

2019 Conference on Robotics: Science and Systems (RSS 2019)

Freiburg, June 24, 2019

Control of soft joint robots for safe physical HRI

Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG)

deluca@diag.uniroma1.it

Summary

A world of soft robots

- manipulators with flexible joints, serial elastic actuation (SEA), variable stiffness actuation (VSA), distributed link flexibility, bio-inspired continuum robots ...
- lightweight robots with flexible joints in safe physical Human-Robot Interaction (pHRI)
- Dynamic modeling of flexible joint manipulators
 - ... with few comments on their structural properties
- Classical control tasks and their solution
 - inverse dynamics and feedback linearization design for trajectory tracking
 - regulation with partial/full state feedback and gravity compensation
- Model-based design based on feedback equivalence
 - exact gravity cancellation
 - damping injection on the link side of the flexible transmission
 - environment interaction via generalized impedance control
 - regulation and trajectory tracking in curvature space
- Outlook

Robots with elastic joints

- design of lightweight robots with stiff links for end-effector accuracy
- compliant elements absorb impact energy
 - soft coverage of links (safe bags)
 - elastic transmissions (HD, cable-driven, ...)

- elastic joints decouple instantaneously the *larger* inertia of the driving motors from *smaller* inertia of the links (involved in contacts/collisions!)
- relatively soft joints need more sensing (e.g., joint torque) and better control to compensate for static deflections and dynamic vibrations

torque-controlled robots (DLR LWR-III, KUKA LWR-IV & iiwa, Franka, ...)

Robots with Variable Stiffness Actuation (VSA)

- uncertain/dynamic interaction with the environment requires to adjust the compliant behavior of the robot and/or to control contact forces
 - passive joint elasticity & active impedance control used in parallel
- nonlinear flexible joints with variable (controlled) stiffness work at best:
 - can be made stiff when moving slow (performance), soft when fast (safety)
 - enlarge the set of achievable task-oriented compliance matrices
 - feature also: robustness, optimal energy use, explosive motion tasks, ...

Robots with flexible links

- distributed link deformations
 - design of very long and slender arms (e.g., Euler beam) needed in applications
 - use of lightweight materials to save weight/costs
 - due to large payloads (viz. large contact forces) and/or high motion speed
- as for joint elasticity, neglecting link flexibility will limit static (steady-state error) or dynamic (vibrations, poor tracking) performance
- extra control issue due to non-minimum phase nature of the outputs of interest w.r.t. the command inputs ... "move in the opposite direction!"

Bio-inspired continuum robots

- hyper-redundant degrees of freedom, with distributed deformations
 - approximate finite dimensional models, under some geometric assumptions
 - e.g., a fixed number of segments with (variable) constant curvature
- typically, with multiple distributed/embedded (small) actuation devices

A matter of terminology ...

- elastic joints vs. SEA (Serial Elastic Actuators)
 - based on the same physical phenomenon: compliance in actuation
 - compliance added on purpose in SEA, mostly a disturbance in elastic joints
 - different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA
- joint deformation is often considered in the linear domain
 - modeled as a concentrated torsional spring with constant stiffness at the joint
 - nonlinear flexible joints share similar control properties
 - nonlinear stiffness characteristics are needed instead in VSA
 - a (serial or antagonistic) VSA working at constant stiffness is an elastic joint
- flexible joint robots are classified as underactuated mechanical systems
 - have less commands than generalized coordinates
 - non-collocation of command inputs and of dynamic behaviors to be controlled
 - however, they are controllable in the first approximation (the easier case!)
 - also continuum soft robots are most of the times underactuated

Control drawbacks due to joint elasticity

Neglecting softness may generate vibrations and trajectory oscillations

anywhere: conventional/massive industrial manipulators, lightweight (loaded) research-oriented robots, educational devices, ...

Exploiting joint elasticity in pHRI

Detection and selective reaction in torque control mode, based on residuals

collision detection & reaction for safety (model-based + joint torque sensing)

[De Luca et al, IROS 2006; Haddadin et al, T-RO 2017]

Exploiting joint elasticity in pHRI

contact force estimation & control (virtual force sensor, anywhere/anytime)

[Magrini et al, ICRA 2015]

Dynamic modeling

Lagrangian formulation (so-called reduced model of Spong)

- open chain robot with N elastic joints and N rigid links, driven by electrical actuators
- use N motor variables θ (as reflected through the gear ratios) and N link variables q
- assumptions
 - A1) small displacements at joints
 - A2) axis-balanced motors
 - A3) each motor is mounted on the robot in a position preceding the driven link
 - A4) no inertial couplings between motors and links

A4) ⇒ 2N × 2N inertia matrix
Is block diagonal

A2) \Rightarrow inertia matrix and gravity vector are independent from θ

link equation
motor equation

Single elastic joint

Transfer functions of interest

we often look rather at the torque-to-velocity mappings ... (eliminating one integrator)

$$P_{\text{motor}}(s) = \frac{\theta(s)}{\tau(s)} = \frac{Ms^2 + K}{MBs^2 + (M+B)K} \frac{1}{s^2}$$

- system with zeros and relative degree = 2
- passive (zeros always precede poles on the imaginary axis)
- stabilization can be achieved via output θ feedback

$$P_{\text{link}}(s) = \frac{q(s)}{\tau(s)} = \frac{K}{MBs^2 + (M+B)K} \frac{1}{s^2}$$

- NO zeros!!
- maximum relative degree = 4

Single elastic joint

Transfer functions of interest (with added motor and/or link side damping...)

- typical anti-resonance/resonance behavior on motor velocity output
- pure resonance on link velocity output (weak or no zeros)

Visco-elasticity at the joints

Introduces a structural change ...

on Spong model

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) + D(\dot{q}-\dot{\theta}) \\ K(\theta-q) + D(\dot{\theta}-\dot{q}) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$

coupling type	consequence for the model
stiffness	basic static coupling, maximum relative degree (= 4) of output q
damping	reduced relative degree (= 3), only I/O linearization by static feedback
inertia *	reduced relative degree, I/O linearization needs dynamic feedback

^{*} so-called complete dynamic model

Inverse dynamics

Feedforward action for following a desired trajectory in nominal conditions

given a desired smooth link trajectory $q_d(t) \in C^4$

 compute symbolically the desired motor acceleration and, therefore, also the desired link jerk (i.e., up to the fourth time derivative of the desired motion)

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) \\ K(\theta-q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau_m \end{pmatrix}$$

$$\begin{split} \tau_{m,d} &= B\ddot{\theta}_d + K(\theta_d - qd) \\ &= BK^{-1} \left[M(q_d) \ q_d^{(4)} + 2\dot{M}(q_d) \ q_d^{(3)} + \ddot{M}(q_d) \ddot{q}_d + \frac{d^2}{dt^2} \left(C(q_d, \dot{q}_d) \dot{q}_d + g(q_d) \right) \right] \\ &+ \left[M(q_d) + B \right] \ddot{q}_d + C(q_d, \dot{q}_d) \dot{q}_d + g(q_d) \end{split}$$

- the inverse dynamics can be efficiently computed using a modified Newton-Euler algorithm (with link recursions up to the fourth order) running in O(N)
- the feedforward command can be used in combination with a PD feedback control on the motor position/velocity error, so as to obtain a local but simple trajectory tracking controller

Feedback linearization

For accurate trajectory tracking tasks

the link position q is a linearizing (a.k.a. flat) output

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) \\ K(\theta-q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix} \longleftrightarrow q^{(4)} = u$$

differentiating twice the link equation and using the motor acceleration yields

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{(3)} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}\left(C\dot{q} + g(q)\right)\right)$$

- an exactly linear and I/O decoupled closed-loop system is obtained
 - to be stabilized with standard techniques for linear dynamics (pole placement, LQ, ...)
- requires higher derivatives of q -

$$q,\dot{q},\ddot{q},q^{(3)}$$

- however, these can be computed from the model using the state measurements
- requires higher derivatives of the dynamics components

• A $O(N^3)$ Newton-Euler recursive numerical algorithm is available for this problem

Feedback linearization

Based on the rigid model only vs. when modeling also joint elasticity

$$\tau = M(q)(\ddot{q}_d + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q)) + C(q, \dot{q})\dot{q} + g(q)$$

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{(3)} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}(C\dot{q} + g(q))\right)$$

$$u = \left(q_d^{[4]} + K_J(\ddot{q}_d - \ddot{q}) + K_A(\ddot{q}_d - \ddot{q}) + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q)\right)$$

[Spong, ASME JDSMC 1986]

elastic joint feedback linearization

Feedback linearization

Benefits on an industrial KUKA KR-15/2 robot (235 kg) with joint elasticity

conventional industrial robot control

feedback linearization + high-damping

three squares in:

horizontal plane

vertical front plane

vertical sagittal plane

[Thümmel, PhD@TUM 2007]

trajectory tracking with model-based control

Torque control

A different set of state measurements can be used directly for tracking control

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q,\dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) \\ K(\theta-q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$

$$\tau_J = K(\theta-q) \qquad \text{measurable by a joint torque sensor}$$

$$BK^{-1}\ddot{\tau}_J + \tau_J = \tau - B\ddot{q} \qquad \text{rewriting the motor dynamics}$$

$$\tau = BK^{-1}\ddot{\tau}_{I,d} + \tau_{I,d} + K_T(\tau_{I,d} - \tau_I) + K_S(\dot{\tau}_{I,d} - \dot{\tau}_I) + \alpha B\ddot{q}$$

- $\alpha < 1$ for avoiding over-compensation
- useful for designing a motor side disturbance observer, e.g., to realize friction compensation
- basis for many cascaded controller designs, starting from a given rigid body control law $\tau = \tau(q, \dot{q}, t)$ taken as $\tau_{I,d}(t)$ in the above formulas
- higher derivatives are still required (either \ddot{q} or $\ddot{\tau}_I$)

Torque feedback

Consider a pure proportional torque feedback (+ a derivative term for the visco-elastic case)

$$\tau = BB_d^{-1}u + (I - BB_d^{-1})\tau_J + (I - BB_d^{-1})DK^{-1}\dot{\tau}_J$$

$$-K_T$$

physical interpretation:

scaling of the motor inertia and motor friction!

[Ott, Albu-Schäffer, 2008]

original motor dynamics

$$B\ddot{\theta} + K(\theta - q) = \tau$$

visco-elastic case

$$B\ddot{\theta} + \tau_I + DK^{-1}\dot{\tau}_I = \tau$$

after the torque feedback

$$B_d\ddot{\theta} + K(\theta - q) = u$$

$$B_d \ddot{\theta} + \tau_J + DK^{-1} \dot{\tau}_J = u$$

Full-state feedback

Combining torque feedback with a motor PD regulation law

[Albu-Schäffer et al, **IJRR 2007**]

inertia scaling via torque feedback $\tau = (I + K_T)u - K_T \tau_I - K_S \dot{\tau}_I$

inertia scaling via torque feedback
$$\tau = (I + K_T)u - K_T \tau_J - K_S \dot{\tau}_J$$
 regulation via motor PD, e.g., with
$$u = g(\bar{q}(\theta)) + K_\theta(\theta_d - \theta) - D_\theta \dot{\theta}$$

⇒ joint level control structure of the DLR (and KUKA) lightweight robots

dynamics feedforward and desired torque command

setpoint control

friction compensation and/or disturbance observer

torque control

$$K_P = 0$$

$$K_D = 0$$

$$K_T > 0$$

$$K_S > 0$$

$$\tau_{J,d} = \tau_d$$

position control

$$K_P > 0$$

$$K_D > 0$$

$$K_T > 0$$

$$K_S > 0$$

$$\tau_{J,d} = g(q)$$

impedance control

$$K_{P} = K_{T}K_{\theta}$$

$$K_{D} = K_{T}D_{\theta}$$

$$K_{T} = (BB_{d}^{-1} - I)$$

$$K_{S} = (BB_{d}^{-1} - I)DK^{-1}$$

$$\tau_{j,d} = g(\bar{q}(\theta))$$

Regulation tasks

Using a minimal PD+ action on the motor side

for a desired constant link position q_d

- evaluate the associated desired motor position θ_d at steady state
- collocated (partial state) feedback preserves passivity, with stiff K_P gain dominating gravity
- focus on the term for gravity compensation (acting on link side) from motor measurements

$$\theta_d = q_d + K^{-1}g(q_d)$$

$$\tau = \tau_g + K_P(\theta_d - \theta) - K_D \dot{\theta} \qquad K_D > 0$$

$ au_g$	gain criteria for stability	
$g(q_d)$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$	[Tomei, 1991]
$g(\theta - K^{-1}g(q_d))$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$	[De Luca, Siciliano, Zollo, 2004]
$g(\overline{q}(\theta)), \ \overline{q}(\theta): \ g(\overline{q}) = K(\theta - \overline{q})$	$K_P > 0$, $\lambda_{min}(K) > \alpha$	[Ott, Albu-Schäffer, 2004]
$g(q) + BK^{-1}\ddot{g}(q)$	$K_P > 0$, $K > 0$	[De Luca, Flacco, 2010]

exact gravity cancellation (with full state feedback) more on this next...

$$\alpha = \max(\left\|\frac{\partial g(q)}{\partial q}\right\|)$$

A slightly different view

for rigid robots this is trivial, due to full actuation and collocation

$$oldsymbol{ au} = oldsymbol{ au}_g + oldsymbol{ au}_0$$
 $oldsymbol{ au}_g = oldsymbol{g}(oldsymbol{q})$ $oldsymbol{q} \equiv oldsymbol{q}_0$

$$\boldsymbol{M}(\boldsymbol{q})\ddot{\boldsymbol{q}} + \boldsymbol{c}(\boldsymbol{q},\dot{\boldsymbol{q}}) + \boldsymbol{g}(\boldsymbol{q}) = \boldsymbol{\tau}$$

... exploiting the concept of feedback equivalence between nonlinear systems

for elastic joint robots, non-collocation of input torque and gravity term

$$M(q)\ddot{q} + c(q,\dot{q}) + g(q) + K(q - \theta) = 0$$

 $B\ddot{\theta} + K(\theta - q) = \tau$

... generalized also to VSA robots

same problem formulation holds also for VSA robots (here, in antagonistic configuration),
 with the additional consideration of the internal stiffness state

Feedback equivalence

Use the system property of being feedback linearizable (without forcing it!)

Elastic joint robots (including link/motor damping) [De Luca, Flacco, CDC 2010]

$$egin{align} M(q)\ddot{q}+c(q,\dot{q})+g(q)+D_q\dot{q}+K(q- heta)&=0\ B\ddot{ heta}+D_ heta\dot{ heta}+K(heta-q)&= au \end{aligned}$$

$$q(t) \equiv q_0(t) \quad \forall t \ge 0 \qquad \boldsymbol{\tau} = \boldsymbol{\tau}_g + \boldsymbol{\tau}_0$$

$$\boldsymbol{\tau}_g = \boldsymbol{g}(\boldsymbol{q}) + \boldsymbol{D}_{\theta} \boldsymbol{K}^{-1} \dot{\boldsymbol{g}}(\boldsymbol{q}) + \boldsymbol{B} \boldsymbol{K}^{-1} \ddot{\boldsymbol{g}}(\boldsymbol{q})$$

$$\begin{split} \dot{g}(q) &= \frac{\partial g(q)}{\partial q} \, \dot{q} \\ \ddot{g}(q) &= \frac{\partial g(q)}{\partial q} M^{-1}(q) \big(K(\theta - q) - c(q, \dot{q}) - g(q) - D_q \dot{q} \big) + \sum_{i=1}^n \frac{\partial^2 g(q)}{\partial q \, \partial q_i} \, \dot{q} \, \dot{q}_i \end{split}$$

requires (in principle) full state feedback

Numerical results

Exact gravity cancellation for a 1-DOF elastic joint

$$\tau_g = mdg_0 \left\{ \left(1 - \frac{B}{K} \dot{q}^2 \right) \sin q - \frac{B}{M} \frac{mdg_0}{K} \sin q \cos q + \frac{MD_\theta - BD_q}{KM} \dot{q} \cos q + \frac{B}{M} (\theta - q) \cos q \right\}$$

$$\tau_0 = \sin 0.1\pi t \qquad g(q) = mdg_0 \sin q$$

with and without gravity

exact reproduction of same link behavior

different motor behavior with and without gravity

$$\theta = \theta_0 + K^{-1}g(q)$$

A global PD-type regulator

Exact gravity cancellation combined with PD law on modified motor variables

$$egin{aligned} oldsymbol{ au} &= oldsymbol{ au}_g + oldsymbol{ au}_0 \ oldsymbol{ au}_g &= oldsymbol{g}(oldsymbol{q}) + oldsymbol{D} oldsymbol{K}^{-1} \dot{oldsymbol{g}}(oldsymbol{q}) \\ oldsymbol{ au}_0 &= oldsymbol{K}_P(oldsymbol{ heta}_{d0} - oldsymbol{ heta}_0) - oldsymbol{K}_D \dot{oldsymbol{ heta}}_0 \ &= oldsymbol{K}_P(oldsymbol{q}_d - oldsymbol{ heta} + oldsymbol{K}^{-1} oldsymbol{g}(oldsymbol{q})) - oldsymbol{K}_D (\dot{oldsymbol{ heta}} - oldsymbol{K}^{-1} \dot{oldsymbol{g}}(oldsymbol{q})) \end{aligned}$$

Global asymptotic stability can be shown using a Lyapunov analysis under "minimal" sufficient conditions (also without viscous friction)

$$K_P > 0$$

i.e., **no** strictly positive lower bounds are needed any longer

and
$$K_D > 0$$

[De Luca, Flacco, ICRA 2011]

Numerical results

Regulation of a 1-DOF arm with elastic joint under gravity

gravity-loaded system under PD
+ gravity cancellation
vs.
gravity-free system under PD
(with same gains)

Numerical results

Exact gravity cancellation for the VSA-II of UniPisa

applied torques for gravity cancellation

exact reproduction of stiffness behavior

Damping injection on the link side

$$K(q - \theta) = K(q - \theta_0) + D\dot{q}$$

state transformation

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q - \theta) \\ K(\theta - q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$

$$\tau = \tau_0 - D\dot{q} - BK^{-1}D\ddot{q}$$

feedback control

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\boldsymbol{\theta}}_{\mathbf{0}} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q - \boldsymbol{\theta}_{\mathbf{0}}) \\ K(\boldsymbol{\theta}_{\mathbf{0}} - q) \end{pmatrix} = \begin{pmatrix} -\boldsymbol{D}\dot{q} \\ \tau_{0} \end{pmatrix}$$

- same principle of feedback equivalence (including state transformation)
- ESP = Elastic Structure Preserving control by DLR [Keppler et al, T-RO 2018]
- generalizations to trajectory tracking, to nonlinear joint flexibility, and to visco-elastic joints

Damping injection on the link side

Method for VSA-driven bimanual humanoid torso David at DLR

[Keppler et al, T-RO 2018]

Environment interaction via impedance control

Matching a generalized (fourth order) impedance model: A simple 1-DOF case

 $M\ddot{q} + K(q - \theta) = \tau_e$ $B\ddot{\theta} + D\dot{\theta} + K(\theta - q) = \tau$

feedback control

assume that $M_0 = M$ in order to avoid **derivatives** of the measured force $\boldsymbol{\tau_e}$

$$\tau = K(\theta - q) + D\dot{\theta} - BK^{-1} \begin{cases} (K - K_0)M^{-1}(\mathbf{\tau_e} + K(\theta - q)) \\ + K_0B_0^{-1}(\tau_0 - D_0\dot{\theta}_0 - K(\theta - q)) \end{cases}$$

$$\dot{\theta}_0 = \dot{q} + KK_0^{-1} (\dot{\theta} - \dot{q})$$

state transformation

$$M_0 \ddot{q} + K_0 (q - \theta_0) = \tau_e$$

$$B_0 \ddot{\theta}_0 + D_0 \dot{\theta}_0 + K_0 (\theta_0 - q) = \tau_0$$

again, by the principle of feedback equivalence (including the state transformation)

Control of a soft robot

Matching the natural dynamics of the system: Continuum robot case

- dynamic modeling assumptions
 - A1) [kinematics] approximated as a series of n segments with constant curvature
 - A2) [inertia] each segment can be described by an equivalent point mass
 - A3) [impedance] continuous distribution of infinitesimal springs and dampers

[Della Santina et al, IJRR 2018]

Dynamic modeling of a continuum soft robot

continuum soft robot

articulated soft robot (fully actuated!)

$$\left(\mathbf{n}-F_{\mathrm{ex}}\mathbf{d}_{3}\right)_{,s}+\mathbf{f}=
ho A_{t}\mathbf{r}_{,tt}$$
 $\mathbf{m}_{,s}+\mathbf{r}_{,s} imes\mathbf{n}=\mathbf{J}\omega_{,t}$

[&]quot;Geometrically Exact Models for Soft Robotic Manipulators"

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) +$$

$$Kq + D\dot{q} = \tau$$

Albu-Schaeffer and Bicchi "Actuators for Soft Robotics" Ch. 21 in *Springer Handbook of Robotics* (Siciliano and Khatib eds.)

Moving from joint configuration space to local curvature space

 ${\color{red} \bullet}$ tracking case when $\dot{\bar{q}} \neq 0$, $\ddot{\bar{q}} \neq 0$

Static, quasi-static, dynamic reference (without and with gravity)

quasi-static reference $\begin{cases} \dot{\bar{q}} \simeq 0 \\ \ddot{\bar{q}} \simeq 0 \end{cases}$ no gravity g = 0

rigid robot controlled through a PD:

global asymptotic stability

feedforward + physical impedance physical PD control!

Static, quasi-static, dynamic reference ... (without and with gravity)

quasi-static reference

 $\left\{ \begin{array}{l} q \simeq 0 \\ \ddot{q} \simeq 0 \end{array} \right.$

with gravity

$$g \neq 0$$

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} = K(\bar{q} - q) + D(\dot{\bar{q}} - \dot{q})$$

rigid robot controlled through a PD:

global asymptotic stability

feedforward + physical impedance physical PD control!

Static, quasi-static, dynamic reference ... (without and with gravity)

passivity-based nonlinear control, with physical PD: global asymptotic stability

[Della Santina et al, IJRR 2018]

Continuum world

$$f\left(s_1,\ldots s_m,q(s_1,\ldots),\frac{\partial q}{\partial t},\frac{\partial q}{\partial s_1},\ldots\right)=0$$

General 3D infinitesimal or finite strain theory

Lubliner, Jacob. *Plasticit* y theory. Courier Corporation (2008)

Trivedi et al. "Geometrically Exact Models for Soft Robotic Manipulators" TRO (2008)

Reddy "Theory and Analysis of Elastic Plates and Shells." CRC press (1999)

Discrete world

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = A(q)\tau - T(q) - D(q,\dot{q})$$

courtesy of Cosimo Della Santina

Outlook

Control of soft & flexible robots in 2020+

- Mature field revamped by a new "explosion" of interest
 - simpler control laws for compliant and soft robots are very welcome
 - sensing requirements could be a bottleneck
 - combine (learned) feedforward and feedback to achieve robustness
 - learning on repetitive tasks (ILC) already available for flexible manipulators
 - optimal control (min time, min energy, max force, ...) still "open for fun"
- Revisiting model-based control design
 - do not fight against the natural dynamics of the system
 - unwise to stiffen what was designed/intended to be soft on purpose!
 - don't give up too much of desirable performance (use feedback equivalence)
 - keep in mind under-actuation and control limitations (e.g., instabilities in the system inversion of tip trajectories for flexible link robots, I/O synergies, ...)
- Ideas assessed for joint elasticity may migrate to many application domains and other classes of soft-bodied robots
 - locomotion, shared manipulation, physical interaction in complex tasks ...