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Outline

= cases of articulated soft robots

= manipulators with flexible transmissions, variable stiffness actuation (VSA),
serial elastic actuation (SEA), ...

= application: safe physical Human-Robot Interaction (pHRI)

= dynamic modeling of flexible joint manipulators
= with few comments on their structural properties and extensions

= classical control tasks and their solution
= acloser look into the linear case: single elastic joint (with no gravity)
= regulation with partial/full state feedback and gravity compensation
= inverse dynamics and feedback linearization for trajectory tracking

= model-based design based on feedback equivalence
= exact gravity cancellation

= damping injection on the link side of the flexible transmission

m  conclusions and basic references
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Classes of articulated soft robots
Robots with elastic joints

= design of lightweight robots with stiff links for end-effector accuracy

= compliant elements absorb impact energy
= soft coverage of links (safe bags)
= elastic transmissions (HD, tendons, cable-driven, ...)
= elastic joints decouple instantaneously the larger inertia of the driving
motors from smaller inertia of the links (involved in contacts/collisions!)

= relatively soft joints need more sensing (e.g., joint torque) and better
control to compensate for static deflections and dynamic vibrations

e

mm) torque-controlled robots (DLR LWR-IIl, KUKA LWR-IV & iiwa, Franka, ...)
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Harmonic Drive
Compact, in-line, high reduction (up to 1:160), power efficient transmission

video

Wave Generator
of slightly elliptic
external form
(with ball bearings)

Circular Spline

inner #teeth CS = outer #teeth FS + 2

reduction ratio
n = #iteeth FS / (#teeth CS - #teeth FS)

= fiteeth FS / 2

PI
FlexSpline
(two contact points)
input from motor output to load
4
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Sensors in an elastic joint
Exploded view of a joint of the DLR-IIl robot

Link Position Sensor

Cross Roller Bearing

Power Converter Unit

Joint- and Motorcontroller Board

Power Supply

Torque Sensor
with digital interface
HarmonicDrive

joint torque
J 9 Gear Unit

Ty =K@ —q)  stiffness K e

Position Sensor

0

Carbon Fibre
robot link
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Classes of soft robots
Robots with Variable Stiffness Actuation (VSA)

" uncertain/dynamic interaction with the environment requires to adjust
the compliant behavior of the robot and/or to control contact forces

= passive joint elasticity & active impedance control used in parallel

= nonlinear flexible joints with variable (controlled) stiffness work at best:
= can be made stiff when moving slow (performance), soft when fast (safety)
= enlarge the set of achievable task-oriented compliance matrices
= feature also: robustness, optimal energy use, explosive motion tasks, ...

F\ Ciecular Spline

& o Varisble Stiffiness
’ Mechanism
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Serial and Antagonistic VSA
With antagonistic VSA-IlI by University of Pisa

& filgu-q1) SolqL-q2) T anta gon istic
| : WO \ X VSA

serial S(qL—gwm.g5)
VSA i

= bi-directional, symmetric arrangement of two motors in antagonistic mode

= nonlinear flexible transmission: four-bar linkage + linear spring
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A matter of terminology (or of purpose?)

Different sources of softness/flexibility, though similar robotic systems

= elastic joints vs. SEA (Serial Elastic Actuators)
" based on the same physical phenomenon: compliance in actuation
= compliance added on purpose in SEA, mostly a disturbance in elastic joints
» different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA

= joint deformation is often considered in the linear domain
" modeled as a concentrated torsional spring with constant stiffness at the joint
= nonlinear flexible joints share similar control properties
" nonlinear stiffness characteristics are needed instead in VSA
= 3 (serial or antagonistic) VSA working at constant stiffness is an elastic joint

= flexible joint robots are classified as underactuated mechanical systems
= have less commands than generalized coordinates

" non-collocation of command inputs and of dynamic behaviors to be controlled
= however, they are controllable in the first approximation (the easier case!)
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Control drawbacks due to joint elasticity

Neglecting softness may generate vibrations and trajectory oscillations

= anywhere: conventional/massive industrial manipulators, lightweight (loaded)
research-oriented robots, educational devices, ...

video

Linear
Flexible Joint

(LINFLEX)

video
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Modal analysis of an industrial robot
Assumed to be fully rigid

» |owest mode is a torsional vibration around the base vertical joint axis with
f1 = 6.9 Hz (but slightly changing with robot configuration and payload)

video
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Exploiting joint elasticity in pHRI

Detection and selective reaction in torque control mode, based on residuals

video

[De Luca,
Mattone, 2005;
Haddadin
etal, 2017]
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Exploiting joint elasticity in pHRI

Human-robot collaboration in torque control mode

—actual — desired

3 4 5 6 7
Time [s]

video

[Magrini
et al, 2015]
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Dynamic modeling

Lagrangian formulation (so-called reduced model of [Spong, 1987])

= open chain manipulator with N joints driven by electrical actuators, with
elastic transmission to N rigid links

= use N motor variables 8 (as reflected through the gear ratios 8,,; = n,;6;)
and N link variables g

center of mass of rotors
u on rotation axes

A1) small deflection at joints
A2) axis-balanced motors

A3) each motor mounted on the robot
in a position preceding the driven link

A4) no inertial couplings between
motors and links

L

angular kinetic energy of each motor is due only to its own spinning
" no dissipative effects here (can be added later)
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Dynamic modeling
Derivation

= kinetic energy and potential energy due to gravity of the links (including on
each link the mass of the carried actuator, under assumption A3 (and A2)

1
T, = EC'ITM(Q)C'I Ug = Ug(q)

= angular kinetic energy of the motors, under assumption A4 (and A2)

2

= potential energy due to joint elasticity (under assumption Al)

N

1 ) 1 ) 1 . 1 . .

Ti = Elmﬂﬁu = Elminfzé’iz = EBszz T = 2 Tmi == 0" B0
i=1

1 1
Uei = 5 Ki(q: = 6:)° Ue = 0, Vei =3 (= 0)K(q = 0)

(OL)T (6L>T 0
t \dq aq

oL\"  /oL\"
G3) ~ G

= robot Lagrangian and E-L equations

L=T-U-= (Tl+Tm)—(Ug+Ue)
= L(q,@,q,g)

2 &|a D=

U

t
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Dynamic model

Robots with elastic joints

A2) = inertia '

matrix and gravity

A4) = 2N x 2N

:nirlt'ak”:j?t”x | vector are not
s block diagona dependent from 0

N\ .

(M@ 0)(8)+ (@) 4 (9D) 4 (X~ D) = (0) | Inkeaation

motor +

reduction n, work out this

1 DOF example
... [5 Min]
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Single elastic joint

Adding also viscous friction on motor and link sides

motor +
reduction n,

Uy, = mgtsing + Uy

U, =5 K(q - 0)?

link equation

MG+ K(q—0)+mgfcosq = —Dqq - ggrf-hcz:;irvative
torques performing

work on g and 6

BO+ K —q) =n. (1, — DpgOm) =7 —Dygb
motor equation
T=N,Ty

— 2
Dg = Dgpyn;
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Dynamic modeling

A more complete model without the Spong assumption A4

the angular kinetic energy of the two motors is ...
1 . 1 . 1 , . 2 1 , N2
Tm1 = Elm1n12~1312 = 5191‘912 Tz = E’mz (CI1 + Hmz) = E’mz (CI1 + nrzez)

1 . . o
= Elmz(Q% + n,2,2922 + 2nr2Q192)

? . working out the complete
2 kinetic energy of this robot
with two elastic joints ...

N ( ) ) M (q) contains alsom,,,, and I,
T .
S b strictly upper-triangular (B contains Imlnfland Imznfz)
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Model properties

Robots with elastic joints

= for K — oo (rigid joints), 8 = q and K(q — 8) — oo (a finite value) and the
equivalent rigid model is recovered (adding up link and motor equations)

(M(q) +B)4+C(q,q9)qg +9g(q) =7

= the nonlinear dynamic model is linear in a set of dynamic coefficients
a = (a,ag,ag) (i.e., including K and B)

Y(q,9,4) a +diag(q —0) ax =0 = ¥(4.4.4.0,6)a= (2)
diag(6) ag — diag(q —0) ax =7 _ (Y(q,q,§) diag(qg —6) 0
r= < 0 — diag(q — 0) diag(é)>

= asin therigid case, there exists a bound on the norm of the gradient of the
gravity vector g(q)

Er
dq

<a Vq = |lg(q) — 9@l =< allgy — q2ll  Vq1, 9>
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Control problems

Robots with elastic joints

= regulation to an equilibrium configuration (q, 9,q, 9) =(q4,04,0,0)

= direct kinematics of elastic joint robots is a function of link variables
only: r = kin(q)

" only adesired link position g4 is given, 8, is to be determined

" g4 may come from the inverse kinematics of a desired Cartesian
pose/position 14

= using partial or full state feedback
= asymptotic tracking of a (sufficiently) smooth link trajectory g, (t)

= the corresponding motor trajectory 84(t) is to be determined
= mostly using full, but also partial state feedback

= model matching by feedback

= |ess conventional problem, based on equivalence under feedback
transformations
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Single elastic joint

Transfer functions of interest

4

Y

: K : environment force
T ' (here, absent)
—> B W\ M |+
X0 « Te

motor friction tf
(usually, compensated)

0(s) Ms? + K 1
PmOtOI'(S) — —

T(s)  MBs?+ (M + B)K s?
we often look rather at the = system with two zeros and relative degree = 2

torque-to-velocity mappings ... = passive (zero precedes pole on imaginary axis)
(eliminating one integrator) = stabilization can be achieved via output 6 feedback

q(s) K 1
©(s)  MBs®+ (M + B)K s?

P link(S ) =

= NO zeros!!
" maximum relative degree = 4
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Single elastic joint
Transfer functions of interest (some small damping added on motor/link side)

Motor velocity output Link velocity output

20 20
g 0 )
RS %, 0 7
(] ()
S-20 E
= =
g &-20 .
=40 =
-60 : antl-re‘sonance/resonance! 40 : __pure resonance!
1 0 1 0
10 10 10 10
Frequency (rad/sec) Frequency (rad/sec)
100 0
. 50F 1
g §7-1OO B 7
o or ) 3
e £ 200
o - - i
-50 J 1"
-100 : ‘ ‘ ‘ ‘ ‘ — -300 : ‘ ‘ ‘ ‘ ‘ —
10-1 100 10-1 100
Frequency (rad/sec) Frequency (rad/sec)

= single anti-resonance/resonance behavior on motor output

= pure resonance on link output (weak or no zeros)
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Regulation of a single elastic joint

Feedback schemes with reduced measurements

= link PD feedback T = ugq — (Kp,oq + Kp o)

q(s) _ K
Ugq(s) MBs*+ (M + B)Ks? + KKp 45 + KKp

Waq(s) =

= always unstable for any value of the gains (s> term is missing ...)
= inclusion of dissipative terms would lead to a very small interval of stability

= motor PD feedback T = ugy — (KP’QH + KD’QH.)

q(s)  _ K
uga(s)  MBs* + MKp ps® + ((M +B)K + MKP,Q) s+ KKp ps + KKp g

Wog(s) =

= asymptotically stable for any Kp g > 0, Kp g > 0 (Routh criterion ...)
= asinarigid joint!
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Regulation of a single elastic joint

Feedback schemes with reduced measurements (mixed cases)

= link position and motor velocity feedback T = ugq —

Wee(s) = 1) _ §
q6 uqd(S) MBS4 + MKD,QSS + (M + B)KSZ + KKD,HS ~+ KKP,q

= asymptotically stable for 0 < Kp, < K, Kpg >0
= |imited proportional gain, not overriding the spring stiffness

= motor position and link velocity feedback T = ugg — (KP’QH + KD,qc'I)
q(s) _ K
Uea(S)  MBs*+ ((M + B)K + MKp ) s + KKp ;s + KKp g

WGq (s) =

= always unstable for any value of the gains

= caution must be used in dealing with different partial state measurements

= in the nonlinear/MIMO case (regulation under gravity) we consider only
the best of these feedback schemes: motor PD feedback
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Regulation with motor PD + feedforward

Partial state feedback solution

= consider the control law Q

T=Kp(6;—0) — KpO + g(q4)

with symmetric (diagonal) Kp > 0, Kp > 0, and with the motor
reference position at steady state corresponding to g4 given by

0, =qq+ K 1g9(qq)

Theorem | [Tomei, 1991]

ag K —K
2 < 0 At = (S K ) 5 a0

then the desired closed-loop equilibrium state (g4, 04,0, 0) is
globally asymptotically stable |

Rome, May 2023 EECI - IGSC - M16 24



Regulation with motor PD + feedforward

Lyapunov-based proof in detail

" all closed-loop equilibria (g = 8 = g = 0) satisfy
K(g—6)+g(q) =0
K€ —q)—Kp(64—0) —g(qq) =0
» adding/subtracting K(84 — q4) — 9(qq) ( = 0, by definition of 8,4) yields
K(q—qa) —K(0 —064)+9(q) —9(qq) =0

—K(q —qq) + (K +Kp)(0 —63) =0
= Or in matrix form

(B 179) (5250 = ke (625,) = (1975 9@)
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Regulation with motor PD + feedforward

Lyapunov-based proof in detail

= using the assumptions of the Theorem, for all (q,8) # (g4, 84) we have

|62 (5~ 62| = Amin(ke) || (g — 6°)
(o—a3)ll =

> [lg(qa) = 9@l = |

-

q — qall

(g(qd)o— g(q)) H

and hence (g4, 84) is the unique equilibrium configuration

define the position-dependent (potential-like) function

P(q,6) =5 (g~ O)TK(q — ) +5 (8 — O Kp(8y — 6) + Ug(a) — 679 (q0)

the gradient VP(q,8) = 0 only at (g4, 84) (using the same argument above)

+ the Hessian V2P(q,0) > 0 = (qg, 04) is an absolute minimum of P(q, )
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Regulation with motor PD + feedforward

Lyapunov-based proof in detail

= the following is thus a Lyapunov candidate

y 1. 1.

1. 1.1 . 1 .
=54 M(Q)q+50"B0 +-(q = 0)'K(q—6)+5(6a — ) Kp(6q — 6)

+U,(q) = Uy(qq) — (0 —0,)"g(q4) _é(Qd —04)"K(qq — 04)

" jts time derivative evaluated along the closed-loop system trajectories is

aU,(q) .

V=¢"M(q)j+-¢"M(@)q+0"BO+(qg—0) K(qg—0) —0TKp(84 — 0) + o7 qg—0"g(qq)

2

| . Uy ()
=qT<—Mq—g(q)—K(q —9)+§)"@Q+K(q_0)+(_gq ) )

+60"(7 — K(B=q) — K(¢=6) — Kp(84 — 6) — g(qa))

= 07 (Kp (85— 0) — KpO + 0(da) — Kp (0= 0) — 94dq)) = —0TKp0 < 0

where the skew-symmetry of M — 2C has been used
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Regulation with motor PD + feedforward

Lyapunov-based proof in detail

= sinceV =0 & 6 = 0, the proof is completed using LaSalle

= substituting & = 0 in the closed-loop equations yields
M(q)g + C(q,q)qg + g(q) + Kq = KO = constant (*)
Kq=KO —Kp(8; —0) — g(qg) = constant (%)
= from (**) it follows that g = ¢ = 0, which in turn simplifies (*) to
9(q) +Kq - K8 =0 ()

" from the first part of the proof g = q4,8 = 8, is the unique solution to
(**)-(**x) and thus the configuration (qg4, 84) is the only one contained
in the largest invariant set of states such that V =0

= global asymptotic stability of the desired equilibrium state (g4, 64,0,0) =
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Comments

... on this regulation control law in the joint elasticity case

= if joint stiffness K is large enough (always true in non-pathological cases),
the assumption of the Theorem A,,;,,(Kg) > «a can always be satisfied by
increasing A, (Kp)

" in the presence of model uncertainties, the control law
t=Kp(Ba—0) Ko +§(qa)  8a=qq+K'§(qa)
provides asymptotic stability for a different equilibrium (g, 8) (still unique,
and possibly close to the desired one, if Kp is sufficiently large)

= 3 motor PD + on-line gravity compensation scheme

. — _ —~ biased
T — Kp(ed — H) _ KDH + g(@) 0=0+ K_lg(Qd) motor position

can be proven to achieve global asymptotic stability (with expected better
transients), by using a modified Lyapunov candidate

1 1 _
P(q,0) =7 (q - 0)'K(q —6) +2 0 - 0)'Kp (0, —6) +Uy(q) — U, (0)
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Regulation with motor PD+ ...

Comparative numerical results with constant or on-line gravity compensation

= a planar robot with two elastic joints robot under gravity (in the vertical plane),
with K; =K, = 1000 [Nm/rad] and a = 133
= at rest from the horizontal g(0) = (0°, 0°) to the upward vertical gz = (90°, 0°)

T

00 = (1)

Kp =diag(180,180)

Ky satisfies the
assumption

K, = diag(80,80)

[rad]

LINK POSITIONS

8

10

[Nm]

400

300

200
2

1001

-100
0

0.15

o1l

MOTOR TORQUES

ol Y

] (solid)

2 T oos
) - - = constant
e 0 (dashed)
-0.5 - - -0.05 -
2 4 6 8 10 0 4 6 8 10
s] s]
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Regulation with motor PD+ ...

Comparative numerical results with constant or on-line gravity compensation

with K; =K, = 1000 [Nm/rad] and a = 133
= at rest from the horizontal g(0) = (0°, 0°) to the upward vertical gz = (90°, 0°)

LINK POSITIONS MOTOR TORQUES
2 " " 400 . . .
B ’ does not
S 20 converge
Z‘ i\
Kp =diag(150,150) 100y 1+
- Oy
Ky violates the O ool
. o 2 4 6 8 10 0 2 4 6 8 10
assumption [s] [s]
(because Of K ) LINK #1 POSITION ERROR LINK #2 POSITION ERROR
P 2 0.25
0.2
K, =diag(50,50) o
8 5 S (solid)
L - - = constant
(dashed)
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Summary of control laws for regulation

Using a minimal PD+ action on the motor side

for a desired constant link position g4

= evaluate the associated desired motor position 8, at steady state

= collocated (partial state) feedback on motor variables preserves passivity

= 3 sufficiently stiff Kp gain should be used to dominate gravity

= focus on term for (link side) gravity compensation based on motor measurements

Oa = qa + K~9(qa) T=1,+Kp(8y — 0) — Kpb Kp >0

K —K |
9(qq) Amin K K+Kp > a [Tomei, 1991]
K K
g(®@ — K 1g(q) Amin K K+K, > a [De Luca, Siciliano, Zollo, 2004]

g(@®), q(0): g(@) =K@ —q) Kp>0, Apin(K)>a [Ott, Albu-Schaffer, et al 2004]

g(q) + BK™* G(q) Kp > 0, K>0 [De Luca, Flacco, 2010]

\ exact gravity cancellation
(with full state feedback)

more on this soon...
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Visco-elasticity at the joints

Introduces a structural change ...

K
T AAAA
qB rl M
L
0 i D

A A

on Spong model

[P R L WA VA R

coupling type | consequence for the model

stiffness basic static coupling, maximum relative degree (= 4) of output g
damping reduced relative degree (= 3), only I/0O linearization” by static feedback
inertia*™ reduced relative degree, |/O linearization needs dynamic feedback
#with asymptotically stable zero dynamics * so-called complete dynamic model
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Inverse dynamics

Feedforward action for following a desired trajectory in nominal conditions

given a desired smooth link trajectory q,(t) €

= compute symbolically the desired motor acceleration and, therefore, also the desired

link jerk and snap (i.e., up to the time derivative of the desired motion)
M(q) 0 (i?) (@ DqY 4 (9@ (K (q - 9)) ( 0 )
( 0 B)é +( 0 )+( ) K6 —q) Tm

md—BQd+K(9d qq) I
2
= BK™! (M(Qd) qa* + 2M(qq) qa' + Mg ‘|‘

+(M(qq) + B)ga+ C(qa, 4g)dq + 9(q4)

= the inverse dynamics can be efficiently computed using a modified Newton-Euler
algorithm (with link recursions up to the fourth differential order) running in O (N)

(C (94 4a)da + g(%)))

= the feedforward command can be used in combination with a PD feedback control

on the motor position/velocity error, so to obtain a local but simple trajectory
tracking control law
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Feedback linearization

For accurate trajectory tracking tasks

= the link position g is a linearizing (a.k.a. flat) output 4
=Uu

[M(()Q) g] (g) +(C(q661)c'1) +(g%q)) +G§Eg:2§) _ (0) ) | =

T

= differentiating twice the link equation and using the motor acceleration yields

2
T=BK *M(@Qu+K(6 —q) +Bj+ BK™1 <2Mq[ I+ Mg o (Cq + g(q)))

= an exactly linear and I/O decoupled closed-loop system is obtained

" to be stabilized with standard techniques for linear dynamics (pole placement, LQ, ...)

" requires higher derivatives of g q,4q,q,q®

= ... but these can be computed from the model using the state measurements

" requires higher derivatives of the dynamic components M,C, g

...a O(N3) Newton-Euler recursive numerical algorithm is available for this
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Feedback linearization

Based on the only vs. when modeling also joint elasticity

2

T =BK 'M(@QQu+K(6 —q)+Bi+BK™! <2Mq[ I+ Mg + 3 (Cq + g(q))>
[4]

w= (gl + K (Ga — @) + Ka(Ga— @) + Kp(da — §) + Kp (qa — q))

video video

computed torque [Spong, 1987]  e|astic joint feedback linearization
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Feedback linearization
Benefits on an industrial KUKA KR-15/2 robot (235 kg) with joint elasticity

video .
video

three squares in:
y

E horizontal
plane

i vertical
front
z plane

vertical
sagittal
X plane

[Thiimmel,
PhD@TUM
2007]

feedback linearization + high-dampin ]
& Ping trajectory tracking with model-based control
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Torque control

A different set of state measurements can be used directly for tracking control

M(()q) g] (g) N (C (qbél)éz) N (Q(CI)) (ﬁ gg fg) (2)

Ty = K(H — CI) measurable by a joint torque sensor

BK_LE] +1,=7— Bi rewriting the motor dynamics

T=BK ') 4+ 14+ Ke(tya — 7)) + Ks(F)0 — 1))

= useful for designing a motor side disturbance observer, e.g., to realize friction
compensation

= basis for many cascaded controller designs, starting from a given rigid body
control law 7 = 7(q, q,t) taken as 7, 4(t) in the above formulas

= higher derivatives are still required (either g or ;)
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Torque feedback

An inner loop that largely reduces motor inertia (and friction)

a pure proportional torque feedback (+ a derivative term for the visco-elastic case)
t=BB;'u+ (I -BB;')t; +(I—BB;')DK 11

—

—Kr —Kg

Motor inertia T Link inertia
T
0 q physical interpretation:
scaling down motor inertia and friction!
Torque feedback Link inert;
........ T ink inertia

[Ott et al, 2008]

original motor dynamics visco-elastic case

BO+K@O—-q)=T1 BO+1,+DK i =1

-

after the torque feedback| B48 + K(0 —q) =u | | Bg0 + T, + DK ' =u
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Position- vs torque-controlled robots

Joint elasticity and joint torque sensing allows better dynamic control

qq or q. .
Tq L ; q q r
task/trajectory high-level low-level actuation [ task
planner controller controller T — robot kinematics
T 0 |
kinematic control sensing
dq or
ask/trajectory | |t g e 1 T ek |
ask/trajectory | | torque actuation robot I | ask
planner controller kinematics
dynamic control sensing
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Full-state feedback

Albu-Schaffer et al,
Combining torque feedback with a motor PD regulation law [

2007]

inertia scaling via torque feedback 7=+ Kp)u— Ky 15 — K1y
regulation via motor PD, e.g., with u=g(g(0)) + Ke(6q4 —0) — Dgb

=> joint level control structure of the DLR (and KUKA) lightweight robots

dynamics feedforward and
desired torque command setpoint control

I N

T=1,4— Ky (1, — T]’d) — Kst; — Kp(8y — 6) — Kp0 + T + Tgop (+ integral actions)

\ / friction compensation

motor inertia scaling vibration damping and/or disturbance observer
torque control position control impedance control
Kp=0 Kp >0 Kp = KrKg
Kp=0 Kp >0 Kp = KrDg
Kr >0 Kr >0 Kr = (BB;'—1)
Ks >0 Ks >0 Ks = (BB;' —I)DK™1
Tja = Tq Tra = 9(q) Tjqa = 9(q(0))
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Exact gravity cancellation
A slightly different view

= for rigid robots this is trivial, due to full actuation and collocation

1= M(q)§ + c(q.q) = 7o

M(q)g+c(q,q) +g(q) =T
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Exact gravity cancellation
... exploiting the concept of feedback equivalence between nonlinear systems

?7?

Q- 4

|
o

M(q)q +c(q,q) +g(q) + K(q — 0)
BO+K@O-—q) =T
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Exact gravity cancellation

... can be generalized also to VSA robots

= same problem formulation holds also for VSA robots (here, in antagonistic
configuration), with the additional consideration of the internal stiffness state

T 14 | ?2? To1 =2 Bp1=—> q

To2 = Op2 =>» 0

q=4qy|??

o =og|?7?

¢i=q-0;  M(q)q+c(g:q)+9(q)+ Ter(d1) + Tea(d2) = 0
=12 B10; —Te1(¢)) = 71

B2é2 —Te2(¢2) = T2
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Feedback equivalence

Use the system property of being feedback linearizable (without forcing it!)

u=é&(x) + B(x)ug

‘_ zo =T, (T (x)) =T(x) _1

= f(x)+ G(x)u o = folxg) + Gol(To)ug

gravity-loaded system feedback transformations gravity-free system
static state feedback
+ change of coordinates
both invertible

u = a(x)+ B(x)v wo = ao(To) + Bo(o)v
z=T(x) l z =To(xp)
z=Az+ Bv J
linear, controllable system
Z = linearizing outputs
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Exact gravity cancellation
Elastic joint robots (including link/motor damping) [De Luca, Flacco, 2010]

M(q)q+c(q,q)+g(q)+Dyqg+K(g—6) =0
BO+Dyb6+K@6O—-q) =T

m) 7,=g(q)+DoK 'g(q) + BK '§(q)

9(q) = _aggq) q
n A9
(@) = 25 M @ (KO~ a)=clai)=0(0)~Dyi) + 3 550 i

requires (in principle) full state feedback
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Numerical results

Exact gravity cancellation for a 1-DOF elastic joint

Link position [rad]

— B -2 - B mdgy _: MDg—BD, - B
Tg = mdgo {(1 — 4 ) sing — g7 —— singcosq + —p5r—=qcosq+ 17(0 — q)cosq
To = sin0.17t g(q) = mdgpsing

" —q v]vith ‘I’=T°‘|["tg o _ﬂ&lﬂhr:t;+rg
0.6 ,__qowithr=r° o.s~"-00wnht=To

- - -qwith =7,+g(q) - - .Owith v= 7, +g(q)
0.5 _osf
oo 1 2 3 4 5 ; 7l ; ; 10 0 : . L L

Time [3] 0 1 2 3 4 Tlmﬁe [s] 6 7 8 9 10
exact reproduction of same link behavior different motor behavior
with and without gravity with and without gravity

0=6,+K 'g(q)
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A global PD-type regulator

Exact gravity cancellation combined with PD law on modified motor variables

ﬂ
|

Tg+ To

T4 =g9(q) + DoK 'g(q) + BK '§(q)

7o =| K p(040 — 00) — K pbo

=|Kp(qs—6+K 'g(q))—Kp6 — K 'g(q))

Global asymptotic stability can be shown using a Lyapunov analysis
under “minimal” sufficient conditions (also without viscous friction)

i.e., no strictly
> 0 ’ K 0
Rp K>0 positive lower bounds and D =

are needed any longer

[De Luca, Flacco, 2011]
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Numerical results

Regulation of a 1-DOF arm with elastic joint under gravity

link position (rad)
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Numerical results

Exact gravity cancellation for VSA-II of the University of Pisa

Link position [rad]

feedback

I 1 I
6 7 8 9 10

0 1 2 3 4

Tim: [s]
exact reproduction of link Ic'T{ehavior
4500 T T T T ‘ T _u(q))
4000 - _\u((bo)
E‘ _‘3500 |. . . .
£ g, inearizing
qz; EZSOO OUtputS
. 3
1 2 3 4 Timse is] 6 7 8 9 10 500, 1 2 3 4 Tlmse » 6 7v 8 9 10
applied torques for gravity cancellation exact reproduction of stiffness behavior
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Damping injection on the link side

Method for the VSA-driven bimanual humanoid torso David

PLANT DYNAMICS [M(CI) 0] q n (C(Qr CI)CI) n (g(Q))
- P
mDes gl g e-o7h
K(q—0) = K(q—0,) + Dq T =19 — Dg— BK1Dj
state transformation feedback control
CLOSED-LOOP DYNAMICS ‘
Kpb, K(n—§q) N -
@)) )€ oﬁ D5 )+ ((C D0+ (960)
=1 Rotor 0o Sering 7 ping K(q—09)\ (—Dc¢
Kp6, + (K(go — qo)) N ( Toq)

= same principle of feedback equivalence (including state transformation)
= ESP = Elastic Structure Preserving control by DLR [Keppler et al, 2018]
= generalizations to trajectory tracking, to nonlinear joint flexibility, and to visco-elastic joints
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Damping injection on the link side
Method for VSA-driven bimanual humanoid torso David at DLR

video

[Keppler et al, 2018]
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Conclusions
Control of flexible link/joint robots vs. continuum soft robots in 2023+

= mature field revamped by a new “explosion” of interest
= simpler control laws for compliant and soft robots are very welcome
" sensing requirements could be a bottleneck
= combine (learned) feedforward and feedback to achieve robustness
= |earning on repetitive tasks (ILC) already available for flexible manipulators
= optimal control (min time, min energy, max force, ...) still “open for fun”
= revisiting model-based control design
" do not fight against the natural dynamics of the system
= unwise to stiffen what was designed/intended to be soft on purpose!
= don’t give up too much of desirable performance (use feedback equivalence)

= keep in mind under-actuation and control limitations (e.g., instabilities in the
system inversion of tip trajectories for flexible link robots, /0 synergies, ...)

= jdeas assessed for joint and link elasticity may migrate to many application
domains and other classes of soft-bodied robots (and vice versa)
" |ocomotion, shared manipulation, physical interaction in complex tasks ...
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