ + g(q) = τ

• there exists a bound on the norm of the gravity gradient matrix∥∥∥∥∥∂g(q)

∂q

∥∥∥∥∥ ≤ α ⇒ ‖g(q1)− g(q2)‖ ≤ α‖q1 − q2‖, ∀q1, q2 ∈ IRN
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. . . work out the dynamic model for a case study
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planar 2R arm with elastic joints (without or with gravity)
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Singularly perturbed dynamic model

• if joint stiffnesses K = diag{K1, . . . ,KN} are very large (≈ rigid joints), the

system exhibits a two-time scale dynamic behavior in terms of link position (q)

and joint deformation torque (z) that can be used for simpler control design

• to show this, we use a linear change of coordinates(
q
z

)
=

(
q

K(θ − q)

)
and rewrite the motor acceleration and the second time derivative of the joint

deformation torque as

θ̈ = B−1 (τ − z)

z̈ = K(θ̈ − q̈) = K
(
B−1 (τ − z) +M−1(q) (C(q, q̇)q̇ + g(q)− z)

)
= KB−1τ +KM−1(q) (C(q, q̇)q̇ + g(q))−K

(
B−1 +M−1(q)

)
z

19



• from K, we can extract a common large scalar factor
1

ε2
� 1 so that

K =
1

ε2
K̂ =

1

ε2
diag{K̂1, . . . , K̂N}

with K̂i of similar (moderate) amplitude

• the second dynamic equation becomes

ε2z̈ = K̂B−1τ+K̂M−1(q) (C(q, q̇)q̇ + g(q))−K̂
(
B−1 +M−1(q)

)
z (∗)

and represents the fast dynamics associated with the elastic joints, while

M(q)q̈ + C(q, q̇)q̇ + g(q) = z

represents the slow dynamics of the links

• time scaling is made explicit by introducing the fast time variable σ =
t

ε
in (∗)

ε2z̈ = ε2
d2z

dt2
=
d2z

dσ2
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Inverse dynamics

• given a sufficiently smooth link trajectory qd(t), together with a number of its

time derivatives, compute the required motion torque τd(t)

• the associated motor trajectory θd(t) is needed

• the motor position is computed from the link equation as

θd = qd +K−1 (M(qd)q̈d + C(qd, q̇d)q̇d + g(qd))

• motor velocity is computed from the first time derivative of link equation

θ̇d = q̇d+K−1
(
M(qd)q

[3]
d + Ṁ(qd)q̈d + Ċ(qd, q̇d)q̇d + C(qd, q̇d)q̈d + ġ(qd)

)
using the notation x[i] = dix

dti
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• motor acceleration is computed from the second time derivative of link equation

θ̈d = q̈d + K−1
(
M(qd)q

[4]
d + 2Ṁ(qd)q

[3]
d + M̈(qd)q̈d

+ C̈(qd, q̇d)q̇d + 2Ċ(qd, q̇d)q̈d + C(qd, q̇d)q
[3]
d + g̈(qd)

)
• finally, the needed torque is computed from the motor equation by substitution

τd = Bθ̈d +K(θd − qd) = BK−1
(
M(qd)q

[4]
d + . . .+ g̈(qd)

)
+ (M(qd) +B) q̈d + C(qd, q̇d)q̇d + g(qd)

• this Lagrangian-based scheme may become computationally heavy for large N

• a recursive O(N) Newton-Euler inverse dynamics algorithm may be set up,

by including in the forward recursions also the linear/angular link jerks (third

derivatives) and snaps (fourth derivatives) and in the backward recursions also

the first and second derivatives of the link forces/torques
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Sensing requirements

• full state feedback requires sensing of four variables: q, θ (link/motor position)
and q̇, θ̇ (link/motor velocity) ⇒ 4N state variables for a N -dof EJ robot

• only motor variables (θ, θ̇) are available with standard sensing arrangements
(encoder + tachometer on the motor axis)

• velocities also through numerical differentiation of high-resolution encoders

• advanced systems have also measures beyond the elasticity of the joints (e.g.,
link position q and joint torque τJ = K(q− θ)(= −z) sensors in DLR LWRs)
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Exploded view of a DLR LWR-III joint
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Control problems

• regulation to a constant equilibrium configuration (q, θ, q̇, θ̇) = (qd, θd,0,0)

– only the desired link position qd is assigned, while θd has to be determined

– qd may come from the kinematic inversion of a desired cartesian pose xd
– direct kinematics of EJ robots is a function of link variables: x = kin(q)

• tracking of a sufficiently smooth trajectory q = qd(t)

– the associated motor trajectory θd(t) has to be determined

– again, qd(t) is uniquely associated to a desired cartesian trajectory xd(t)

• other relevant planning/control problems not considered here include

– rest-to-rest trajectory planning in given time T

– Cartesian control (regulation or tracking directly defined in the task space)

– force/impedance/hybrid control of EJ robots in contact with the environment
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Regulation

— a simple linear example

• two elastically coupled masses (motor/link) driven on one side (Quanser LEJ)

• dynamic model (without damping/friction effects)

mq̈ + k(q − θ) = 0 bθ̈ + k(θ − q) = τ

• using Laplace transform, we can define two input-output transfer functions of

interest from the force input τ to . . .

– the position θ of the first mass (collocated), representing the motor

– the position q of the second mass (non-collocated), representing the link
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Transfer functions of interest

• motor transfer function

Pmotor(s) =
θ(s)

τ(s)
=

ms2 + k

mbs2 + (m+ b)k
·

1

s2

– unstable system with zeros, but passive (zeros always precede poles on the

imaginary axis) → stabilization can be achieved via output (θ) feedback

• link transfer function

Plink(s) =
q(s)

τ(s)
=

k

mbs2 + (m+ b)k
·

1

s2

– unstable but controllable system as before (→ any pole assignment via full

state feedback), but now without zeros!

• with damping, pole/zero pairs are moved to the left-hand side of C-plane
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Typical frequency response of a single elastic joint
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• antiresonance/resonance behavior on motor velocity output, pure resonance on
link velocity output (weak or no zeros)
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Feedback strategies with reduced measurements

1) τ = u1 − (kP`q + kD`q̇) (link PD feedback)

W``(s) =
q(s)

u1(s)
=

k

mbs4 + (m+ b)ks2 + kkD`s+ kkP`

always unstable (spring damping/friction leads to small stability intervals)

2) τ = u2 − (kPmθ + kDmθ̇) (motor PD feedback)

Wmm(s) =
k

mbs4 +mkDms
3 + [m(k + kPm) + bk] s2 + kkDms+ kkPm

asympotically stable for kPm > 0, kDm > 0 (Routh criterion) → as in rigid

systems!
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3) τ = u3 − (kP`q + kDmθ̇) (link position and motor velocity feedback)

W`m(s) =
k

mbs4 +mkDms
3 + (m+ b)ks2 + kkDms+ kkP`

asympotically stable for 0 < kP` < k, kDm > 0 (limited proportional gain)

4) with τ = u4−(kPmθ+kD`q̇) (motor position and link velocity feedback) the

closed-loop system is always unstable

⇓

• caution must be used in dealing with different output measures

• generalization to a nonlinear multidimensional setting (under gravity) of the most

efficient scheme (motor PD feedback)

video Quanser
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Regulation with motor PD + feedforward

• for regulation tasks, consider the control law

τ = KP (θd − θ)−KDθ̇ + g(qd)

with symmetric (diagonal) KP > 0, KD > 0, and the motor reference position

θd := qd +K−1g(qd)

Theorem (Tomei, 1991) If

λmin(KE) := λmin

([
K −K
−K K +KP

])
> α

then the closed-loop equilibrium state (qd, θd,0,0) is globally asymptotically stable
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Lyapunov-based proof

• closed-loop equilibria (q̇ = θ̇ = q̈ = θ̈ = 0) satisfy

K(q − θ) + g(q) = 0

K(θ − q)−KP (θd − θ)− g(qd) = 0

• adding/subtracting K(θd − qd)− g(qd) (= 0, by definition of θd) yields

K(q − qd)−K(θ − θd) + g(q)− g(qd) = 0

−K(q − qd) + (KP +K)(θ − θd) = 0

or, in matrix form,

KE

[
q − qd
θ − θd

]
=

[
g(qd)− g(q)

0

]
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• using the Theorem assumption, for all (q, θ) 6= (qd, θd) we have∥∥∥∥∥KE
[
q − qd
θ − θd

]∥∥∥∥∥ ≥ λmin(KE)

∥∥∥∥∥
[
q − qd
θ − θd

]∥∥∥∥∥
> α

∥∥∥∥∥
[
q − qd
θ − θd

]∥∥∥∥∥ ≥ α ‖q − qd‖
≥ ‖g(qd)− g(q)‖ =

∥∥∥∥∥
[
g(qd)− g(q)

0

]∥∥∥∥∥
and hence (qd, θd) is the unique equilibrium configuration

• define the position-dependent energy function

P (q, θ) =
1

2
(q−θ)TK(q−θ)+

1

2
(θd−θ)TKP (θd−θ)+Ug(q)−θTg(qd)

its gradient ∇P (q, θ) = 0 only at (qd, θd) (using the same above argument)

and ∇2P (qd, θd) > 0 ⇒ (qd, θd) is an absolute minimum for P (q, θ)
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• the following is thus a candidate Lyapunov function

V (q, θ, q̇, θ̇) =
1

2
q̇TM(q)q̇ +

1

2
θ̇TBθ̇ + P (q, θ)− P (qd, θd) ≥ 0

• its time derivative, evaluated along the closed-loop system trajectories, is

V̇ = q̇TM(q)q̈ + 1
2q̇
TṀ(q)q̇ + θ̇TBθ̈ +

(
q̇ − θ̇

)T
K (q − θ)

− θ̇TKP (θd − θ) + q̇T
(
∂Ug(q)
∂q

)T
− θ̇Tg(qd)

= q̇T
(
−C(q, q̇)q̇ − g(q)−K(q − θ) + 1

2Ṁ(q)q̇ +K(q − θ) + g(q)
)

+ θ̇T (u−K(θ − q)−K(q − θ)−KP (θd − θ)− g(qd))

= θ̇T
(
KP (θd − θ)−KDθ̇ + g(qd)−KP (θd − θ)− g(qd)

)
= − θ̇TKDθ̇ ≤ 0

where the skew-symmetry of Ṁ − 2C has been used
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• since V̇ = 0 ⇐⇒ θ̇ = 0, the proof is completed using LaSalle Theorem

• substituting θ̇(t) ≡ 0 in the closed-loop equations yields

M(q)q̈ + C(q, q̇)q̇ + g(q) +Kq = Kθ = constant (∗)
Kq = Kθ −KP (θd − θ)− g(qd) = constant (∗∗)

from (∗∗) it follows that q̇(t) ≡ 0, which in turn simplifies (∗) into

g(q) +K(q − θ) = 0 (∗ ∗ ∗)

• from the first part of the proof, the unique solution to (∗∗)–(∗ ∗ ∗) is q = qd,

θ = θd and thus the largest invariant set contained in the set of states such

that V̇ = 0 ⇒ global asymptotic stability of the set point
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Remarks on regulation control

• if the (minimum) joint stiffness mini=1,...,NKi > α, the Theorem assumption

λmin(KE) > α can always be satisfied by increasing λmin(KP )

• since the symmetric matrices K and KP are assumed diagonal, it is sufficient

to analyze the scalar case (N = 1)

det(λI −KE) = λ2 − (2K +KP )λ+KKP

⇒ λmin(KE) = K + KP
2 −

√
K2 +

(
KP
2

)2

• set K = α+ ε, for arbitrary small ε > 0: the assumption is satisfied if

KP > 2α+
α2

ε
−→ for ε→ 0 ⇒ KP →∞
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• in the presence of model uncertainties, the control law (with KP large enough)

τ = KP (θ̂d − θ)−KDθ̇ + ĝ(qd) θ̂d := qd + K̂−1ĝ(qd)

provides asymptotic stability, for a different (still unique) equilibrium (q̄, θ̄)

• a version with on-line gravity compensation (De Luca, Siciliano, Zollo, 2005)

τ = KP (θd − θ)−KDθ̇ + g(θ̃)

where θ̃ := θ −K−1g(qd) is a ‘biased’ motor position measurement

− proof uses a modified Lyapunov candidate with

P ′ =
1

2
(q − θ)TK(q − θ) +

1

2
(θd − θ)TKP (θd − θ) + Ug(q)− Ug(θ̃)

• however, the available proof does not relax the assumptions on a minimum

K (structural) and on the need of an associated lower bound involving KP
(minimum positional control gain)
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Comparative simulation results on a 2R robot

KP = diag{180,180} KD = diag{80,80} (α ' 133)
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Comparative simulation results on a 2R robot

KP = diag{150,150} KD = diag{50,50} (sufficiency is violated)
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Further remarks on regulation control

• a stronger result is obtained using on-line quasi-static gravity cancellation (Kugi,

Ott, Albu-Schäffer, Hirzinger, 2008)

τ = KP (θd − θ)−KDθ̇ + g(q̄)

where q̄ = q̄(θ) is obtained by solving iteratively, at any given position θ

g(q̄) +K(q̄ − θ) = 0 ⇒ qi = θ −K−1g(qi−1)

• the sequence {q0 = θ, q1, q2, . . .} converges (in few iterations) to q̄ thanks to

a contraction mapping result ⇒ structural assumption mini=1,...,NKi > α is

kept, while any KP > 0 is sufficient

• an even stronger result can be obtained using a nonlinear PD law, including

dynamic gravity cancellation on the link dynamics (De Luca, Flacco, 2011),

based on the feedback equivalence principle ⇒ any K > 0 and KP > 0 will

be sufficient
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Trajectory tracking

• assuming that

– qd(t) ∈ C4 (fourth derivative w.r.t. time exists)

– full state is measurable

we proceed by system inversion from the link position output q

• a nonlinear static state feedback will be obtained that decouples and exactly

linearizes the closed-loop dynamics (set of in-out integrators) for any value K

• exponential stabilization of the tracking error is then performed on the linear

side of the transformed problem

⇓

a generalized computed torque law

• original result (Spong, 1987), revisited without the need of state-space concepts
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Feedback linearization by system inversion

• differentiate the link equation of the dynamic model (independent of input τ)

M(q)q̈ + n(q, q̇) +K(q − θ) = 0 n(q, q̇) := C(q, q̇)q̇ + g(q)

to obtain (notation: q[i] = diq/dti)

M(q)q[3] + Ṁ(q)q̈ + ṅ(q, q̇) +K(q̇ − θ̇) = 0

still independent from τ

• differentiating once more (fourth derivative of q appears)

M(q)q[4] + 2Ṁ(q)q[3] + M̈(q)q̈ + n̈(q, q̇) +K(q̈ − θ̈) = 0

the input τ appears through θ̈ and the motor equation

Bθ̈ +K(θ − q) = τ
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• substitution of θ̈ gives

M(q)q[4] + c(q, q̇, q̈, q[3]) +KB−1K(θ − q) = KB−1τ

with

c(q, q̇, q̈, q[3]) := 2Ṁ(q)q[3] + (M̈(q) +K)q̈ + n̈(q, q̇)

• the control law

τ = BK−1
(
M(q)a+ c(q, q̇, q̈, q[3])

)
+K(θ − q)

leads to the closed-loop system

q[4] = a

N separate input-output chains of four integrators (linearization and decoupling)
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• (q, q̇, q̈, q[3]) is an alternative globally defined state representation

– from the link equation

q̈ = M−1(q) (K(θ − q)− n(q, q̇))

i.e., link acceleration is a function of (q, θ, q̇)

– from the first differentiation of the link equation

q[3] = M−1(q)
(
K(θ̇ − q̇)− Ṁ(q)q̈ − ṅ(q, q̇)

)
i.e., link jerk is a function of (q, θ, q̇, θ̇) (using the above expression for q̈)

– the control term c(q, q̇, q̈, q[3]) can be expressed as a function of (q, θ, q̇, θ̇),

with an efficient organization of computations

• the control law τ = τ(q, θ, q̇, θ̇, a) can be implemented as a nonlinear static

(instantaneous) feedback from the original state
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Tracking error stabilization

• control design is completed on the linear side of the problem by choosing

a = q
[4]
d +K3(q[3]

d − q
[3]) +K2(q̈d − q̈) +K1(q̇d − q̇) +K0(qd − q)

with q̈ and q[3] expressed in terms of (q, θ, q̇, θ̇) and diagonal gain matrices

K0, . . . ,K3 chosen such that

s4 +K3is
3 +K2is

2 +K1is+K0i i = 1, . . . , N

are Hurwitz polynomials

• the tracking errors ei = qdi − qi on each link coordinate satisfy

e
[4]
i +K3ie

[3]
i +K2iëi +K1iėi +K0iei = 0

i.e., exponentially stable linear differential equations (with chosen eigenvalues)

45



Remarks on trajectory tracking control

• the shown feedback linearization result is the nonlinear/MIMO counterpart of

the transfer function τ → q being without zeros (no zero dynamics)

• the same result can be rephrased as “q is a flat output for EJ robots”

• a nominal feedforward torque (≡ inverse dynamics!) can be computed off line

τd = Bθ̈d +K(θd − qd)

using the previous developments, where

K(θd−qd) = M(qd)q̈d+n(qd, q̇d) θ̈d = K−1
(
M(qd)q

[4]
d + c(qd, q̇d, q̈d, q

[3]
d )

)
• a simpler tracking controller (of local validity around the reference trajectory) is

τ = τd +KP (θd − θ) +KD(θ̇d − θ̇)
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Two-time scale control design

• for high stiffness K the system is singularly perturbed ⇒ may use a simpler

composite control law, combining a slow and a fast component

τ = τs(q, q̇, t) + ετf(q, q̇, z, ż, t)

where τs = τ |ε=0 depends only on the slow dynamics of link motion (time t in

the arguments may come from the reference trajectory qd(t) to be tracked)

• the slow control τs is designed on the equivalent rigid dynamics (e.g., a feedback

linearization/computed torque or a PD law) obtained by setting ε = 0 in the

singularly perturbed model, whereas the fast control τf is used for stabilization

of fast dynamics due to elasticity around the manifold of equivalent rigid motion

• the control design is thus split in two parts that work at different time scales: we

should avoid to mix back these through feedback (τf should not contain terms

of order 1/ε or higher)
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• use the input τ = τs + ετf in the fast dynamics of the singularly perturbed
model (see slide 20), set ε = 0 (in the limit), and solve for z

z =
(
B−1 +M−1(q)

) (
B−1τs +M−1(q) (C(q, q̇)q̇ + g(q))

)
(∗)

= h(q, q̇, τs(q, q̇, t)) a control-dependent manifold in the

4N -dimensional state space of the robot

• replacing in the slow dynamics (M(q)q̈ + . . . = z) yields, after simplifications

(M(q)+B) q̈ + C(q, q̇)q̇ + g(q) = τs slow reduced (2N -dim) system

which is the equivalent rigid robot dynamics (obtained for K →∞!)

• for tracking a reference trajectory qd(t) ∈ C2, choose, e.g., a slow control law
based on feedback linearization

τs = (M(q) +B) (q̈d +KD(q̇d − q̇) +KP (qd − q)) + C(q, q̇)q̇ + g(q)

= τs(q, q̇, t)
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• substitute the (partially designed) control law τ = τs(q, q̇, t) + ετf in the fast
dynamics of the singularly perturbed model

ε2z̈ = K̂
(
B−1

(
τs(q, q̇, t) + ετf

)
−
(
B−1 +M−1(q)

)
z

+M−1(q) (C(q, q̇)q̇ + g(q))
)

• due to time scale separation, the slow variables in the fast dynamics are assumed
to stay constant to their values at t = t̄ (q = q(t̄) = q̄, q̇ = q̇(t̄) = ¯̇q), so

ε2z̈ = K̂
(
B−1ετf −

(
B−1 +M−1(q̄)

)
z
)

+ w(q̄, ¯̇q, t̄)

where

w(q̄, ¯̇q, t̄) = K̂
(
B−1τs(q̄, ¯̇q, t̄) +M−1(q̄)

(
C(q̄, ¯̇q)¯̇q + g(q̄)

))
which in turn, when compared with the manifold defined by (∗), is rewritten as

w(q̄, ¯̇q, t̄) = K̂
(
B−1 +M−1(q̄)

)
z̄

⇒ z̄ will be treated as a constant parameter in the fast dynamics
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• defining the error on the fast variables as ζ = z − z̄, its dynamics is

ε2ζ̈ (= ε2z̈) = K̂
(
B−1ετf +

(
B−1 +M−1(q̄)

)
(z̄ − z)

)
= K̂

(
B−1ετf −

(
B−1 +M−1(q̄)

)
ζ
)

• the fast control law should stabilize this linear error dynamics so that the fast

variable z converges to its boundary layer z̄

• with a diagonal Kf > 0 (but such that λmax(Kf)�
1

ε
), the choice

τf = −Kf ζ̇ = τf(q, q̇, z, ż, t)

leads to the exponentially stable error dynamics

ε2ζ̈ +
(
K̂B−1Kf

)
εζ̇ +

(
K̂
(
B−1 +M−1(q̄)

))
ζ = 0

(being all matrices positive definite)

• the final control law is τ = τs(q, q̇, t)− εKf ż
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An extension – Invariant manifold control design

• in the previous analysis, the slow control component τs works correctly, i.e., it

tracks the reference trajectory qd(t) on the equivalent rigid manifold, only for

ε = 0

• to improve the local behavior around an equivalent reduced (2N -dim) manifold

in the IR4N state space, we add corrective terms

τs = τ0 + ετ1 + ε2τ2 + . . .

(in the previous control law, τ0 = τs)

• proceed as before for the slow control design, but using a similar expansion of

the resulting manifold (compare with (∗))

z = h(q, q̇, z, ż, ε, t)

= h0(q, q̇, z, ż, t) + εh1(q, q̇, z, ż, t) + ε2h2(q, q̇, z, ż, t) + . . .

51



• in particular, by using up to the second-order correction term, it can be shown

that the resulting manifold can be made invariant

if the initial state starts on the (integral) manifold, the controlled trajectories

will remain on it —unless disturbances occur

• this result is similar to the one obtained by feedback linearization, but restricted

to the integral manifold

• the fast control law is then needed only for recovering from initial state mismatch

and/or disturbances

• see (Spong, Khorasani, Kokotovic, 1987)
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Robots with mixed rigid/elastic joints

• consider an N -dof robot having R rigid joints, characterized by qr ∈ IRR, and

N − R elastic joints, characterized by link variables qe ∈ IRN−R and motor

variables θe ∈ IRN−R ⇒ the state dimension is 2R+ 4(N −R) = 4N −2R

• under assumption A4), the dynamic model can be rewritten in a partitioned way

(possibly, after reordering of joint variables) as(
Mrr(q) Mre(q)

MT
re(q) Mee(q)

)(
q̈r

q̈e

)
+

(
nr(q, q̇)

ne(q, q̇)

)
+

(
0

Ke(qe − θe)

)
=

(
τr

0

)
Beθ̈e +Ke(θe − qe) = τe

where q=(qTr qTe )T∈IRN , the 2N×2N inertia matrix M(q) and its diagonal blocks Mrr(q)

and Mee(q) are invertible for all q, the 2N -vector n(q,q̇)=(nTr (q,q̇) nTe (q,q̇))T collects all

centrifugal/Coriolis and gravity terms, Ke is the diagonal (N−R)×(N−R) stiffness matrix of

the elastic joints, and τ=(τTr τTe )T∈IRN are the input torques
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• for the link accelerations (i.e., applying the system inversion algorithm to the
output y = q, after two time derivatives)(

q̈r

q̈e

)
=


(
Mrr −MreM−1

ee M
T
re

)−1
0(

Mee −MT
reM

−1
rr Mre

)−1
MT
reM

−1
rr 0

( τr

0

)

+

(
γr(q, q̇, θe)

γe(q, q̇, θe)

)
= A(q)τ + γ(q, q̇, θe)

• it is easy to see that A(q) is the decoupling matrix of the system (i.e., all its
rows should be non-zero) as soon as Mre 6≡ 0

• if this is the case, A(q) is always singular (due to the last columns of zeros)
⇒ the necessary (and sufficient) condition for input-output decoupling by static
state feedback is violated

• thus, if Mre 6≡ 0, the more general class of dynamic state feedback may be
needed for obtaining exact linearization of the closed-loop system
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• consider then the case Mre ≡ 0; moreover, assume that ne = ne(q, q̇e) (i.e.,

is independent from q̇r)

• this happens if and only if Mrr = Mrr(qr), Mee = Mee(qe) (using the

Christoffel symbols for the derivation of the Coriolis/centrifugal terms from the

robot inertia matrix)

• the latter implies also nr = nr(q, q̇r)⇒ a complete inertial separation between

the dynamics of the rigidly driven and of the elastically driven links follows

⇒


Mrr(qr)q̈r + nr(q, q̇r) = τr

Mee(qe)q̈e + ne(q, q̇e) +Ke(qe − θe) = 0

Beθ̈e +K(θe − qe) = τe

55



Theorem 1 (De Luca, 1998) Robots having mixed rigid/elastic joints can be input-

output decoupled (with y = q) and exactly linearized by static state feedback if and

only if there is complete inertial separation in the structure, i.e.

1. Mre ≡ 0

2. Mrr = Mrr(qr), Mee = Mee(qe)

The resulting closed-loop linear system is in the form q̈r = ar, q
[4]
e = ae

Under the hypotheses of the Theorem, the feedback linearization control law is

τr = Mrr(qr)ar+nr(q, q̇r) τe = BK−1
(
Mee(qe)ae + ce(q, q̇, q̈e, q

[3]
e )

)
where ce(·) := 2Ṁee(qe)q

[3]
e + (M̈ee(qe) +Ke)q̈e + n̈e(q, q̇e) and

q̈e = M−1
ee (qe) (Ke(θe − qe)− ne(q, q̇e))

q
[3]
e = M−1

ee (qe)
(
Ke(θ̇e − q̇e)− Ṁee(qe)q̈e − ṅe(q, q̇e)

)
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Theorem 2 (De Luca, 1998) When Theorem 1 cannot be applied, robots having

mixed rigid/elastic joints can always be input-output decoupled (with y = q) and

exactly linearized by a dynamic state feedback law of order m = 2R. The resulting

closed-loop linear system is in the form q
[4]
r = ar, q

[4]
e = ae

The following linear dynamic compensator, with state ξ = (θTr θ̇
T
r )T ∈ IR2R

Brθ̈r +Kr(θr − qr) = τre τr = Kr(θr − qr)
having arbitrary (diagonal) Br > 0, Kr > 0 and new input τre ∈ IRR, extends the

original mixed rigid/elastic dynamics to the same structure with all elastic joints(
Mrr(q) Mre(q)

MT
re(q) Mee(q)

)(
q̈r

q̈e

)
+

(
nr(q,q̇)

ne(q,q̇)

)
+

(
Kr(qr−θr)
Ke(qe−θe)

)
=

(
0

0

)
(
Br 0

0 Be

)(
θ̈r

θ̈e

)
+

(
Kr(θr−qr)
Ke(θe−qe)

)
=

(
τre

τe

)
⇒ feedback linearizable by a static feedback from the extended state . . .
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A more complete dynamic model of EJ robots

• what happens if we remove the simplifying assumption A3)?

• for a planar 2R EJ robot, the complete angular kinetic energy of the motors is

Tm1 =
1

2
Jm1r

2
1θ̇

2
1 Tm2 =

1

2
Jm2(q̇1 + r2θ̇2)2

with no changes at base motor and new terms for elbow motor; as a result

Tm = 1
2 ( q̇T θ̇T )


Jm2 0 0 Jm2r2

0 0 0 0

0 0 Jm1r
2
1 0

Jm2r2 0 0 Jm2r
2
2


(
q̇

θ̇

)

= 1
2 ( q̇T θ̇T )

 Jm2 0
0 0

S

ST B

( q̇
θ̇

)

the blue terms contribute to M(q) (the diagonal 0 should not worry here!)
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• for NR planar EJ robots, we obtain

M(q)q̈ + Sθ̈ + C(q, q̇)q̇ + g(q) +K(q − θ) = 0

ST q̈ +Bθ̈ +K(θ − q) = τ

link equation

motor equation

with the strictly upper triangular matrix S representing inertial couplings between

motor and link accelerations

• in general, a non-constant matrix S may arise, see (De Luca, Tomei, 1996)

S(q) =



0 S12(q1) S13(q1,q2) ··· S1N(q1,...,qN−1)

0 0 S23(q2) ··· S2N(q2,...,qN−1)
... ... ... . . . ...

0 0 0 ··· SN−1,N(qN−1)

0 0 0 ··· 0


with new associated centrifugal/Coriolis terms in both link and motor equations
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Control-oriented remarks

• specific kinematic structures with elastic joints (single link, polar 2R, PRP, . . . )

have S ≡ 0, so that the reduced model is also complete and feedback linearizable

• for the inverse dynamics solution, see (De Luca, Book, 2008)

• as soon as S 6= 0, exact linearization and input-output decoupling both fail if

we rely on the use of a nonlinear but static state feedback structure

• in order to mimic a generalized computed torque approach (linearization and

decoupling for tracking tasks), we need a dynamic state feedback controller

τ = α(x, ξ) + β(x, ξ)v

ξ̇ = γ(x, ξ) + δ(x, ξ)v

with robot state x = (q, θ, q̇, θ̇) ∈ IR4N , dynamic compensator state ξ ∈ IRm

(yet to be defined), and new control input v ∈ IRN
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A control extension — Dynamic feedback linearization of EJ robots

• a three-step design that achieves full linearization and input-output decoupling,

incrementally building the compensator dynamics through the solution of two

intermediate subproblems ⇒ DFL algorithm in (De Luca, Lucibello, 1998)

• presented for constant S 6= 0, works also for S(q)

• transformation of the dynamic equations in state-space format is not needed

• collapses in the usual linearizing control by static state feedback when S = 0

• can be applied also to the complete model of robots with joints of mixed type

—some rigid, other elastic, see (De Luca, Farina, 2004)
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Step 1: I-O decoupling w.r.t. θ

• apply the static control law

τ = Bu+ ST q̈ +K(θ − q)
or, eliminating link acceleration q̈ (and dropping dependencies)

τ =
(
J − STM−1S

)
u− STM−1

(
Cq̇ + g +K(q − θ)

)
+K(θ − q)

• the resulting system is

θ̈ = u
M(q)q̈ = . . . (2N dynamics unobservable from θ)
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Step 2: I-O decoupling w.r.t. f

• define as output the generalized force

f = M(q)q̈ + C(q, q̇)q̇ + g(q) +Kq

⇒ the link equation, after Step 1, is rewritten as f(q, q̇, q̈) + Su−Kθ = 0

• dynamic extension: add 2(i− 1) integrators on input ui (i = 1, . . . , N) so as

to avoid successive input differentiation
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• differentiate 2i times the component fi (i = 1, . . . , N) and apply a linear static

control law (depending on K and S)

w = Fwφ+Gww

so that the resulting input-output system is

d2ifi
dt2i

= wi i = 1, . . . , N
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Step 3: I-O decoupling w.r.t. q

• dynamic balancing: add 2(N − i) integrators on input wi (i = 1, . . . , N) so

as to avoid successive input differentiation

• differentiate 2(N−i) times the ith input-output equation (i = 1, . . . , N) after

Step 2, thus obtaining

d2Nf

dt2N
=

d2N

dt2N
(M(q)q̈ + C(q, q̇)q̇ + g(q) +Kq) = v
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• apply the nonlinear static control law (globally defined)

v = M(q)v + ñ(q, q̇, . . . , q[2N+1]) + g[2N ](q) +Kq[2N ]

where

ñ =
2N∑
k=1

(2N
k

)
M [k](q)q[2(N+1)−k] +

2N∑
k=0

(2N
k

)
C[k](q, q̇)q[2N+1−k]

• the final resulting system is fully linearized and decoupled

q[2(N+1)] = v
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Comments on the DFL algorithm

• using recursion, the output q and all its derivatives (linearizing coordinates) can

be expressed in terms of the robot + compensator states

[ q q̇ q̈ q[3] · · · q[2N+1] ] = T (q, θ, q̇, θ̇, φ, ψ)

• the overall nonlinear dynamic feedback for the original torque

τ = τ(q, θ, q̇, θ̇, ξ, v) ξ̇ =

[
φ̇

ψ̇

]
= . . .

is of dimension m = 2N(N − 1)

• for a planar 2R EJ robot, m = 4 and final system with 2 chains of 6 integrators
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• when some of the elements in the upper triangular part of S are zero (depending

on the arm kinematics), then the needed dynamic controller has a dimension m

that is lower than 2N(N − 1) ⇒ the dynamic extensions at steps 2 and 3 are

required only for some joints

• for trajectory tracking purposes, given a (sufficiently smooth) qd(t) ∈ C2(N+1),

the tracking error ei = qdi − qi on each channel is exponentially stabilized by

vi = q
[2(n+1)]
di +

2N+1∑
j=0

Kji

(
q

[j]
di − q

[j]
i

)
i = 1, . . . , N

where K0i, . . . ,K2N+1,i are the coefficients of a desired Hurwitz polynomial
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Final remarks

• for the complete dynamic model of EJ robots, all proposed control laws for

regulation tasks are still valid

– under the same conditions, using the same Lyapunov candidates in the proof,

with a more complex final LaSalle analysis

• addition of viscous friction terms on the lhs of the link (Dqq̇) and the mo-

tor (Dθθ̇) equations, with diagonal Dq, Dθ > 0, is trivially handled both in

regulation and trajectory tracking controllers

• inclusion of spring damping (+D(q̇ − θ̇) on the lhs of the link equation, its

opposite in the motor equation) ⇒ visco-elastic joints

– essentially, no changes for regulation controllers

– static feedback linearization for tracking tracking tasks becomes ill-conditioned

for D → 0, while resorting to a dynamic feedback linearization control will

guarantee regularity (De Luca, Farina, Lucibello, 2005)
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Research issues

• kinetostatic calibration of EJ robots using only motor measurements

• unified dynamic identification of model parameters (including K and B)

• robust control for trajectory tracking in the presence of uncertainties

• adaptive control: available (but quite complex) only for the reduced model with

S = 0 (Lozano, Brogliato, 1992)

• Cartesian impedance control with proved stability, see (Zollo, Siciliano, De Luca,

Guglielmelli, Dario, 2005)

• fitting the results into parallel/redundant actuated devices with joint elasticity

• consideration of nonlinear transmission flexibility, with passively varying stiffness

or independently actuated

• . . .
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