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Summary

§ A world of soft robots
§ manipulators with flexible joints, serial elastic actuation (SEA), variable stiffness 

actuation (VSA), distributed link flexibility, bio-inspired continuum robots …

§ lightweight robots with flexible joints in safe physical Human-Robot Interaction (pHRI)

§ Dynamic modeling of flexible joint manipulators
§ … with few comments on their structural properties 

§ Classical control tasks and their solution
§ inverse dynamics and feedback linearization design for trajectory tracking

§ regulation with partial/full state feedback and gravity compensation

§ Model-based design based on feedback equivalence
§ exact gravity cancellation 

§ damping injection on the link side of the flexible transmission

§ environment interaction via generalized impedance control

§ regulation and trajectory tracking in curvature space

§ Outlook
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Classes of soft robots
Robots with elastic joints

§ design of lightweight robots with stiff links for end-effector accuracy
§ compliant elements absorb impact energy 

§ soft coverage of links (safe bags)
§ elastic transmissions (HD, cable-driven, ...)

§ elastic joints decouple instantaneously the larger inertia of the driving 
motors from smaller inertia of the links (involved in contacts/collisions!)

§ relatively soft joints need more sensing (e.g., joint torque) and better 
control to compensate for static deflections and dynamic vibrations

torque-controlled robots (DLR LWR-III, KUKA LWR-IV & iiwa, Franka, …)
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Classes of soft robots
Robots with Variable Stiffness Actuation (VSA)

§ uncertain/dynamic interaction with the environment requires to adjust 
the compliant behavior of the robot and/or to control contact forces
§ passive joint elasticity & active impedance control used in parallel

§ nonlinear flexible joints with variable (controlled) stiffness work at best:
§ can be made stiff when moving slow (performance), soft when fast (safety)
§ enlarge the set of achievable task-oriented compliance matrices
§ feature also: robustness, optimal energy use, explosive motion tasks, ...
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Classes of soft robots
Robots with flexible links

§ distributed link deformations 
§ design of very long and slender arms (e.g., Euler beam) needed in applications
§ use of lightweight materials to save weight/costs
§ due to large payloads (viz. large contact forces) and/or high motion speed

§ as for joint elasticity, neglecting link flexibility will limit static (steady-state 
error) or dynamic (vibrations, poor tracking) performance

§ extra control issue due to non-minimum phase nature of the outputs of 
interest w.r.t. the command inputs … “move in the opposite direction!”
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Classes of soft robots
Bio-inspired continuum robots

§ hyper-redundant degrees of freedom, with distributed deformations 
§ approximate finite dimensional models, under some geometric assumptions
§ e.g., a fixed number of segments with (variable) constant curvature

§ typically, with multiple distributed/embedded (small) actuation devices 
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A matter of terminology ... 
Different sources of softness/flexibility, though similar robotic systems 

§ elastic joints vs. SEA (Serial Elastic Actuators)
§ based on the same physical phenomenon: compliance in actuation

§ compliance added on purpose in SEA, mostly a disturbance in elastic joints

§ different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA

§ joint deformation is often considered in the linear domain 
§ modeled as a concentrated torsional spring with constant stiffness at the joint 

§ nonlinear flexible joints share similar control properties

§ nonlinear stiffness characteristics are needed instead in VSA 

§ a (serial or antagonistic) VSA working at constant stiffness is an elastic joint

§ flexible joint robots are classified as underactuated mechanical systems
§ have less commands than generalized coordinates 

§ non-collocation of command inputs and of dynamic behaviors to be controlled
§ however, they are controllable in the first approximation (the easier case!)

§ also continuum soft robots are most of the times underactuated
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Control drawbacks due to joint elasticity
Neglecting softness may generate vibrations and trajectory oscillations

§ anywhere: conventional/massive industrial manipulators, lightweight (loaded)  
research-oriented robots, educational devices, …
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Exploiting joint elasticity in pHRI
Detection and selective reaction in torque control mode, based on residuals

§ collision detection & reaction for safety (model-based + joint torque sensing)

[De Luca 
et al, 

IROS 2006;
Haddadin

et al, 
T-RO 2017]
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Exploiting joint elasticity in pHRI
Human-robot collaboration in torque control mode

§ contact force estimation & control (virtual force sensor, anywhere/anytime)

[Magrini
et al, 

ICRA 2015]
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Dynamic modeling
Lagrangian formulation (so-called reduced model of Spong)

§ open chain robot with N elastic joints and N rigid links, driven by electrical actuators
§ use N motor variables ! (as reflected through the gear ratios) and N link variables "
§ assumptions

A1) small displacements at joints 
A2) axis-balanced motors
A3) each motor is mounted on the robot

in a position preceding the driven link
A4) no inertial couplings between motors and links
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Single elastic joint
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we often look rather at the 
torque-to-velocity mappings …

(eliminating one integrator)



Single elastic joint
Transfer functions of interest (with added motor and/or link side damping…)
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§ typical anti-resonance/resonance behavior on motor velocity output
§ pure resonance on link velocity output (weak or no zeros) 
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Visco-elasticity at the joints
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coupling type consequence for the model
stiffness basic static coupling, maximum relative degree (= 4) of output &
damping reduced relative degree (= 3), only I/O linearization by static feedback

inertia * reduced relative degree, I/O linearization needs dynamic feedback

Introduces a structural change …

on Spong model
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Inverse dynamics
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Feedforward action for following a desired trajectory in nominal conditions

given a desired smooth link trajectory #4(;) ∈ *4
§ compute symbolically the desired motor acceleration and, therefore, also the desired 

link jerk (i.e., up to the fourth time derivative of the desired motion)

§ the inverse dynamics can be efficiently computed using a modified Newton-Euler 
algorithm (with link recursions up to the fourth order) running in > ?

§ the feedforward command can be used in combination with a PD feedback control 
on the motor position/velocity error, so as to obtain a local but simple trajectory 
tracking controller
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Feedback linearization
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§ an exactly linear and I/O decoupled closed-loop system is obtained

§ to be stabilized with standard techniques for linear dynamics (pole placement, LQ, …)

§ requires higher derivatives of !
§ however, these can be computed from the model using the state measurements

§ requires higher derivatives of the dynamics components

§ A ; <3 Newton-Euler recursive numerical algorithm is available for this problem

§ the link position q is a linearizing (a.k.a. flat) output 

For accurate trajectory tracking tasks

§ differentiating twice the link equation and using the motor acceleration yields

!, !̇, !̈, !(7)

'̈, -̈, 0̈
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Feedback linearization
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Based on the rigid model only vs. when modeling also joint elasticity
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[Spong, ASME 
JDSMC 1986]rigid computed torque elastic joint feedback linearization

17Freiburg, June 24, 2019 RSS 2019



Feedback linearization
Benefits on an industrial KUKA KR-15/2 robot (235 kg) with joint elasticity

conventional industrial robot control

trajectory tracking with model-based control
feedback linearization + high-damping
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[Thümmel, 
PhD@TUM

2007]
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Torque control
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§ 5 < 1 for avoiding over-compensation
§ useful for designing a motor side disturbance observer, e.g., to realize friction compensation
§ basis for many cascaded controller designs, starting from a given rigid body control law     
1 = 1(#, #̇, t) taken as 12,9(t) in the above formulas

§ higher derivatives are still required (either #̈ or 1̈2)

1 = &.341̈2,9 + 12,9 + .: 12,9 − 12 + .; 1̇2,9 − 1̇2 + 5&#̈

A different set of state measurements can be used directly for tracking control

measurable by a joint torque sensor

rewriting the motor dynamics
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Torque feedback
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Consider a pure proportional torque feedback (+ a derivative term for the visco-elastic case) 

#3̈ + / 3 − 4 = !

#$3̈ + / 3 − 4 = '

original motor dynamics

after the torque feedback

#3̈ + !- + ./%&!̇- = !
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visco-elastic case

physical interpretation: 
scaling of the motor inertia and motor friction! 
[Ott, Albu-Schäffer, 2008]

An inner loop that largely reduces motor inertia (and friction)

J

J
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Full-state feedback

⇒ joint level control structure of the DLR (and KUKA) lightweight robots

inertia scaling via torque feedback
regulation via motor PD, e.g., with

" = $ + &' ( − &' "* − &+"̇*
( = - ./(1) + &3 14 − 1 − 531̇

" = "*,4 − &' "* − "*,4 − &+"̇* − &7 14 − 1 − &81̇ + "9 + "4:;

motor inertia scaling vibration damping

setpoint control
dynamics feedforward and
desired torque command

friction compensation 
and/or disturbance observer

(+ integral actions)

&7 = 0
&8 = 0
&' > 0
&+ > 0
"*,4 = "4

torque control
&7 > 0
&8 > 0
&' > 0
&+ > 0
"*,4 = -(/)

position control
&7 = &'&3
&8 = &'53
&' = (>>4?@ − $)
&+ = >>4?@ − $ 5&?@
"A,4 = - ./(1)

impedance control

Combining torque feedback with a motor PD regulation law
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Regulation tasks

! = max( '( )
') )

+, gain criteria for stability

(()-) ./01 2 −2
−2 2 + 25 > ! [Tomei, 1991]

((7 − 289( )- ) ./01 2 −2
−2 2 + 25 > ! [De Luca, Siciliano, Zollo, 2004]

( ) 7 , ) 7 : ( ) = 2(7 − )) 25 > 0, ./01 2 > ! [Ott, Albu-Schäffer, 2004]

( ) + =289 ( ) 25 > 0, 2 > 0 [De Luca, Flacco, 2010]

for a desired constant link position )>
§ evaluate the associated desired motor position 7- at steady state
§ collocated (partial state) feedback preserves passivity, with stiff 25 gain dominating gravity
§ focus on the term for gravity compensation (acting on link side) from motor measurements

? = ?@ + 25 7- − 7 − 2A7̇

Using a minimal PD+ action on the motor side

7- = )- + 289(()-)

exact gravity cancellation
(with full state feedback)

more on this next…

..

2A > 0
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Exact gravity cancellation
A slightly different view

§ for rigid robots this is trivial, due to full actuation and collocation
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Exact gravity cancellation
… exploiting the concept of feedback equivalence between nonlinear systems

§ for elastic joint robots, non-collocation of input torque and gravity term

??

??
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Exact gravity cancellation
… generalized also to VSA robots

§ same problem formulation holds also for VSA robots (here, in antagonistic configuration), 
with the additional consideration of the internal stiffness state

??
??

??
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Feedback equivalence
Use the system property of being feedback linearizable (without forcing it!)

linear, controllable system

feedback transformations
static state feedback 

+ change of coordinates 
both invertible

gravity-loaded system gravity-free system

≈  linearizing outputs
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Exact gravity cancellation
Elastic joint robots (including link/motor damping) [De Luca, Flacco, CDC 2010]

requires (in principle) full state feedback
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Numerical results
Exact gravity cancellation for a 1-DOF elastic joint

exact reproduction of same link behavior
with and without gravity 

different motor behavior
with and without gravity 
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A global PD-type regulator
Exact gravity cancellation combined with PD law on modified motor variables

Global asymptotic stability can be shown using a Lyapunov analysis
under “minimal” sufficient conditions (also without viscous friction)

andi.e., no strictly
positive lower bounds
are needed any longer
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[De Luca, Flacco, ICRA 2011]



Numerical results
Regulation of a 1-DOF arm with elastic joint under gravity

gravity-loaded system under PD 
+ gravity cancellation

vs. 
gravity-free system under PD 

(with same gains)
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Numerical results
Exact gravity cancellation for the VSA-II of UniPisa

via
feedback

exact reproduction of link behavior

exact reproduction of stiffness behaviorapplied torques for gravity cancellation
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linearizing
outputs



Damping injection on the link side
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§ same principle of feedback equivalence (including state transformation)
§ ESP = Elastic Structure Preserving control by DLR [Keppler et al, T-RO 2018] 

§ generalizations to trajectory tracking, to nonlinear joint flexibility, and to visco-elastic joints

Method for the VSA-driven bimanual humanoid torso David

feedback control
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Damping injection on the link side
Method for VSA-driven bimanual humanoid torso David at DLR

[Keppler et al, T-RO 2018]
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Environment interaction via impedance control

§ again, by the principle of feedback equivalence (including the state transformation)

Matching a generalized (fourth order) impedance model: A simple 1-DOF case
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Control of a soft robot
Matching the natural dynamics of the system: Continuum robot case
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§ dynamic modeling assumptions
A1) [kinematics] approximated as a series of n segments with constant curvature 

A2) [inertia] each segment can be described by an equivalent point mass

A3) [impedance] continuous distribution of infinitesimal springs and dampers

single segm
ent

point mass
q3

q2

q1

q4
s 2 C4

q 2 Rn

qi

linear 
stiffness!

[Della Santina et al, IJRR 2018]



Dynamic modeling of a continuum soft robot
Finite dimensional (arbitrary) approximation
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§ continuum soft robot

B(q)q̈ + C(q, q̇)q̇ +G(q)+

Kq +Dq̇ = ⌧

Trivedi et al. 
“Geometrically Exact Models for Soft Robotic Manipulators”

Albu-Schaeffer and Bicchi “Actuators for Soft Robotics”
Ch. 21 in Springer Handbook of Robotics (Siciliano and Khatib eds.)

§ articulated soft robot (fully actuated!)



§ tracking case when             ,

Regulation and trajectory tracking in curvature space
Moving from joint configuration space to local curvature space
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Regulation and trajectory tracking in curvature space
Static, quasi-static, dynamic reference (without and with gravity)
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⌧ = Kq̄ +D ˙̄q +G(q) + C(q, q̇) ˙̄q +B(q)¨̄q
pure feedforward

desired 
curvature

soft robot
stiffness

soft robot 
damping

g = 0

quasi-static 
reference

no gravity

˙̄q ' 0
¨̄q ' 0

q̄i

t

rigid robot controlled 
through a PD: 

global asymptotic stability

B(q)q̈ + C(q, q̇)q̇ +G(q)+

Kq +Dq̇ = ⌧

feedforward + physical impedance
physical PD control!

,B(q)q̈ + C(q, q̇)q̇ = K(q̄ � q) +D( ˙̄q � q̇)



Regulation and trajectory tracking in curvature space
Static, quasi-static, dynamic reference … (without and with gravity)
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pure feedforward

quasi-static 
reference

with gravity

˙̄q ' 0
¨̄q ' 0

q̄i

t

rigid robot controlled 
through a PD: 

global asymptotic stability

feedforward + physical impedance
physical PD control!

,B(q)q̈ + C(q, q̇)q̇ = K(q̄ � q) +D( ˙̄q � q̇)

⌧ = Kq̄ +D ˙̄q +G(q) + C(q, q̇) ˙̄q +B(q)¨̄q

B(q)q̈ + C(q, q̇)q̇ +G(q)+

Kq +Dq̇ = ⌧

gravity
curvature

feedback

g 6= 0



Regulation and trajectory tracking in curvature space
Static, quasi-static, dynamic reference … (without and with gravity)
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pure feedforward

dynamic reference

passivity-based nonlinear control, with physical PD: global asymptotic stability

feedback

⌧ = Kq̄ +D ˙̄q +G(q) + C(q, q̇) ˙̄q +B(q)¨̄q

Coriolis and centrifugal 
inertia

¨̄q 6= 0

˙̄q 6= 0
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[Della Santina et al, IJRR 2018]



Discrete world

Rods 
theory

Trivedi et al. “Geometrically Exact Models for 

Soft Robotic Manipulators” TRO (2008)

Continuum world

f

✓
s1, . . . sm, q(s1, . . .),

@q

@t
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@s1
, . . .

◆
= 0

Plates and 
shells
theory

Reddy ”Theory and Analysis of Elastic Plates 
and Shells.” CRC press (1999)

General 3D 
infinitesimal 
or finite 
strain theory

Lubliner, 

Jacob. Plasticit
y theory. 

Courier 

Corporation 

(2008)

B(q)q̈ + C(q, q̇)q̇ +G(q) = A(q)⌧ � T (q)�D(q, q̇)

courtesy of Cosimo Della Santina



Outlook

§ Mature field revamped by a new “explosion” of interest
§ simpler control laws for compliant and soft robots are very welcome
§ sensing requirements could be a bottleneck
§ combine (learned) feedforward and feedback to achieve robustness

§ learning on repetitive tasks (ILC) already available for flexible manipulators
§ optimal control (min time, min energy, max force, …) still “open for fun”

§ Revisiting model-based control design
§ do not fight against the natural dynamics of the system

§ unwise to stiffen what was designed/intended to be soft on purpose!
§ don’t give up too much of desirable performance (use feedback equivalence) 
§ keep in mind under-actuation and control limitations (e.g., instabilities in the 

system inversion of tip trajectories for flexible link robots, I/O synergies, …)
§ Ideas assessed for joint elasticity may migrate to many application domains 

and other classes of soft-bodied robots
§ locomotion, shared manipulation, physical interaction in complex tasks …

Control of soft & flexible robots in 2020+
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