Robotics Research Jam Session – Midsummer 2019

Pisa, June 19, 2019

Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG) www.diag.uniroma1.it/deluca

Handling of collisions and intentional contacts

Basic safety-related control problems in pHRI

collision detection/isolation and reaction (without the use of external sensing)

estimation and control of intentional forces exchanged at the contact (with or without a F/T sensor) for human-robot collaboration workspace monitoring for **continuous** collision avoidance (while the task is running)

A control architecture for physical HRI

Hierarchy of consistent behaviors (BioRob 2012)

Safety is the most important feature of a robot that has to work close to humans (requires **collision detection and reaction**)

Coexistence is the robot capability of sharing the workspace with humans (collision avoidance)

Collaboration occurs when the robot performs complex tasks with **direct human coordination** (mostly, with **physical interaction**)

A control architecture for physical HRI

Relation with ISO Standard 10218 and Technical Specification 15066

Collision event pipeline

Haddadin, De Luca, Albu-Schäffer (T-RO 2015)

Monitoring signals can be generated from sensors or models (signal- or model-based methods)

Context information is needed (or useful) to take the right or most suitable decisions

Monitoring robot collisions

Applies equally to rigid and elastic joints, with and without joint torque sensing

Momentum-based residual

Block diagram for the generator of a vector residual signal (ICRA 2005, IROS 2006)

Collision detection and reaction

Residual-based experiments on DLR LWR-III (IROS 2006, IROS 2008)

- collision detection followed by different reaction strategies
- zero-gravity behavior: gravity is always compensated first (by control)
- detection time: 2-3 ms, reaction time: + 1 ms

Sensitivity to payload changes/uncertainty

Collision detection and isolation after few moves for identification (IROS 2017)

residuals with online estimated payload after 10 positioning

the three collisions are detected by our residual when exceeding a threshold of 2 Nm

https://youtu.be/fNP6smdp7aE

Collision avoidance working in depth space

Efficient robot-obstacle distance computations in a 2 ½ space (ICRA 2012)

Safe physical human-robot interaction

Excerpts from the finalist video at IROS 2013

collaboration through contact identification (here, end-effector only)

coexistence through collision avoidance

Distance and contact estimation

Using Kinect, CAD model, distance computation, and residual to localize contact (early 2014)

- when the residual indicates a contact/collision (and colliding link), the vertex in the robot CAD surface model with minimum distance is taken as the contact point
- algorithm applied here in parallel to both left and right hand (no other body parts)

video

Contact point localization

CUDA framework (IROS 2017)

Real-time contact point localization

- the algorithm is based on distance computation in depth space, taking advantage of a CUDA framework for massively parallel GPU programming
- processing of three 2.5D images:
 - real depth image I_r , captured by a RGB-D sensor (a Kinect)
 - virtual depth image I_v , containing only a projection of the robot CAD model
 - filtered depth image $I_f = f(I_r, I_v)$, containing only the obstacles

 distance computation (in depth space) between all robot points in the virtual depth image and all obstacle points in the filtered depth image

Contact point localization

Distance in depth space

• compute distances between all robot points $P_D = \begin{pmatrix} p_{v,x} & p_{v,y} & d_v \end{pmatrix}^T$ in virtual depth image and all obstacles points $O_D = \begin{pmatrix} p_{f,x} & p_{f,y} & d_f \end{pmatrix}^T$ in filtered depth image

$$d(\boldsymbol{O},\boldsymbol{P})=\sqrt{v_x^2+v_y^2+v_z^2},~~\mathrm{with}~~$$

$$v_x = \frac{(p_{f,x} - c_x)d_f - (p_{v,x} - c_x)d_v}{f s_x}$$
$$v_y = \frac{(p_{f,y} - c_y)d_f - (p_{v,y} - c_y)d_v}{f s_y}$$
$$v_z = d_f - d_v$$

- when a contact is detected by the residual, the point of the visible robot surface at minimum distance from the obstacle is considered as contact point
- thanks to the parallel computing of the CUDA framework, the time needed to localize one or multiple contact points is the same

contact point localization processing

Safe coexistence in an industrial robotic cell

ABB IRB 4600 operation in an Abrasive Finishing cell with human access

2 videos

depth images and GUI

- robot is moving at max 100 mm/s
- no safety zones were defined in ABB SafeMove
- Kinect **OK** (except when the view of one of the cameras is obstructed on purpose)

Force estimation for collaboration

Combining internal and external sensing

- Task
 - localize (in the least invasive way) points on robot surface where contacts occur
 - estimate exchanged Cartesian forces
 - control the robot to react to these forces according to a desired behavior

Solution idea

- use residual method to detect physical contact, isolate the colliding link, and identify the joint torques associated to the external contact force
- use a depth sensor to classify the human parts in contact with the robot and localize the contact points on the robot structure (and the contact Jacobian)
- solve a linear set of equations with the residuals, i.e., filtered estimates of joint torques resulting from contact forces/moments applied (anywhere) to the robot

$$m{r} \simeq m{ au}_{ext} = m{J}_c^T(m{q}) m{\Gamma}_c = ig(m{J}_{L,c}^T(m{q}) \ m{J}_{A,c}^T(m{q})ig) igg(m{F_c}{m{M}_c}igg)$$

Force estimation

Some simplifying assumptions

- Dealing with contact forces
 - most intentional contacts with a single hand (or fingers) are not able to transfer relevant torques
 - to estimate reliably Γ_c we should have rank $J_c = 6$, which is true only if the robot has $n \ge 6$ joints and the contact occurs at a link with index ≥ 6

assume $M_c = 0$

only a pure Cartesian force is considered

dimension of the task related to the contact force is m = 6 and its estimation is

$$oldsymbol{r}\simeqoldsymbol{ au}_{ext}=oldsymbol{J}_{Lc}^T(oldsymbol{q})oldsymbol{F}_c$$
 \longrightarrow $\widehat{oldsymbol{F}}_c=\left(oldsymbol{J}_{Lc}^T(oldsymbol{q})
ight)^\#oldsymbol{r}$

 the contact Jacobian can be evaluated once the contact point is detected by the external depth sensor closely monitoring the robot workspace

Force estimation

Some limitations of the residual method

multiple simultaneous contacts can be considered (e.g., with both human hands)

$$\left(egin{array}{c} \widehat{m{F}}_1 \ \widehat{m{F}}_2 \end{array}
ight) = \left(m{J}_{m{L}1}^T(m{q}) \ m{J}_{m{L}2}^T(m{q}) \end{array}
ight)^\# m{r}$$

but with much less confidence in the resulting force estimates (detection is instead ok)

- estimates will be limited to only those components of *F*_c that can be detected by the residual
- all forces F_c ∈ N(J^T_c(q)) will never be recovered ↔ they are absorbed by the robot structure

Validation of the virtual force sensor

Experiments with the KUKA LWR 4 (IROS 2014)

Evaluation of estimated contact force

$$\widehat{\boldsymbol{F}}_{\boldsymbol{c}} = \left(\boldsymbol{J}_{\boldsymbol{c}}^{T}(\boldsymbol{q})
ight)^{\#} \boldsymbol{r}$$

- estimation accuracy was initially tested using known masses in known positions
- a single mass hung either on link 4 or on link 7, to emulate a single (point-wise) contact

			using J_{Lc}		using \boldsymbol{J}_c	
Link #	Mass	F_z	\widehat{F}_{z}	Deviation	\widehat{F}_{z}	Deviation
4	1.93	-18.93	-18.75	0.95%	-4.46	76.43%
7	1.93	-18.93	-18.91	0.1%	-18.82	0.58%

 a mass hung on link 7, and then a second on link 4 so as to emulate a **double** contact

Link #	Mass	F_z	\widehat{F}_{z}	Deviation
4	2.03	-19.91	-19.43	2.41%
7	1.93	-18.93	-19.04	0.58%

case of two masses

More validation of the virtual force sensor

In static and dynamic conditions, using a hand-held F/T sensor (February 2019)

- comparing the F/T ground truth contact force measure with its residual-based estimation
 - with robot at rest (pushing)
 - in robot motion (hitting)

Validation experiment 2:

Collision on link 5

Validation experiment 1:

Admittance control scheme

Estimation of the contact force

Sometimes, even without external sensing

 if contact is sufficiently "down" the kinematic chain (≥ 6 residuals are available), the estimation of pure contact forces does not need any external information ...

Control based on contact force estimation

Used within an admittance control scheme (IROS 2014)

https://youtu.be/Yc5FoRGJsrc

Estimation of Contact Forces using a Virtual Force Sensor

Emanuele Magrini, Fabrizio Flacco, Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma

February 2014

Pisa, June 19, 2019

video

Collision or collaboration?

Distinguishing hard/accidental collisions and soft/intentional contacts

 using suitable low and high bandwidths for the residuals (first-order stable filters)

 $\dot{r} = -K_I r + K_I au_K$

 a threshold is added to prevent false collision detection during robot motion

Collaboration control

Use of estimate of the external contact force for control (e.g., on a Kuka LWR)

- shaping the robot dynamic behavior in specific collaborative tasks
 - joint carrying of a load, holding a part in place, whole arm force manipulation, ...
 - robot motion controlled by
 - admittance control law (in velocity FRI mode)
 - impedance, force or hybrid force-motion control laws (needs torque FRI mode) all implemented at contact level
- e.g., admittance control law using the estimated contact force
 - the scheme is realized at the single (or first) contact point
 - desired velocity of contact point taken proportional to (estimated) contact force

$$\dot{\boldsymbol{p}}_{c} = \boldsymbol{K}_{a}\boldsymbol{F}_{a}, \qquad \boldsymbol{K}_{a} = k_{a}\boldsymbol{I} > 0$$
$$\boldsymbol{F}_{a} = \hat{\boldsymbol{F}}_{c} + \boldsymbol{K}_{p}(\boldsymbol{p}_{d} - \boldsymbol{p}_{c}), \qquad \boldsymbol{K}_{p} = k_{p}\boldsymbol{I} > 0$$

initial contact point position when interaction begins

Contact force regulation with virtual force sensing

Human-robot collaboration in torque control mode (ICRA 2015)

contact force estimation & control (anywhere/anytime)

video

see ICRA 2015

trailer (at 3'26''):

https://youtu.be/gINHq7MpCG8 (Italian); https://youtu.be/OM_1F33fcWk (English)

Impedance-based control of interaction

Reaction to contact forces by generalized impedance —at different levels

Control of generalized impedance

HR collaboration at the contact level (ICRA 2015)

https://youtu.be/NHn2cwSyCCo for these 2 videos (and the next two)

natural (unchanged) robot inertia at the contact

$$\boldsymbol{M}_{d} = \left(\boldsymbol{J}_{c} \boldsymbol{M}^{-1} \boldsymbol{J}_{c}^{T}
ight)^{-1}$$

contact force **estimates** are used here **only** to detect and localize contact in order to start a collaboration phase **assigned** robot inertia at the contact with different desired masses along X, Y, Z

contact force **estimates** used **explicitly** in control law to modify robot inertia at the contact $(M_{d,X} = 20, M_{d,Y} = 3, M_{d,Z} = 10 \text{ [kg]})$

Control of generalized contact force

Direct force scheme

explicit regulation of the contact force to a desired value, by imposing

$$oldsymbol{M}_d \ddot{oldsymbol{x}}_c + oldsymbol{K}_d \dot{oldsymbol{x}}_c = oldsymbol{K}_f (oldsymbol{F}_d - \widehat{oldsymbol{F}}_c) = oldsymbol{K}_f oldsymbol{e}_f$$

- a force control law needs always a measure (here, an estimate) of contact force
- task-compatibility: human-robot contact direction vs. desired contact force vector

$$F_{d,x} = 0, \quad F_{d,y} = 15N, \quad F_{d,z} = 0$$

however, drift effects due to poor control design

Control of generalized contact force

Task-compatible force control scheme (ICRA 2015)

 only the norm of the desired contact force is controlled along the instantaneous direction of the estimated contact force

$$F_{d,x} = 15 \frac{\widehat{F}_{c,x}}{\|\widehat{F}_{c}\|}, \quad F_{d,y} = 15 \frac{\widehat{F}_{c,y}}{\|\widehat{F}_{c}\|}, \quad F_{d,z} = 15 \frac{\widehat{F}_{c,z}}{\|\widehat{F}_{c}\|} \quad \Leftrightarrow \quad \|F_{d}\| = 15 \text{ [N]}$$

in static conditions, the force control law is able to regulate contact forces exactly

task-compatible control of contact force

Collaboration control

Hybrid force/velocity control scheme (ICRA 2016)

- it allows to control both contact force and motion in two mutually independent sub-spaces
- extends at the contact level a hybrid force/velocity control law, with the orientation of contact task frame being determined instantaneously
- task frame obtained by a rotation matrix R_t such that z_t is aligned with the estimated contact force

the auxiliary command is given by

$$m{a} = m{J}_{c}^{\#} m{M}_{d}^{-1} (m{R}_{t} m{a}_{c} + m{M}_{d} (\dot{m{R}}_{t}{}^{t} \dot{m{x}}_{c} - \dot{m{J}}_{c} \dot{m{q}})) + m{P}_{c} \ddot{m{q}}_{0}$$

 complete decoupling between force control and velocity control can be achieved by choosing the new auxiliary control input as

$$oldsymbol{a}_c = oldsymbol{S}_f^c \, \ddot{y}_f + oldsymbol{S}_
u^c \, \dot{oldsymbol{
u}}$$

Collaboration control

Hybrid force/velocity control at contact level (IROS 2016)

- desired contact force along Y direction regulated to $F_d = 15[N]$
- constant desired velocity to perform a line in the vertical XZ plane

$$\boldsymbol{\nu}_{d} = \left[\begin{array}{c} 0.015\\ 0.03 \end{array} \right] \qquad \dot{\boldsymbol{\nu}}_{d} = \left[\begin{array}{c} 0\\ 0 \end{array} \right]$$

https://youtu.be/tlhEK5f00QU

constant desired force in Y direction (15 N)
 constant desired velocity in vertical XZ plane (3.35 cm/s)

Validation of collaboration control with a F/T sensor

Force and hybrid force/velocity control schemes at contact level (February 2019)

- desired contact force along the estimated contact direction regulated at 15 N
- ... and trajectory control with constant speed along a circle in the orthogonal plane

Control experiment 4:

Hybrid force/velocity control scheme

Control experiment 3:

Force control scheme

2 videos

Scenario for HRC in manual polishing

EU H2020 SYMPLEXITY project: Preparing a metallic part for a laser polishing machine

Scenario for HRC in manual polishing

Distinguishing different contact forces

Force/Torque (F/T) sensor at wrist

- manual polishing force is **measured**
- end-effector Jacobian is known

contact force at unknown location

- not measurable by the F/T sensor
- possibly applied by the human while manipulating the work piece held by robot
- contact Jacobian is **not** known

HRC phase with UR10 robot

Experimental results (Mechatronics 2018)

https://youtu.be/slwUiRT_IJQ

no F/T sensor, switching to FreeDrive mode

https://youtu.be/bjZbmlAclYk

A Model-Based Residual Approach for Human-Robot Collaboration during Manual Polishing Operations

Claudio Gaz, Emanuele Magrini, Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma

May 2017

io i / i sensol, switching to i reedito

part to be polished

with F/T sensor, using our residual method

3 videos

for a similar behavior wth the KUKA LWR see https://youtu.be/TZ6nPqLPDxl

HRC phase with UR10 robot

Experimental results (separating F/T measures from the residuals)

Use of kinematic redundancy in pHRI

Robot reaction to collisions, in parallel with execution of original task

collision detection ⇒ robot reacts so as to preserve as much as possible (if at all possible) the execution of a planned task trajectory, e.g., for the end-effector

Selective reaction to estimated contact force

Robot control strategy (IROS 2008, IROS 2017)

- the control scheme exploits robot redundancy in order to follow a Cartesian trajectory, despite the possible occurrence of accidental collisions on the robot body
- execution of the original end-effector motion task is preserved while reacting to a detected contact, with the **estimated contact force** above a threshold F_{relax} but **not too large**
- using null-space motion, the robot tries to eliminate, reduce or keep low the contact force
- if the contact force exceeds a threshold F_{abort}, the robot abandons the original task and reacts by imposing admittance control at the contact

Use of kinematic redundancy

Robot reaction to collisions, in parallel with execution of original task (IROS 2017)

https://youtu.be/q4PZKE-kgc0

video

Human-Robot Coexistence and Contact Handling with Redundant Robots

Emanuele Magrini

Alessandro De Luca

Robotics Lab, DIAG Sapienza Università di Roma

February 2017

$\mathsf{idle} \Leftrightarrow \mathsf{relax} \Leftrightarrow \mathsf{abort}$

pHRI experiments

Analysis of results

pHRI experiments

Analysis of results

the robot goes in abort state, an admittance error is present...

HRC under a closed control architecture

KUKA KR5 Sixx R650 robot

- low-level motor control laws are not known and not accessible by the user
- user programs, based on other exteroceptive sensors (vision, Kinect, F/T sensor), can be implemented on an external PC via the RSI (RobotSensorInterface) and communicate with the KUKA controller every 12 ms
- available robot measures are joint positions (by encoders) and (absolute value of) applied motor currents
- the only user commands are references for the controllers, given as a velocity or position in joint (or Cartesian) space

typical motor currents on first three joints

Distinguish accidental collisions from intentional contacts

... and then either stop or start to collaborate (ICRA 2013)

using high-pass and low-pass filtering of motor currents — here collaboration mode is manual guidance of the robot

Combining motor currents and F/T sensor data

Enhanced flexible interaction by filtering, thresholding, merging signals (ICRA 2019)

Conclusions

Toward a safer and efficient control of human-robot physical collaboration

- framework for safe human-robot coexistence and collaboration, based on hierarchy of consistent controlled behaviors of the robot
 - residual-based collision detection (and isolation)
 - portfolio of collision reaction algorithms (using also redundancy)
 - real-time collision avoidance based on data processed in depth space
 - distinguishing intentional/soft contacts from accidental/hard collisions
 - estimation of contact force and location, by combining inner/outer sensing
 - admittance/impedance/force/hybrid control laws, generalized at the contact level
 - some useful behaviors can be obtained also in case of limited information
 - applications are slowly coming from industrial and service stakeholders
 - many interesting research extensions ahead, some under way...

Our team at DIAG

Robotics Lab of the Sapienza University of Rome (back in 2014)

Acknowledgements

 @Sapienza – DIAG - Gabriele Buondonno, Lorenzo Ferrajoli, Fabrizio Flacco[†], Claudio Gaz, Milad Geravand, Emanuele Magrini, Eleonora Mariotti, Raffaella Mattone
 @DLR – Institute of Robotics and Mechatronics - Alin Albu-Schäffer, Sami Haddadin
 @Stanford – Artificial Intelligence Lab - Oussama Khatib, Torsten Kröger

References - 1

Download pdf for personal use at <u>www.diag.uniroma1.it/deluca/Publications</u>

- A. De Luca and R. Mattone, "Sensorless robot collision detection and hybrid force/motion control," IEEE Int. Conf. on Robotics and Automation, pp. 999-1004, 2005.
- A. De Luca, A. Albu-Schäffer, S. Haddadin, and G. Hirzinger, "Collision detection and safe reaction with the DLR-III lightweight manipulator arm," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1623-1630, 2006.
- S. Haddadin, A. Albu-Schäffer, A. De Luca, and G. Hirzinger, "Collision detection and reaction: A contribution to safe physical human-robot interaction," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3356-3363, 2008 (IROS 2008 Best Application Paper Award).
- A. De Luca and L. Ferrajoli, "Exploiting robot redundancy in collision detection and reaction," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3299-3305, 2008.
- A. De Santis, B. Siciliano, A. De Luca, A. Bicchi, "An atlas of physical human-robot interaction," Mechanism and Machine Theory, vol. 43, no. 3, pp. 253–270, 2008 (2017 MMT Award for Excellence).
- A. De Luca and L. Ferrajoli, "A modified Newton-Euler method for dynamic computations in robot fault detection and control," IEEE Int. Conf. on Robotics and Automation, pp. 3359-3364, 2009.
- F. Flacco, A. De Luca, "Multiple depth/presence sensors: Integration and optimal placement for human/robot coexistence," IEEE Int. Conf. on Robotics and Automation, pp. 3916-3923, 2010.
- F. Flacco, T. Kröger, A. De Luca, and O. Khatib, "A depth space approach to human-robot collision avoidance," IEEE Int. Conf. on Robotics and Automation, pp. 338-345, 2012.
- A. De Luca and F. Flacco, "Integrated control for pHRI: Collision avoidance, detection, reaction and collaboration," 4th IEEE RAS/EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, pp. 288-295, 2012 (BioRob 2012 RAS Best Paper Award).
- M. Geravand, F. Flacco, and A. De Luca, "Human-robot physical interaction and collaboration using an industrial robot with a closed control architecture," IEEE Int. Conf. on Robotics and Automation, pp. 3985-3992, 2013.
- E. Magrini, F. Flacco, and A. De Luca, "Estimation of contact force using a virtual force sensor," IEEE/RSJ Int. Conf. on Intelligent Robots and System, pp. 2126-2133, 2014.

References - 2

Download pdf for personal use at <u>www.diag.uniroma1.it/deluca/Publications</u>

- F. Flacco, T. Kröger, A. De Luca, and O. Khatib, "A depth space approach for evaluating distance to objects with application to human-robot collision avoidance," J. of Intelligent & Robotic Systems, vol. 80, suppl. 1, pp. 7-22, 2015.
- E. Magrini, F. Flacco, and A. De Luca, "Control of generalized contact motion and force in physical human-robot interaction," IEEE Int. Conf. on Robotics and Automation, pp. 2298-2304, 2015 (ICRA 2015 Best Conference Paper Award Finalist).
- E. Magrini and A. De Luca, "Hybrid force/velocity control for physical human-robot collaboration tasks," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. pp. 857-863, 2016.
- F. Flacco and A. De Luca, "Real-time computation of distance to dynamic obstacles with multiple depth sensors," IEEE Robotics and Automation Lett., vol. 2, no. 1, pp. 56-63, 2017.
- E. Magrini, A. De Luca, "Human-robot coexistence and contact handling with redundant robots," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4611-4617, 2017.
- S. Haddadin, A. De Luca, and A. Albu-Schäffer, "Robot collisions: A survey on detection, isolation, and identification," IEEE Trans. on Robotics, vol. 33, no. 6, pp. 1292-1312, 2017.
- C. Gaz, A. De Luca, "Payload estimation based on identified coefficients of robot dynamics --with an application to collision detection," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3033-3040, 2017.
- C. Gaz, E. Magrini, A. De Luca "A model-based residual approach for human-robot collaboration during manual polishing operations," Mechatronics, vol. 55, pp. 234-247, 2018.
- E. Mariotti, E. Magrini, A. De Luca, "Admittance control for human-robot interaction using an industrial robot equipped with a F/T sensor," IEEE Int. Conf. on Robotics and Automation, pp. 6130-6136, 2019.
- Videos: YouTube channel <u>RoboticsLabSapienza</u>. Playlist: <u>Physical human-robot interaction</u>