Summer School SIDRA 2021 Modeling and Control of Soft Robots Bertinoro, Italy

July 15-17, 2021

Regulation, Inversion Control, and Feedback Equivalence for Flexible Robots

Alessandro De Luca Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG)

deluca@diag.uniroma1.it

Summary

a world of soft robots

 flexible joints, serial elastic actuation (SEA), variable stiffness actuation (VSA), distributed link flexibility, continuum manipulators, ...

flexible joint robots

- dynamic modeling and structural control properties
- inverse dynamics and feedback linearization for trajectory tracking
- regulation with partial state feedback and gravity compensation
- model-based design based on feedback equivalence
 - exact cancellation of gravity
 - damping injection on the link side
 - environment interaction via generalized impedance model
- an application of flexible joint robots: physical Human-Robot Interaction (pHRI)

Summary

flexible link robots

- dynamic modeling and the role of zero dynamics
- PD+ for regulation and input-output linearization for joint-level trajectory tracking
- stable inversion of desired end-effector trajectories
- outlook on control of (planar) soft manipulators
 - using a piecewise continuous curvature (PCC) dynamic model

Classes of soft robots

Robots with elastic joints

- design of lightweight robots with stiff links for end-effector accuracy
- compliant elements absorb impact energy
 - elastic transmissions (HD, cable-driven, ...)
 - soft coverage of links (foam, safe bags)

- elastic joints decouple instantaneously the *larger* inertia of the driving motors from *smaller* inertia of the links (involved in contacts/collisions!)
- relatively soft joints need more sensing (e.g., joint torque) and better control to compensate for static deflections and dynamic vibrations

torque-controlled robots (DLR LWR-III, KUKA LWR-IV & iiwa, Franka, ...)

Classes of soft robots

Robots with variable stiffness actuation (VSA)

- uncertain interaction with dynamic environments (say, humans) requires to adjust online the compliant behavior and/or to control contact forces
 - passive joint elasticity & active impedance control used in parallel
- nonlinear flexible joints with variable (controlled) stiffness work at best
 - can be made stiff when moving slow (performance), soft when fast (safety)
 - enlarge the set of achievable robot compliance in a task-oriented way
 - plus: mechanical robustness, optimal energy use, explosive motion tasks, ...

A matter of terminology ...

Different sources of elasticity, though similar robotic systems

elastic joints vs. SEA (serial elastic actuators)

- based on the same physical phenomenon: compliance in actuation
- compliance added on purpose in SEA, mostly a disturbance in elastic joints
- different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA
- joint deformation is often considered in the linear domain
 - modeled as a concentrated torsional spring with constant stiffness at the joint
 - nonlinear flexible joints share similar control properties
 - nonlinear stiffness characteristics & double actuation are needed in VSA
 - a (serial or antagonistic) VSA working at constant stiffness is an elastic joint
- flexible robots are usually classified as underactuated mechanical systems
 - have less commands than generalized coordinates
 - non-collocation of command inputs and controlled outputs
 - however, they are controllable in the first approximation (the easy case!)

Classes of soft robots

Robots with flexible links

distributed link deformations

- design of very long and slender arms needed in the application
- use of lightweight materials to save weight/costs
- due to large payloads (viz. large contact forces) and/or high motion speed
- as for joint elasticity, neglecting link flexibility will limit static (steady-state error) or dynamic (vibrations, poor tracking) performance
- control issue due to non-minimum phase nature of the end-effector output w.r.t. the torque command input ... "it moves in opposite direction at start!"

Classes of soft robots

Continuum soft manipulators

characteristics in construction

- Iong, flexible, lightweight, slender arms
- tendon/cable-driven, multi-segmented, distributed/embedded actuation
- energy efficient, (intentional) bio-inspired design
- useful in many special robotic applications
 - surgical, underwater, safe human interaction, cluttered environments, ...
- kinematic, quasi-static, and dynamic modeling (with approximations)
- extra control issues due to task hyper-redundancy and under-actuation

Flexible link robots vs. continuum manipulators

What are the actual (control) differences?

- STADIUM VE
- continuum manipulators may assume very complex shapes in 3D
 - flexible link robots not!
- continuum manipulators may keep a body-deformed configuration under the action of control (apart from gravity)
 - flexible link robots not!
- flexible link robots are always underactuated mechanical systems
 - continuum manipulators also, but possibly not!
- collocated vs. non-collocated control: both may or may not have this ...

TUDOR

Dynamic modeling of robots with flexible joints

Lagrangian formulation (so-called reduced model of [Spong, ASME JDSMC 1987])

- open chain robot with N flexible joints and N rigid links, driven by electrical actuators
- use N motor variables θ (as reflected through the gear ratios) and N link variables q
- assumptions
 - A1) small displacements at joints (elasticity!)
 - A2) axis-balanced motors
 - A3) each motor is mounted on the robot

in a position preceding the driven link

A4) no inertial couplings between motors and links

A4) $\Rightarrow 2N \times 2N$ inertia matrix is block diagonal

M(q)

A2) \Rightarrow inertia matrix and gravity vector are independent from θ

center of mass of rotors / on rotation axes

link equation motor equation

 $\binom{C(q,\dot{q})\dot{q}}{0} + \binom{g(q)}{0} + \binom{K(q-\theta)}{K(\theta-q)}$

Single elastic joint

Transfer functions of interest

K environment force (here, absent) τ_{e} motor friction \mathcal{T}_{f} (usually compensated) $P_{\text{motor}}(s) = \frac{\theta(s)}{\tau(s)} = \frac{Ms^2 + K}{MBs^2 + (M+B)K} \frac{1}{s^2}$ system with stable zeros and relative degree = 2 passive (zeros precede poles on imaginary axis) • stabilization can be achieved via output θ feedback (-)

$$P_{\rm link}(s) = \frac{q(s)}{\tau(s)} = \frac{K}{MBs^2 + (M+B)K} \frac{1}{s^2}$$

NO zeros!!

maximum relative degree = 4

Single elastic joint

Transfer functions of interest

- typical anti-resonance/resonance on motor velocity output (minimum phase)
- pure resonance on link velocity output (weak or no zeros)

a (small) motor or link side viscous friction was added in these Bode plots

Inverse dynamics

Feedforward action for following a desired trajectory in nominal conditions

 compute symbolically the desired motor acceleration and, therefore, also the desired link jerk (i.e., up to the fourth time derivative of the desired motion)

$$\begin{pmatrix} M(q) & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q - \theta) \\ K(\theta - q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$

$$= B\ddot{\theta}_d + K(\theta_d - q_d)$$

$$= BK^{-1} \left[M(q_d) q_d^{(4)} + 2\dot{M}(q_d) q_d^{(3)} + \ddot{M}(q_d) \ddot{q}_d + \frac{d^2}{dt^2} \left(C(q_d, \dot{q}_d) \dot{q}_d + g(q_d) \right) \right]$$

$$+ [M(q_d) + B]\ddot{q}_d + C(q_d, \dot{q}_d) \dot{q}_d + g(q_d)$$

- the inverse dynamics can be computed efficiently in O(N) using a modified Newton-Euler algorithm (with link recursions up to the 4th order) [Buondonno, De Luca IROS 2015]
- the feedforward command τ_d can be used in combination with a PD feedback control on motor position/velocity error to obtain a local but simple trajectory tracking controller

τ

Feedback linearization

Full-state nonlinear feedback for accurate trajectory tracking tasks

the link position q is a linearizing (flat) output (nonlinear equivalent of "no zeros")

$$\begin{pmatrix} M(q) & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) \\ K(\theta-q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix} \longleftrightarrow \qquad q^{(4)} = u$$

differentiating twice the link equation and using the motor acceleration yields

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{(3)} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}(C\dot{q} + g(q))\right)$$

- an exactly linear and I-O decoupled system ("chains of 4 integrators") is obtained
 - to be stabilized with standard techniques for linear dynamics (pole placement, LQ, ...)
- requires higher derivatives of q
 q, q, q, q⁽³⁾
- however, these can be computed from the model using state measurements
- requires higher derivatives of the dynamics components
- A $O(N^3)$ Newton-Euler recursive numerical algorithm is available for this problem

M,Ĉ,ġ

Feedback linearization

Based on the rigid model only vs. when including joint elasticity

$$\tau = M(q)(\ddot{q}_{d} + K_{D}(\dot{q}_{d} - \dot{q}) + K_{P}(q_{d} - q)) + C(q, \dot{q})\dot{q} + g(q)$$

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{(3)} + \ddot{M}\ddot{q} + \frac{d^{2}}{dt^{2}}(C\dot{q} + g(q))\right)$$

$$u = \left(q_{d}^{[4]} + K_{J}(\ddot{q}_{d} - \ddot{q}) + K_{A}(\ddot{q}_{d} - \ddot{q}) + K_{D}(\dot{q}_{d} - \dot{q}) + K_{P}(q_{d} - q)\right)$$
video

rigid computed torque

[Spong, ASME JDSMC 1987]

elastic joint feedback linearization

Feedback linearization

Benefits on an industrial KUKA KR-15/2 robot (235 kg) with joint elasticity

trajectory tracking with model-based control

Visco-elasticity at the joints

Introduces a structural change ...

on Spong model

$$\begin{pmatrix} M(q) & 0^* \\ 0^* & B \end{pmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix}^* + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) + D(\dot{q} - \dot{\theta}) \\ K(\theta - q) + D(\dot{\theta} - \dot{q}) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$

coupling type	control consequence for the model
stiffness	basic elastic coupling, maximum relative degree (= 4) of output q
damping	reduced relative degree (= 3), only I-O linearization by static feedback
inertia*	reduced relative degree, exact or I-O linearization needs dynamic feedback

* the so-called complete dynamic model includes off-diagonal inertial couplings between motors and links [De Luca, Lucibello, ICRA 1998]

Regulation tasks

Using a minimal PD+ action on the motor side

for a desired constant link position q_d

- evaluate the associated desired motor position θ_d at steady state
- collocated (partial state) feedback preserves passivity, with stiff K_P gain dominating gravity
- focus on the term for gravity compensation (acting on link side) from motor measurements

$$\theta_d = q_d + K^{-1}g(q_d) \qquad \tau = \tau_g + K_P(\theta_d - \theta) - K_D\dot{\theta} \qquad K_D > 0$$

$ au_g$	gain criteria for stability	
$g(q_d)$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$	[Tomei, IEEE T-AC 1991]
$g(\theta - K^{-1}g(q_d))$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$	[De Luca, Siciliano, Zollo, ASME JDSMC 2004]
$g(\overline{q}(\theta)), \ \overline{q}(\theta): \ g(\overline{q}) = K(\theta - \overline{q})$	$K_P > 0, \lambda_{min}(K) > \alpha$	[Ott et al, ICRA 2004]
$g(q) + BK^{-1}\ddot{g}(q)$	$K_P > 0, \qquad K > 0$	[De Luca, Flacco, CDC 2010]
exact gravity cancella (with full state feedba	$\frac{\text{tion}}{\text{ack}} \qquad \alpha = \max_{q} \ $	$\frac{\partial g(q)}{\partial q} \bigg\ $

Exact gravity cancellation

A slightly different view

• for rigid robots this is trivial, due to collocation

 $M(q)\ddot{q} + c(q,\dot{q}) + D\dot{q} + g(q) = \tau$

Exact gravity cancellation

... based on the concept of feedback equivalence between nonlinear systems

• for elastic joint robots, **non-collocation** of input torque and gravity term

Feedback equivalence

Exploit the system property of being feedback linearizable (without forcing it!)

A global PD-type regulator

Vibration damping on lightweight robots

DLR-III or KUKA LWR-IV with relatively low joint elasticity (use of Harmonic Drives)

video

vibration damping **OFF**

vibration damping ON

[Albu-Schäffer et al, IJRR 2007]

for relatively large joint elasticity (low stiffness), as encountered in VSA systems, vibration damping via joint torque feedback + motor damping is **insufficient** for high performance!

video

Damping injection on the link side

Method for the VSA-driven bimanual humanoid torso David

- ESP = Elastic Structure Preserving control by DLR [Keppler et al, IEEE T-RO 2018]
- same principle of feedback equivalence (including state transformation)!

Damping injection on the link side

Method for VSA-driven bimanual humanoid torso David at DLR

[Keppler et al, IEEE T-RO 2018]

Environment interaction via impedance control

Matching a generalized (fourth order) impedance model: A simple 1-DOF case

again, by the principle of feedback equivalence (including the state transformation)

Torque feedback

An inner loop that largely reduces motor inertia (and friction)

Consider a pure proportional torque feedback (+ a derivative term for the visco-elastic case)

Full-state feedback

Combining torque feedback with motor PD regulation ("torque controlled robots")

inertia scaling via torque feedback $\tau = (I + K_T)u - K_T \tau_I - K_S \dot{\tau}_I$

regulation via motor PD, e.g., with $u = q(\bar{q}(\theta)) + K_{\theta}(\theta_{d} - \theta) - D_{\theta}\dot{\theta}$

⇒ joint level control structure of the DLR (and KUKA) lightweight robots

Exploiting joint elasticity in pHRI

Detection & selective reaction in torque control mode, with momentum-based residuals

collision detection & reaction for safety (model-based + joint torque sensing)

video

[De Luca *et al,* IROS 2006; Haddadin *et al,* IEEE T-RO 2017]

Exploiting joint elasticity in pHRI

Human-robot collaboration in torque control mode

contact force estimation & control (virtual force sensor, anywhere/anytime)

video

[Magrini *et al,* ICRA 2015]

Dynamic modeling of a single flexible link

Euler-Bernoulli beam [Bellezza, Lanari, Ulivi, ICRA 1990]

- beam of length l, uniform density ρ , Young modulus \cdot cross-section inertia EI in rotation on a horizontal plane
- actuator inertia J_0 at the base and payload mass m_p and inertia J_p at the tip
- various angular variables:
 $\theta_c(t)$ clamped at base (measured by encoder),
 $\theta(t)$ pointing at the tip (measurable and of interest)
- small deformations of pure bending $w(x,t) = \phi(x)\delta(t)$ (with space/time separation)
- Hamilton principle + calculus of variation ⇒ PDE equations, with geometric and dynamic boundary conditions

$$J\ddot{\theta}(t) = \tau(t) \qquad J = J_0 + \frac{\rho l^3}{3} + J_p + m_p l^2$$
$$EIw^{\prime\prime\prime\prime}(x,t) + \rho \big(\ddot{w}(x,t) + x\ddot{\theta}(t) \big) = 0$$
$$w(0,t) = 0$$

$$EIw''(0,t) = J_0 \left(\ddot{\theta}(t) + \ddot{w}'(0,t) \right) - \tau(t)$$

$$EIw''(l,t) = -J_p \left(\ddot{\theta}(t) + \ddot{w}'(l,t) \right)$$

$$EIw'''(l,t) = m_p \left(l\ddot{\theta}(t) + \ddot{w}(l,t) \right)$$

Dynamic modeling of a single flexible link

Characteristic equation and eigenfrequencies

• infinite countable roots β_i , i = 1, 2, ... of an eigenvalue problem

 $(1 - \frac{m_p}{\rho^2}\beta_i^4(J_0 + J_p))(\cos\beta_i l\sinh\beta_i l - \sin\beta_i l\cosh\beta_i l) - \frac{2m_p}{\rho}\beta_i\sin\beta_i l\sinh\beta_i l - \frac{2J_p}{\rho}\beta_i^3\cos\beta_i l\cosh\beta_i l$ $-\frac{J_0}{\rho}\beta_i^3(1 + \cos\beta_i l\cosh\beta_i l) + \frac{J_0J_p}{\rho^2}\beta_i^6(\cos\beta_i l\sinh\beta_i l + \sin\beta_i l\cosh\beta_i l) - \frac{J_0J_pm_p}{\rho^3}\beta_i^7(1 - \cos\beta_i l\cosh\beta_i l) = 0$

- common assumed modes are special cases
 - clamped-free: $m_p = 0$, $J_p = 0$, $J_0 \rightarrow \infty \implies 1 + \cos \beta_i l \cosh \beta_i l = 0$
 - pinned-free: $m_p = 0$, $J_p = 0$, $J_0 = 0 \implies \cos \beta_i l \sinh \beta_i l \sin \beta_i l \cosh \beta_i l = 0$
- associated to each root β_i there is
 - an eigenfrequency (system vibrations) $\omega_i = \sqrt{EI\beta_i^4/\rho}$
 - an eigenvector (spatial mode) $\phi_i(x) = A \sin \beta_i x + B \cos \beta_i x + C \sinh \beta_i x + D \cosh \beta_i x$
 - a deformation variable $\delta_i(t)$
- finite approximation by truncation up to n_e orthonormal modes: $w(x,t) = \sum_{i=1}^{n_e} \phi_i(x) \delta_i(t)$

Dynamic model of a single flexible link

Final equations and system outputs

linear dynamic model

$$J\ddot{\theta} = \tau$$

$$\ddot{\delta}_{i} + \omega_{i}^{2}\delta_{i} = \phi_{i}'(0)\tau, \qquad i = 1, ..., n_{e}$$

• including modal damping ($\zeta_i \in [0,1]$)

$$J\ddot{\theta} = \tau$$

$$\ddot{\delta}_{i} + 2\zeta_{i}\omega_{i}\dot{\delta}_{i} + \omega_{i}^{2}\delta_{i} = \phi_{i}'(0)\tau, \qquad i = 1, \dots, n_{e}$$

in matrix form

$$q = \begin{pmatrix} \theta, \delta_1, \delta_2, \dots, \delta_{n_e} \end{pmatrix} \in \mathbb{R}^{n_e+1} \qquad M\ddot{q} + D\dot{q} + Kq = B\tau$$
$$M = \begin{pmatrix} J & 0\\ 0 & I_{n_e} \end{pmatrix}, \qquad D = \begin{pmatrix} 0 & 0\\ 0 & 2Z\Omega \end{pmatrix}, \qquad K = \begin{pmatrix} 0 & 0\\ 0 & \Omega^2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1\\ \Phi'(0) \end{pmatrix}$$

system outputs

$$\theta_c = \theta + \sum_{i=1}^{n_e} \phi_i'(0) \delta_i$$

clamped joint level: always minimum phase

$$\theta_t = \theta + \sum_{i=1}^{n_e} \frac{\phi_i(l)}{l} \delta_i$$

tip level: typically non-minimum phase

Eigenmodes

physical data of an Euler-Bernoulli model

$$l = 1$$
, $\rho = 0.5$, $EI = 1$, $J_0 = 0.002$ $(m_p = J_p = 0)$

■ first four exact mode shapes (normalized) –*k*-th mode has *k* nodes w.r.t. rigid axis

Transfer functions of interest and frequency responses

clamped joint level: always minimum phase

tip level: typically non-minimum phase

Pole-zero patterns

in the absence of modal damping

 $n_e = 2 \text{ modes}$

Experimental model identification

in the frequency domain

sweep joint acceleration excitation signal: plant vs. model

joint acceleration frequency response: plant vs. model matching (\leq 1%) of resonances at $f_1 = 14.4, f_1 = 34.2, f_1 = 69.3$ Hz

Dynamic modeling of robots with flexible links

Lagrangian formulation (finite-dimensional)

- open chain robot with N flexible links, each with $n_{e,i}$ deformation variables (a total of N_e)
- single-link modeling results embedded with caution for each of the multiple flexible links
- in general, 2D bending + torsion (to limit model complexity, only planar structures here)
- typical use of simpler assumed modes to describe spatial deformation

Dynamic modeling of robots with flexible links

Simplifications in model (possibly, for control use)

in matrix form

 $q = (\theta, \delta) \in \mathbb{R}^{N+N_e} \qquad M(q)\ddot{q} + c(q, \dot{q}) + g(q) + \binom{0}{D\dot{\delta} + K\delta} = \binom{\tau}{0}$

- common simplifications in mechanics
 - small deformations (in the linear domain) $\rightarrow g_{\delta}(\theta)$
 - kinetic energy evaluated in the undeformed ($\delta = 0$) configuration of the arm $\rightarrow M(\theta)$
 - $M_{\delta\delta}$ often constant

- flexible link manipulators are underactuated systems
 - less command inputs τ than generalized coordinates q
 - we consider as many controlled outputs y as commands ('squaring the I-O problem')
 - problems, however, with the associated zero dynamics (in a linear or nonlinear setting)

Control problems for flexible link robots

A compact overview (moving in free space) ...

- regulation to a desired equilibrium state $(q, \dot{q}) = (\theta_d, \delta_d, 0, 0)$
 - only the desired joint/rigid variable θ_d is assigned: δ_d has to be determined
 - θ_d may come from a (numerical) kineto-static inversion of a Cartesian pose y_d
 - forward kinematics of flexible robots is a complete function $y = kin(\theta, \delta)$
 - global stabilization results with joint PD + gravity compensation
- tracking of a joint trajectory $\theta_d(t)$
 - the easy case, solved by I-O inversion (stable/minimum phase zero dynamics)
 - solution stiffens the arm at the bases of the flexible links, rejecting vibrations
- tracking of an end-effector trajectory $y_d(t)$
 - the difficult case, facing the unstable/non-minimum phase zero dynamics
 - non-causal solution designed in frequency or time domain (feedforward + local stabilizing feedback)
 - causal solution by nonlinear regulation (avoiding critical cancellations)
- rest-to-rest motion between two equilibria in assigned time T

Control solutions for flexible link robots

Main results – 1

• global asymptotic stabilization to a desired equilibrium state $(\theta_d, \delta_d, 0, 0)$

$$\tau = K_P(\theta_d - \theta) - K_D \dot{\theta} + g_\theta(\theta_d, \delta_d)$$

$$\delta_d = -K^{-1}g_\delta(\theta_d) \qquad \lambda_{min} \left\{ \begin{pmatrix} K_P & 0 \\ 0 & K \end{pmatrix} \right\} > \alpha \qquad K_D > 0$$
possibly by iterative possible possibl

two-link flexible arm with two bending modes for each link under gravity

SIDRA 2021 Modeling and Control of Soft Robots – A. De Luca

Control solutions for flexible link robots

Main results – 2

$$\tau = \left(M_{\theta\theta} - M_{\theta\delta}M_{\delta\delta}^{-1}M_{\theta\delta}^{T}\right)a + c_{\theta} + g_{\theta} - M_{\theta\delta}M_{\delta\delta}^{-1}\left(c_{\delta} + g_{\delta} + K\delta + D\dot{\delta}\right)$$

resulting closed-loop system

$$\ddot{\theta} = a$$

$$\ddot{\delta} = -M_{\delta\delta}^{-1} \left(M_{\theta\delta}^T a + c_{\delta} + g_{\delta} + K\delta + D\dot{\delta} \right)$$

[De Luca, Siciliano, AIAA JGCD 1993b]

$$a = \ddot{\theta}_d + K_D (\dot{\theta}_d - \dot{\theta}) + K_P (\theta_d - \theta), \qquad K_P, K_D > 0$$

• the zero dynamics, when the output $\theta(t) \equiv 0$, is asymptotically stable (via Lyapunov argument)

$$\ddot{\delta} = -M_{\delta\delta}^{-1} (c_{\delta} + g_{\delta} + K\delta + D\dot{\delta})$$

• the clamped dynamics, when the output $\theta(t) \equiv \theta_d(t)$, is bounded

$$\ddot{\delta} = -A_2(t)\dot{\delta} + A_1(t)\delta + f_\delta(t)$$

both ovtonde

Main results – 3

■ non-causal command designed in frequency domain ⇒ desired acceleration as
■ nort of a periodic profile, bounded inversion with Fourier transforms (or FFT)

Control solutions for flexible link robots

tracking of an end-effector trajectory $y_d(t)$

- part of a periodic profile, bounded inversion via Fourier transform (or FFT) [Bayo, JRobSyst 1987]
- ... designed in time domain ⇒ forward/backward time integration of stable/unstable parts of the inverse system
- both extended from linear to nonlinear case via numerical/iterative methods

Control solutions for flexible link robots at Sapienza

Main results – 4 (oldies but goldies...)

- stable nonlinear regulation of end-effector trajectory for the 2R FLEXARM
- rest-to-rest slew motion in assigned time for a one-link flexible beam

video

45° for (rigid) link 1 and 45° for tip of flexible forearm in T = 1.5 s

[De Luca et al, CDC 1990, ICRA 1998]

90° slew in T = 2 s (flat output design) [De Luca, Di Giovanni, AIM 2001;

De Luca, Caiano, Del Vescovo, ISER 2002]

Control solutions for flexible link robots

More results, including physical interaction

- 3R arm with flexible links TUDOR (TU Dortmund Omni-elastic Robot)
- vibration damping by strain gauge feedback during motion (or after impact)

collision detection and reaction based on generalized momentum observer same residual method as in elastic joint robots!!

Outlook on control of soft manipulators

Continuum planar arms with PCC

- dynamic modeling assumptions
 - A1) [kinematics] approximated as a series of n segments, each with a curvature q_i
 - A2) [inertia] each segment can be described by an equivalent point mass
 - A3) [impedance] continuous distribution of infinitesimal springs and dampers
- fully actuated on each segment \Leftrightarrow underactuated with m < n input commands

Dynamic model of planar soft manipulator

Full actuation vs. underactuation in PCC model

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) + Kq + D\dot{q} = \tau$$

with the usual properties (M > 0, $\dot{M} - 2C$ skew-symmetric, g bounded in norm, ...)

- ⇒ regulation, curvature trajectory tracking, Cartesian stiffness control, preserving (in nominal conditions) stiffness and damping of the soft system [Della Santina *et al*, IJRR 2020]
- underactuated with only m < n input commands
 - let $q = (q_a, q_u)$, possibly after relabeling of segments, being $q_a \in \mathbb{R}^m$ the curvature of active segments and $q_u \in \mathbb{R}^{n-m}$ that of the unactuated segments
 - dropping dependencies, with active commands $\tau \in \mathbb{R}^m$ and suitable partitions

$$\begin{pmatrix} M_{aa} & M_{au} \\ M_{au}^T & M_{pu} \end{pmatrix} \begin{pmatrix} \ddot{q}_a \\ \ddot{q}_u \end{pmatrix} + \begin{pmatrix} C_{aa} & C_{au} \\ C_{ua} & C_{uu} \end{pmatrix} \begin{pmatrix} \dot{q}_a \\ \dot{q}_u \end{pmatrix} + \begin{pmatrix} g_a \\ g_u \end{pmatrix} + \begin{pmatrix} K_a & 0 \\ 0 & K_u \end{pmatrix} \begin{pmatrix} q_a \\ q_u \end{pmatrix} + \begin{pmatrix} D_a & 0 \\ 0 & D_u \end{pmatrix} \begin{pmatrix} \dot{q}_a \\ \dot{q}_u \end{pmatrix} = \begin{pmatrix} \tau \\ 0 \end{pmatrix}$$

⇒ a few preliminary results ... [joint work with Pietro Pustina, 2021]

Regulation and trajectory tracking

Full actuation: moving from joint configuration space to local curvature space

• tracking of $q_d(t)$, with $\dot{q}_d \neq 0$, $\ddot{q}_d \neq 0$ regulation to a (quasi-static) q_d q_{id} feedforward (soft robot gravity feedback stiffness & damping) cancellation $\tau = Kq_d + D\dot{q}_d + g(q)$ video $+ K_P(q_d - q) + K_D(\dot{q}_d - \dot{q})$ robustifying PD action passivity-based tracking controller [Della Santina *et al*, IJRR 2020] $\tau = Kq_d + D\dot{q}_d + g(q) + C(q,\dot{q})\dot{q}_d + M(q)\ddot{q}_d$ $+ K_{P}(q_{d} - q) + K_{D}(\dot{q}_{d} - \dot{q})$

Zero dynamics and regulation

Underactuated planar PCC model, without and with gravity

- zero dynamics when the output is $y = q_a \in \mathbb{R}^m$
 - in the absence of gravity $(g(q) \equiv 0)$, the unique state $(q_u, \dot{q}_u) = (0,0)$ is globally asymptotically stable for the zero dynamics of the soft robot
 - in the presence of gravity (e.g., in a vertical plane), the trajectories of the zero dynamics remain bounded and converge to $(q_u, \dot{q}_u) = (q_{u.eq}, 0)$, being $q_{u,eq}$ a solution of

$$K_u q_u + g_u(0, q_u) = 0$$

- proofs by Lyapunov/La Salle analysis
- regulation to $q_d = (q_{a,d}, 0) \in \mathbb{R}^n$, $q_{a,d} \in \mathbb{R}^m$, in the absence of gravity $\tau = K_P(q_{a,d} - q_a) - K_D \dot{q}_a + K_a q_{a,d}$ $K_P, K_D > 0$
- regulation to $q_d = (q_{a,d}, q_{p,d}) \in \mathbb{R}^n$, $q_{a,d} \in \mathbb{R}^m$, in the presence of gravity

$$\begin{cases} \tau = K_P(q_{a,d} - q_a) - K_D \dot{q}_a + g_a(q_d) + K_a q_{a,d} \\ \tau^g = K_P(q_{a,d} - q_a) - K_D \dot{q}_a + g_a(q_{a,d}, q_u) + K_a q_{a,d} \end{cases}$$

$$K_P > 0, \text{ sufficiently large} \\ \frac{q_{u,d}}{K_u q_u} \text{ unique solution to} \\ K_u q_u + g_u(q_{a,d}, q_u) = 0 \end{cases}$$

Simulation results

Underactuation with n = 3 segments, m = 2 actuated: $q_a = (q_1, q_3)$, $q_u = q_2$

• regulation to $q_{a,d} = (0,0)$ from $q(0) = (-\pi, -\pi, \pi)$ using τ^g , in the presence of gravity video

• tracking of $q_{a,d}(t) = (\sin t, \cos t)$ starting from $q(0) = (-\pi, -\pi, 0)$, using a partial feedback linearization control τ^{PFL} , in the presence of gravity video

Take home messages

Control of soft robots in 2021+

- a "soft explosion" is revamping the mature field of flexible robot control
 - consideration of dynamics in the control design/performance of soft robots
 - combine (learned) feedforward and feedback to achieve robustness
 - iterative learning (on repetitive tasks) is available for flexible manipulators
 - optimal control (min time, min energy, max force, ...) still open for fun
- revisiting model-based control design
 - do not fight against the natural dynamics of the system
 - it is unwise to stiffen what was designed/intended to be soft on purpose
 - still, don't give up too much of desirable performance!
- ideas assessed for flexible joints and links may migrate to other classes of soft-bodied robots (and applications)
 - keep in mind intrinsic task constraints and control limitations (e.g., instabilities in system inversion of tip trajectories for flexible link robots)
 - locomotion, shared manipulation, physical interaction in complex tasks, ...

References

pdf and videos: see also www.diag.uniroma1.it/deluca/Publications.php

Cited in the slides – 1

- Albu-Schäffer, Ott, Hizinger, 2007. A unified passivity-based control framework for position torque and impedance control of flexible joint robots. Int. J. of Robotics Research, 26(1), 23-39
- Bayo, 1987. A finite element approach to control the end-point motion of a single-link flexible robot.
 J. of Robotic Systems, 4(1), 63-75
- Bellezza, Lanari, Ulivi, 1990. Exact modeling of the flexible slewing link. *IEEE Int. Conf. on Robotics and* Automation, 734-739
- Buondonno, De Luca, 2015. A recursive Newton-Euler algorithm for robots with elastic joints and its application to control. *IEEE/RSJ Int. Conf. on Intelligent Robots and Systems*, 5526-5532
- De Luca, Albu-Schäffer, Haddadin, Hirzinger, 2006. Collision detection and safe reaction with the DLR-III lightweight manipulator arm. *IEEE/RSJ Int. Conf. on Intelligent Robots and Systems*, 1623-1630
- De Luca, Book, 2016. Robots with flexible elements. *Springer Handbook of Robotics*, chap 11, 243-282
- De Luca, Caiano, Del Vescovo, 2003. Experiments on rest-to-rest motion of a flexible arm. *Experimental Robotics VIII*, Springer Tracts in Advanced Robotics, vol 5, 338-349
- De Luca, Di Giovanni, 2001. Rest-to-rest motion of a one-link flexible arm. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 923-928
- De Luca, Flacco, 2010. Dynamic gravity cancellation in robots with flexible transmissions. 49th IEEE Conf. on Decision and Control, 288-295
- De Luca, Flacco, 2011. A PD-type regulator with exact gravity cancellation for robots with flexible joints. *IEEE Int. Conf. on Robotics and Automation*, 317-323

References

Cited in the slides – 2

- De Luca, Lanari, Lucibello, Panzieri, Ulivi, 1990. Control experiments on a two-link robot with a flexible forearm. 29th IEEE Conf. on Decision and Control, 520-527
- De Luca, Lucibello, 1998. A general algorithm for dynamic feedback linearization of robots with elastic joints. *IEEE Int. Conf. on Robotics and Automation*, 504-510
- De Luca, Panzieri, Ulivi, 1998. Stable inversion control for flexible link manipulators. *IEEE Int. Conf. on Robotics and Automation*, 799-805
- De Luca, Siciliano, 1991. Closed-form dynamic model of planar multi-link lightweight robots. *IEEE Trans. on Systems, Man, and Cybernetics*, 21(4), 826-839
- De Luca, Siciliano, 1993a. Regulation of flexible arms under gravity. *IEEE Trans. on Robotics and Automation*, 9(4), 463-467
- De Luca, Siciliano, 1993b. Inversion-based nonlinear control of robot arms with flexible links, AIAA J. of Guidance, Control, and Dynamics, 16(6), 1169-1176
- De Luca, Siciliano, Zollo, 2005. PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments. *Automatica*, 41(10), 1809-1819
- Della Santina, Katzschmann, Bicchi, Rus, 2020. Model-based dynamic feedback control of a planar soft robot: Trajectory tracking and interaction with the environment. *Int. J. of Robotics Research*, 39(4), 490-513
- Haddadin, De Luca, Albu-Schäffer, 2017. Robot collisions: A survey on detection, isolation, and identification. *IEEE Trans. on Robotics*, 33(6), 1292-1312

References

Cited in the slides – 3

- Keppler, Lakatos, Ott, Albu-Schäffer, 2018. Elastic Structure Preserving (ESP): Control for compliantly actuated robots. *IEEE Trans. on Robotics*, 34(2), 317-335
- Kwon, Book, 1994. A time-domain inverse dynamic tracking control of a single-link flexible manipulator. ASME J. Dynamic Systems, Measurement. and Control, 116(2), 193-200
- Magrini, Flacco, De Luca, 2015. Control of generalized contact motion and force in physical humanrobot interaction," IEEE Int. Conf. on Robotics and Automation, 2298-2304
- Malzahn, Phung, Hoffmann, Bertram, 2011. Vibration control of a multi-flexible-link robot arm under gravity. IEEE Int. Conf. on Robotics and Biomimetics, 1249-1254
- Malzahn, Bertram, 2014. Collision detection and reaction for a multi-elastic-link robot arm. 19th IFAC World Congr., 320-325
- Ott, Albu-Schäffer, Kugi, Stramigioli, Hirzinger, 2004. A passivity based Cartesian impedance controller for flexible joint robots - Part I. *IEEE Int. Conf. on Robotics and Automation*, 2659-2665
- Pustina, 2021. Master Thesis, Sapienza University of Rome
- Spong, 1987. Modeling and control of elastic joint robots. ASME J. Dynamic Systems, Measurement, and Control, 109(4), 310-319
- Tomei, 1991. A simple PD controller for robots with elastic joints. *IEEE Trans. Automatic Control*, 36(10), 1208-1213
- Thümmel, 2007. Entwurf, Auslegung und Evaluierung einer Regelungsstruktur für Roboterarme mit elastischen Gelenken zur Erreichung hoher Performance bei Positionier- und Bahnaufgaben am Beispiel eines KUKA KR15/2. *PhD Thesis*, Technical University of Munich (*in German*)