SISTEMI DIGITALI DI CONTROLLO

Prof. Alessandro De Luca

DIS, Università di Roma "La Sapienza" deluca@dis.uniroma1.it

Lucidi tratti dal libro

C. Bonivento, C. Melchiorri, R. Zanasi: "Sistemi di Controllo Digitale" Capitolo 11: Regolatori standard Si ringraziano gli autori

Regolatori standard

- Struttura fissa dei regolatori digitali standard nella pratica industriale
 - discretizzazione di algoritmi analogici tipo PID
 - scelta del periodo di campionamento ${\cal T}$
 - tuning dei parametri
- Altri aspetti trattati
- possibili configurazioni dell'algoritmo
- compensazione di ritardi noti
- passaggio bumpless manuale-automatico
- schemi anti-windup
- tuning automatico dei parametri
- realizzazione in cascata
- compensazione del disturbo

Regolatori PID digitali – 1

Discretizzazione del classico regolatore PID analogico (sull'ingresso di errore)

$$U(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) E(s)$$

Usando l'integrazione rettangolare (di Eulero a sinistra) per il termine integrale e le differerenze all'indietro per quello derivativo

- forma di posizione

$$u_{n} = K_{p} \left[e_{n} + \frac{T}{T_{i}} \sum_{k=0}^{n} e_{k} + \frac{T_{d}}{T} (e_{n} - e_{n-1}) \right] + M_{R}$$

dove M_R è un termine di compensazione in avanti (ad es., del disturbo)

- forma di velocità

$$\Delta u_n = u_n - u_{n-1} = K_p \left[e_n - e_{n-1} + \frac{T}{T_i} e_n + \frac{T_d}{T} \left(e_n - 2 e_{n-1} + e_{n-2} \right) \right]$$

utile in situazioni di possibile saturazione dell'attuatore (non accumulo del termine integrale/di sommatoria)

Regolatori PID digitali – 2

Usando invece l'integrazione trapezoidale (metodo di Tustin)

- forma di posizione

$$u_n = K'_p \left[e_n + \frac{T}{T'_i} \sum_{k=0}^n \frac{e_k + e_{k-1}}{2} + \frac{T'_d}{T} (e_n - e_{n-1}) \right] + M_R$$

- forma di velocità

$$\Delta u_n = K'_p \left[e_n - e_{n-1} + \frac{T}{2T'_i} (e_n + e_{n-1}) + \frac{T'_d}{T} (e_n - 2e_{n-1} + e_{n-2}) \right]$$

Una forma di algoritmo particolarmente utilizzata in pratica

- termine derivativo in forma 'realizzabile' $\frac{T_ds}{1+T_ds/N}$

con N tra 3 e 10

- parte integrale con 'differenze in avanti'
- parte derivativa con 'differenze all'indietro'

$$D_{PID}(z) = \frac{U(z)}{E(z)} = K_p \left[1 + \frac{T}{T_i(z-1)} + \frac{T_d}{T + T_d/N} \frac{z-1}{[z - T_d/(NT + T_d)]} \right]$$

Regolatori PID digitali – 3

Con le posizioni

$$\alpha = \frac{T}{T_i} \qquad \beta = \frac{NT_d}{(NT + T_d)} \qquad \gamma = \frac{T_d}{(NT + T_d)}$$

 $q_0 = K_p(1+\beta) \qquad q_1 = -K_p(1+\gamma-\alpha+2\beta) \qquad q_2 = K_p(\gamma-\alpha\gamma+\beta)$

quest'ultimo regolatore si può riscrivere come

$$D_{PID}(z) = \frac{q_0 z^2 + q_1 z + q_2}{(z-1)(z-\gamma)}$$

Ponendo allora

$$R = (z - 1)(z - \gamma) \qquad T = S = q_0 z^2 + q_1 z + q_2$$

il regolatore risulta quindi del tipo polinomiale (già incontrato nei metodi analitici)

$$Ru = Tv - Sy$$

Scelta del passo di campionamento

Si effettua come al solito

- in base alla banda passante B_{-3} desiderata ad anello chiuso
- in pratica, la frequenza di campionamento è spesso scelta come

 $f_c = \frac{1}{T} \simeq 10 B_{-3}$ (banda espressa in Hertz)

Il tuning si effettua in due fasi:

- 1) calcolo dei parametri in base a semplici modelli standard del processo e uso di criteri di ottimizzazione della risposta
- 2) messa a punto sul campo

Una volta scelto T, i criteri usati nella prima fase si differenziano in due categorie:

a) quelli che utilizzano alcuni punti caratteristici della risposta indiciale y(t) per imporre l'andamento transitorio desiderato

ad es., imponendo un dato rapporto di smorzamento tra due picchi della risposta (tipicamente 0.25)

b) criteri di tipo integrale sulla risposta di errore

$$ISE = \int_0^\infty [e(t)]^2 dt \qquad AE = \int_0^\infty |e(t)| dt \qquad ITAE = \int_0^\infty t |e(t)| dt$$

ISE = Integral Square Error, IAE = Integral Absolute Error, ITAE= Integral Time Absolute Error

Nel caso di criteri della categoria a), esistono tabelle di riferimento per il tuning dei parametri dei regolatori PID analogici

Тіро	Ziegler-Nichols	Cohen-Coon	3C
P	$K K_p = (\theta/\tau)^{-1}$	$K K_p = (\theta/\tau)^{-1} + 0.333$	$K K_p = 1.208 (\theta/\tau)^{-0.956}$
PI	$K K_p = 0.9 (\theta/\tau)^{-1}$	$K K_p = 0.9 (\theta/\tau)^{-1} + 0.082$	$K K_p = 0.928 (\theta/\tau)^{-0.946}$
	$T_i/ au = 3.33(heta/ au)$	$T_i / \tau = \frac{3.33(\theta/\tau)[1 + (\theta/\tau)/11]}{1 + 2.2(\theta/\tau)}$	$T_i/\tau = 0.928(\theta/\tau)^{0.583}$
PID	$K K_p = 1.2(\theta/\tau)^{-1}$	$K K_p = 1.35 (\theta/\tau)^{-1} + 0.27$	$K K_p = 1.37 (\theta/\tau)^{-0.95}$
	$T_i/\tau = 2(\theta/\tau)$	$T_i / \tau = \frac{2.5(\theta/\tau)[1 + (\theta/\tau)/5]}{1 + 0.6(\theta/\tau)}$	$T_i/\tau = 0.74(\theta/\tau)^{0.738}$
	$T_d/\tau = 0.5(\theta/\tau)$	$T_d/\tau = \frac{0.37(\theta/\tau)}{1+0.2(\theta/\tau)}$	$T_d / \tau = 0.365 (\theta / \tau)^{0.95}$

con K, $\theta \in \tau$ parametri di un modello standard del processo (individuati eventualmente in modo grafico, vedi Appendice B)

Modello standard del sistema

(fornisce una risposta a gradino unitario qualitativamente simile a quella del processo reale)

$$G_p(s) = K \frac{e^{-\theta s}}{1 + \tau s}$$

Nel caso digitale, si approssima la presenza del campionatore e del ricostruttore di ordine zero con un ritardo pari a T/2 e si pone nelle tabelle precedenti

Si ricavano quindi K_p , $T_i \in T_d$

Esempio di tuning dei parametri con Ziegler-Nichols – 1

Sia il sistema da controllare

$$G(s) = \frac{1}{(0.5\,s+1)(s+1)^2(2\,s+1)}$$

Esso è approssimabile con un modello della forma standard mediante un'analisi grafica della risposta al gradino (qui, con la tecnica di Miller – vedi Appendice B)

$$G_m(s) = \frac{e^{-1.46s}}{1+3.34s} \qquad (K = 1, \theta = 1.46 \,\mathrm{s}, \tau = 3.34 \,\mathrm{s})$$

Si vuole progettare un regolatore PID con T = 0.3 s

- $\theta' = \theta + T/2 = 1.46 + 0.15 = 1.61$ $\theta'/\tau = 0.482$
- dalla tabella di Ziegler-Nichols si ha

$$KK_p = 2.4894$$
 $\frac{T_i}{\tau} = 0.9641$ $\frac{T_d}{\tau} = 0.241$

da cui si ottengono i parametri

$$K_p = 2.4894$$
 $T_i = 0.9641 \tau = 3.22$ $T_d = 0.241 \tau = 0.805$

Esempio di tuning dei parametri con Ziegler-Nichols – 2

Mediante discretizzazione rettangolare si ottiene il regolatore (scritto in potenze di z^{-1})

$$D_{PID}(z) = K_p \left[1 + \frac{T}{T_i(1 - z^{-1})} + \frac{T_d}{T}(1 - z^{-1}) \right]$$

Nel caso di criteri della categoria b) (ossia integrali), il progetto dei regolatori PID analogici procede nel modo seguente:

- si sceglie il criterio (*IAE*, *ISE* o *ITAE*)
- si sceglie il tipo di controllore (*P*, *PI* o *PID*)
- si sceglie l'azione di controllo (P, I o D)
- in corrispondenza alle scelte fatte, esistono anche qui tabelle che forniscono due parametri A e B da usare per generare un valore Y

$$Y = A\left(\frac{\theta}{\tau}\right)^B \qquad \qquad \left[\begin{array}{c} \text{oppure} \quad Y = A + B\left(\frac{\theta}{\tau}\right) \right]$$

la cui interpretazione è poi

- $Y = K K_p$ nel caso di azione proporzionale P
- $Y = \tau/T_i$ nel caso di azione integrale I
- $Y = T_d/\tau$ nel caso di azione derivativa D

Anche qui, nella versione digitale occorre operare la sostituzione $\theta \rightarrow \theta' = \theta + T/2$

Le tabelle di riferimento nel caso di criteri integrali si distinguono in funzione del principale problema di controllo affrontato nel progetto

Variazione di set point					
Criterio	Controllore	Azione	A	В	
IAE	PI	P	0.758	-0.861	
		I^*	1.020	-0.323	
ITAE	PI	P	0.586	-0.916	
		I^*	1.030	-0.165	
IAE	PID	P	1.086	-0.869	
		I^*	0.740	-0.130	
		D	0.348	+0.914	
ITAE	PID	P	0.965	-0.855	
		I^*	0.796	-0.147	
		D	0.308	+0.929	

*In questo caso si deve utilizzare $Y = A + B(\theta/\tau)$

Variazione di carico						
Criterio	Controllore	Azione	A	B		
IAE	Р	P	0.902	-0.985		
ISE	P	P	1.141	-0.917		
ITAE	P	P	0.490	-1.084		
IAE	PI	P	0.984	-0.986		
		Ι	0.608	-0.707		
ISE	PI	P	1.305	-0.959		
		Ι	0.492	-0.739		
ITAE	PI	P	0.859	-0.977		
		Ι	0.674	-0.680		
IAE	PID	P	1.435	-0.921		
		Ι	0.878	-0.749		
		D	0.482	+1.137		
ISE	PID	P	1.495	-0.945		
		Ι	1.101	-0.771		
		D	0.560	+1.006		
ITAE	PID	P	1.357	-0.947		
		Ι	0.842	-0.738		
		D	0.381	+0.995		

Esempio di tuning dei parametri con criterio ITAE – 1

Si consideri di nuovo

$$G(s) = \frac{1}{(0.5\,s+1)(s+1)^2(2\,s+1)}$$

e il suo modello nella forma standard ($K = 1, \theta = 1.46 \text{ s}, \tau = 3.34 \text{ s}$)

$$G_m(s) = \frac{e^{-1.46s}}{1+3.34s}$$

Si vuole progettare un regolatore *PI* con il criterio ITAE per variazioni di set point Dalla tabella relativa, con T = 0.3 s e $\theta' = \theta + T/2 = 1.61$

$$KK_{p} = A\left(\frac{\theta'}{\tau}\right)^{B} = 0.586\left(\frac{\theta'}{\tau}\right)^{-0.916} = 1.143 \ (=Y)$$

$$\tau/T_{i} = A + B\left(\frac{\theta'}{\tau}\right) = 1.030 - 0.165\left(\frac{\theta'}{\tau}\right) = 0.95 \ (=Y)$$

da cui si ottiene $K_p = 1.143, T_i = 3.514$

Esempio di tuning dei parametri con criterio ITAE – 2

Dopo una discretizzazione rettangolare del controllore PI così ottenuto, si ha il seguente comportamento

ogni variante rispetto alla struttura base *a*) risponde a specifiche esigenze pratiche

In particolare:

- la configurazione *b*) è una realizzazione di *a*) che sfrutta aspetti frequenziali del progetto con rete anticipatrice
- la configurazione c) evita di derivare le variazioni a gradino del riferimento (tipicamente costante a tratti) che generano in a) o b) impulsi inutili/dannosi
- la configurazione d) permette di attenuare ampi salti dell'uscita del regolatore per brusche variazioni del riferimento

(alternativamente, si può operare uno 'shaping' del set point distribuendo la variazione totale su più passi di campionamento)

Struttura generale del regolatore PID a due gradi di libertà (i parametri $\alpha \in \beta$), con azione di feedback (dall'errore) e di feedforward (dal riferimento)

Ovviamente questo schema analogico va al solito discretizzato per ottenere un regolatore digitale

Schema equivalente al precedente, con solo azioni in feedback (dall'uscita misurata e dall'errore)

Si ritrovano le configurazioni precedenti:

- per $\alpha = 0$, $\beta = 0$ si ha la configurazione a)
- per $\alpha = 0$, $\beta = 1$ si ha la configurazione c)
- per $\alpha = 1$, $\beta = 1$ si ha la configurazione d)
- sono possibili anche situazioni intermedie con valori di α e β compresi tra 0 e 1

Compensazione di ritardi noti

Passaggio bumpless manuale/automatico – 1

- in alcune situazioni (industriali) è opportuni prevedere una doppia modalità di controllo dell'impianto, automatica e manuale
- in quella manuale, il riferimento è fissato da un operatore
- lo schema di base è (deviatore su M = manuale, su A = automatico)

- problemi di 'salto' di u(k) al passaggio $M \rightarrow A$, in presenza di un'azione integrale nel regolatore automatico D(z) (che è quindi un sistema dinamico con un proprio stato interno)
- data una D(z), sia un regolatore PID che un altro controllore con azione integrale (polo in z = 1), è possibile ottenere un passaggio bumpless con opportuno modifiche realizzative della D(z)

Passaggio bumpless manuale/automatico – 2

Lo schema realizzativo bumpless deve avere, per il modo manuale

- **1.** G(1) = 1
- 2. G(z) stabile

e per il modo automatico

3.
$$D(z) = \frac{K}{1 - G(z)} =$$
 (qui per un regolatore PID) $= \frac{q_0 z^2 + q_1 z + q_2}{(z - 1)(z - \gamma)}$

4. G(z) deve contenere un fattore z^{-1} (esclude la presenza di un loop algebrico nello schema)

Passaggio bumpless manuale/automatico – 3

Dal vincolo 3 si ricava

$$G(z) = \frac{D(z) - K}{D(z)} = 1 - \frac{K}{D(z)}$$

Se D(z) ha un polo in z = 1 (azione integrale), $D(1) = \infty$ e G(1) = 1 è soddisfatta $\forall K$.

$$D(z) = \frac{B(z^{-1})}{A(z^{-1})} = \frac{b_0 + b_1 z^{-1} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + \dots + a_n z^{-n}} = \frac{b_0 + B_1(z^{-1}) z^{-1}}{a_0 + A_1(z^{-1}) z^{-1}}$$

si ha

Posto

$$G(z) = \frac{B(z^{-1}) - KA(z^{-1})}{B(z^{-1})} = \frac{b_0 - Ka_0 + [B_1(z^{-1}) - KA_1(z^{-1})]z^{-1}}{B(z^{-1})}$$

Il polinomio $B(z^{-1})$ deve avere radici (zeri di D(z)) interni al cerchio unitario (vincolo 2) Il valore $K = \frac{b_0}{a_0}$ soddisfa il vincolo 4, da cui

$$G(z) = \frac{B_1(z^{-1}) - \frac{b_0}{a_0}A_1(z^{-1})}{B(z^{-1})} z^{-1}$$

Esempio di costruzione per il passaggio bumpless – 1

Il regolatore digitale (progettato per il processo della slide 10)

$$D(z) = \frac{1.513 \left(1 - 0.741 \, z^{-1}\right)}{\left(1 - z^{-1}\right)\left(1 + 0.392 \, z^{-1}\right)}$$

si può riscrivere come

$$D(z) = \frac{1.513 - 1.121 \, z^{-1}}{1 + (-0.608 - 0.392 \, z^{-1}) z^{-1}} = \frac{b_0 + B_1(z^{-1}) z^{-1}}{a_0 + A_1(z^{-1}) z^{-1}}$$

dove

$$b_0 = 1.513$$
 $a_0 = 1$ $B_1(z^{-1}) = -1.121$ $A_1(z^{-1}) = -0.608 - 0.392 z^{-1}$

da cui $K = \frac{b_0}{a_0} = 1.513$ e quindi

$$G(z) = \frac{-1.121 - 1.513 \left(-0.608 - 0.392 \, z^{-1}\right)}{1.513 - 1.121 \, z^{-1}} \, z^{-1} = \frac{\left(-0.201 + 0.392 \, z^{-1}\right) z^{-1}}{1.513 - 1.121 \, z^{-1}}$$

Esempio di costruzione per il passaggio bumpless – 2

Per $0 \le t < 20$ s e per $40 \le t < 60$ s, si ha modo "automatico" (ad anello chiuso, con r(t) = 1); per $20 \le t < 40$ s, si ha modo "manuale" (ad anello aperto, con $r_m(t) = 0.5$)

Esistono altri schemi di trasferimento bumpless (vedi p. 263 del testo) che migliorano il transitorio $A \rightarrow M$

- i dispositivi di attuazione (che devono realizzare il comando di controllo) presentano in realtà saturazioni
- è opportuno evitare che il regolatore continui ad integrare l'errore (fenomeno del windup) quando la variabile di controllo satura
- se l'azione integrale si 'carica' eccessivamente, richiedere molto tempo per tornare a valori normali (lunghi transitori)
- il fenomeno di windup è presente solo nella forma 'in posizione' dell'algoritmo (nella forma in velocità non è presente una sommatoria ...)

Per ottenere uno schema automatico anti-windup, assumiamo disponibile la misura della 'posizione' dell'attuatore, o una sua stima basata su un semplice modello algebrico dell'attuatore stesso

Uno schema di antisaturazione (con $A_0(z)$ polinomio strettamente stabile) è allora

$$A_0w = Tv - Sy + (A_0 - R)u$$

$$u = sat(w)$$

$$sat(w) = \begin{cases} u_L & w < u_L \\ w & u_L \le w \le u_H \\ u_H & w > u_H \end{cases}$$

$$\begin{cases} A_0w &= Tv - Sy + (A_0 - R)u \\ u &= sat(w) \end{cases}$$

- in assenza di saturazione (w(k) = u(k)), si ha il regolatore nominale

$$A_0 u = Tv - Sy + (A_0 - R) \quad \rightarrow \quad u = \frac{T}{R}v - \frac{S}{R}y$$

- se il processo G(s) è stabile, la w rimane comunque limitata (in quanto uscita di un sistema stabile con ingressi limitati)

Si consideri un regolatore PID (con tutte le azioni sull'errore)

$$D(z) = \frac{q_0 z^2 + q_1 z + q_2}{(z-1)(z-\gamma)} \qquad \qquad R = (z-1)(z-\gamma) = z^2 - (\gamma+1)z + \gamma$$
$$S = T = q_0 z^2 + q_1 z + q_2$$

per cui
$$A_0 w = (q_0 z^2 + q_1 z + q_2)e + [A_0 - z^2 + (\gamma + 1)z - \gamma] u$$
. Posto, ad es., $A_0 = z^2$

$$\begin{cases}
w(k) = q_0 e(k) + q_1 e(k-1) + q_2 e(k-2) + (\gamma + 1)u(k-1) - \gamma u(k-2) \\
u(k) = sat(w(k))
\end{cases}$$

La scelta particolare $A_0 = z^n$ (come nell'esempio del PID) fornisce nello schema generale

$$B(z^{-1}) = \frac{T(z)}{z^n} = \frac{S(z)}{z^n} \qquad A(z^{-1}) = \frac{R(z)}{z^n} \rightarrow D(z) = \frac{U(z)}{E(z)} = \frac{B(z^{-1})}{A(z^{-1})}$$

$$\xrightarrow{e(k) \xrightarrow{B(z^{-1})}} \underbrace{w(k)}_{A(z^{-1})} \underbrace{u(k)}_{(k)} \qquad \text{saturazione sull'attuatore}$$

$$\xrightarrow{e(k) \xrightarrow{B(z^{-1})}} \underbrace{w(k)}_{(1-A(z^{-1}))} \underbrace{u(k)}_{(A(z^{-1}) \text{ monico}} \underbrace{(A(z^{-1}) \text{ monico}}_{\text{per evitare loop algebrico}} \\ \left\{ \begin{array}{c} w(k) = B(z^{-1})e(k) + [1 - A(z^{-1})]u(k) \\ u(k) = sat[w(k)] \end{array} \right.$$

Esempio di anti-windup

Per il sistema $G(s) = \frac{1}{1+0.1 s}$ con il regolatore digitale $D(z) = \frac{0.1+0.2 z^{-1}}{1-z^{-1}}$ per un set point v = 2

in presenza di saturazione $u(k) \in [-3, +3]$ e senza dispositivo di anti-windup si ha

Esempio di anti-windup (cont)

Adottando lo schema anti-windup (con saturazione retroazionata) si ottiene invece

Uno schema di anti-windup che non richiede la misura (o un modello) del comando u saturato ma di fissare un limite superiore e inferiore al termine integrale è il seguente

$$q(p) = \begin{cases} K_2(p - u_H) & p > u_H \\ 0 & u_L \le p \le u_H \\ K_2(p - u_L) & p < u_L \end{cases}$$

comportamento dead-zone

Analisi dello schema anti-windup con dead-zone

La variabile w (e quindi la u) rimane entro i limiti fissati u_L e u_H , in quanto la variabile p rimane entro gli stessi limiti; infatti se fosse $p = \frac{e_1}{K_2} + w > u_H$, allora si avrebbe

$$q = K_2(p - u_H) = K_2(w + \frac{e_1}{K_2} - u_H)$$

A regime, per effetto dell'azione integrale, deve risultare $q = e_1$ (ingresso nullo all'integratore) e quindi

$$K_2 w + e_1 - K_2 u_H = e_1$$

da cui $u = u_H$ come desiderato; analogo comportamento si ha quando $p < u_L$

Il parametro $K_2 > 0$ costituisce un grado di libertà nella realizzazione dello schema: a valori di $K_2 > 1$ corrispondono risposte più pronte con ampiezze di controllo più elevate, mentre per $K_2 < 1$ si hanno risposte più lente e comandi più 'dolci'

Nello stesso esempio precedente, utilizzando lo schema anti-windup con dead-zone e per $K_2 = 1$ si ottiene

Un ulteriore schema anti-windup è il cosiddetto metodo dell' inseguimento dell'integrale

Ogni qual volta l'uscita del regolatore tende a saturare, il termine integrale *I* viene posto pari a

$$I = \frac{1}{K_p} \left\{ u_H - K_p \left[e(k) + T_d \frac{e(k) - e(k-1)}{T} \right] \right\}$$

in modo che

$$w(k) = K_p \left\{ e(k) + I + T_d \frac{e(k) - e(k-1)}{T} \right\} = u_H$$

Tuning automatico dei parametri del PID – 1

E' basato sulla stima sperimentale del guadagno critico K_c e del periodo di oscillazione critica $P_c = \frac{2\pi}{\omega_c}$ (individuabili anche sul diagramma di Nyquist, dove $\frac{1}{K_c}$ = margine di guadagno)

Stimati $K_c \in P_c$, si usa la tabella di Ziegler-Nichols

Tipo	K_p	T_i	T_d
Р	$0.5K_c$	∞	0
ΡI	$0.45K_c$	$P_{c}/1.2$	0
PID	$0.6K_c$	$0.5P_c$	$0.125P_{c}$

Tuning automatico dei parametri del PID – 2

Schema per il tuning automatico con funzione a relè (non linearità)

- (a) posizione di operazione normale: il *PID* tarato è in funzione
- (b) posizione di tuning: il sistema viene posto in oscillazione critica dalla retroazione non lineare per rilevare i parametri K_c e P_c

Dalla teoria delle funzioni descrittive segue che, per un processo filtrante, il segnale *e* a regime è periodico quasi-sinusoidale di periodo P_c e che la prima armonica dell'uscita del relè ha un'ampiezza $4d/\pi$, dove d = ampiezza della funzione a relè; misurata allora l'ampiezza *A* dell'uscita sinusoidale *y* del processo, si ottiene $K_c = 4d/\pi A$

E' una variante del tuning ottenuto per aumento del guadagno K_p del solo temine proporzionale del *PID* (con gli altri guadagni posti a zero) fino all'innesco delle oscillazioni critiche

- In molte realizzazioni, anzichè avere un unico anello di controllo, si ha uno schema in cascata
 - anello interno o ausiliario
 - anello esterno o principale
- I vantaggi di queste realizzazioni sono che
 - 1) i disturbi d_2 agenti su G_{P2} sono già controllati dall'anello interno prima di influenzare y_1
 - 2) la retroazione interna riduce le variazioni parametriche in G_{P2} (spesso trascurate)
 - 3) la dinamica del sistema complessivo può divenire più rapida

Realizzazione in cascata – 2

Posto per il processo $Y_1(z) = G_{P1}G_{P2}(z)U(z) = G_P(z)U(z)$, dallo schema si ricava

$$\frac{Y_2(z)}{W_2(z)} = \frac{G_{R2}(z)G_{P2}(z)}{1 + G_{R2}(z)G_{P2}(z)} = G_{W2}(z)$$

$$\frac{Y_1(z)}{W_2(z)} = \frac{G_{R2}(z)G_P(z)}{1 + G_{R2}(z)G_{P2}(z)} = G'_P(z)$$

$$\frac{Y_1(z)}{W_1(z)} = \frac{G_{R1}(z)G'_P(z)}{1 + G_{R1}(z)G'_P(z)} = G_W(z)$$

$$= \frac{G_{R1}(z)G_{R2}(z)G_{P}(z)}{1 + G_{R2}(z)G_{P2}(z) + G_{R1}(z)G_{R2}(z)G_{P}(z)}$$

Sia $G_P(s) = G_{P1}(s)G_{P2}(s)$ con

$$G_{P1}(s) = \frac{1}{(1+10\,s)(1+5\,s)} \qquad \qquad G_{P2}(s) = \frac{1}{1+7.5\,s}$$

Posto T = 4 s, si ottiene

$$G_{P1}(z) = \frac{0.1087z + 0.0729}{z^2 - 1.1197z + 0.3012}$$

$$G_{P2}(z) = \frac{0.4134}{z - 0.5866} = \frac{b_{12}z^{-1}}{1 + a_{12}z^{-1}}$$

$$G_P(z) = \frac{0.0186(z+0.1718)(z+2.4411)}{(z-0.5866)(z-0.6705)(z-0.4493)}$$

Supponiamo di usare un controllore ausiliario di tipo PI nell'anello interno

$$G_{R2} = \frac{q_{02} + q_{12}z^{-1}}{1 - z^{-1}}$$

RIsulta allora

$$G_{W2} = \frac{q_{02}b_{12}z^{-1} + q_{12}b_{12}z^{-2}}{1 + (a_{12} + q_{02}b_{12} - 1)z^{-1} + (q_{12}b_{12} - a_{12})z^{-2}}$$

per cui, come previsto dalla presenza di un'azione integrale, $G_{W2}(1) = 1$

I parametri q_{02} e q_{12} sono scelti in modo che lo zero del PI coincida con il polo di $G_{P2}(z)$. Ponendo $q_{02} = 2.4189$ e $q_{12} = -1.4189$, si ottiene

$$G_{W2}(z) = z^{-1}$$

e il tempo di assestamento di G_{W2} è finito (1 campione = 4 s), quindi più piccolo di quello della G_{P2} non retroazionata

Confronto tra uscita $y_2(t)$ e ingresso u(t) del sistema $G_{P2}(s)$ con la retroazione $G_{R2}(z)$ e uscita $y_{2r}(t)$ e ingresso $u_r(t)$ del sistema $G_{P2}(s)$ senza la retroazione interna

La presenza di un'azione integrale nel regolatore ausiliario fa sì che $G_{W2}(1) = 1$ indipendentemente da possibili variazioni parametriche di G_{P2}

La funzione di trasferimento vista dal regolatore principale $G_{R1}(z)$ in presenza dell'anello interno diventa

$$G'_P(z) = \frac{0.0450(z+0.1718)(z+2.4411)}{z(z-0.6705)(z-0.4493)}$$

e quindi l'anello ausiliario ha cancellato uno dei poli di $G_P(z)$ sostituendolo con un polo nell'origine

Come regolatore principale si può adottare a questo punto un PID completo, o un regolatore tipo deadbeat o altri

E' prevedibile che si ottengano risultati con una risposta complesiva y più rapida e ben smorzata, anche se a fronte di ingressi al processo u inizialmente di ampiezza più elevata

Confronto tra uscita $y_1(t)$ e ingresso u(t) del sistema $G_P(s)$ controllato in cascata, con la retroazione $G_{R2}(z)$, e uscita $y_{1r}(t)$ e ingresso $u_r(t)$ del sistema controllato con un unico $G_R(z)$ senza la retroazione interna

dove si sono usati i seguenti PID principali, rispettivamente in assenza dell'anello interno (quindi da solo) o in presenza dell'anello interno (quindi come PID esterno)

$$G_R(z) = \frac{1.5 - 1.886z^{-1} + 0.59z^{-2}}{1 - z^{-1}} \qquad G_{R1}(z) = \frac{2 - 2.24z^{-1} + 0.6024z^{-2}}{1 - z^{-1}}$$

Da un punto di vista implementativo, nel caso di un PI ausiliario e di un PID principale, l'algoritmo di controllo che deve essere programmato è del tipo

$$\begin{pmatrix} e_1(k) &= w_1 - y_1(k) \\ w_2(k) &= w_2(k-1) + q_{01}e_1(k) + q_{11}e_1(k-1) + q_{21}e_1(k-2) \\ e_2(k) &= w_2(k) - y_2(k) \\ u(k) &= u(k-1) + q_{02}e_2(k) + q_{12}e_2(k-1)$$

dove w_1 è il riferimento esterno costante

Si consideri la presenza di un disturbo sul processo e si assuma che tale disturbo sia misurabile: è possibile aggiungere un'azione di compensazione (in avanti/ feedforward)

Nel caso ideale si vorrebbe ottenere

$$G_f(z)G_p(z) = G_d(z)$$

Se poniamo in generale

$$G_p(z) = z^{-k} \frac{B(z^{-1})}{A(z^{-1})} = z^{-k} \frac{b_0 + b_1 z^{-1} + \dots + b_m z^{-m}}{1 + a_1 z^{-1} + \dots + a_m z^{-m}}$$

$$G_d(z) = \frac{D(z^{-1})}{C(z^{-1})} = \frac{d_0 + d_1 z^{-1} + \ldots + d_q z^{-q}}{1 + c_1 z^{-1} + \ldots + c_q z^{-q}}$$

ne segue nel caso ideale

$$G_f(z) = \frac{G_d(z)}{G_p(z)} = \frac{A(z^{-1})D(z^{-1})}{z^{-k}B(z^{-1})C(z^{-1})} = \frac{h_0 + h_1 z^{-1} + \ldots + h_m z^{-(m+q)}}{f_d z^{-k} + \ldots + f_{m+q+k} z^{-(m+q+k)}}$$

Per la realizzabilità di $G_f(z)$ deve essere

k = 0 processo discreto senza ritardo (eccesso poli-zeri di $G_p(z)$ deve essere nullo)

Inoltre, poichè la compensazione opera una totale cancellazione della dinamica $G_p(z)$, i polinomi *B* e *C* devono essere stabili

Più comune è l'applicazione di una compensazione in avanti non ideale, a struttura fissa e con parametri ottimizzati in un certo modo

$$G_f(z) = \frac{H(z^{-1})}{F(z^{-1})} = \frac{h_0 + h_1 z^{-1} + \ldots + h_p z^{-p}}{1 + f_1 z^{-1} + \ldots + f_p z^{-p}}$$

Nel caso tipico di p = 2, si pone

$$G_f(1) = \frac{h_0 + h_1 + h_2}{1 + f_1 + f_2} = K_f = \frac{1}{G_p(1)}$$

in modo da ottenere a regime una compensazione ideale del disturbo (costante)

Un modo ragionevole per scegliere i quattro parametri rimanenti di $G_f(z)$ è quello di fissare i primi valori della variabile di controllo

$$u(k) = -f_1 u(k-1) - f_2 u(k-2) + h_0 d(k) + h_1 d(k-1) + h_2 d(k-2)$$

Se ad esempio d(k) è un gradino discreto unitario, i quattro parametri si ricavano dalle prime quattro relazioni sequenziali

$$\begin{cases} u(0) = h_0 \\ u(1) = -f_1 u(0) + h_0 + h_1 = (1 - f_1)u(0) + h_1 \\ u(2) = -f_1 u(1) - f_2 u(0) + h_0 + h_1 + h_2 = (f_1 - f_2)u(0) + (1 - f_1)u(1) + h_2 \\ u(3) = -f_1 u(2) - f_2 u(1) + h_0 + h_1 + h_2 = f_2 u(0) + (f_1 - f_2)u(1) + (1 - f_1)u(2) \end{cases}$$

scegliendo $u(0), \ldots, u(3)$ (con eventuali vincoli) e risolvendo ...

Nel caso più semplice di $p = 1 \left(G_f(z) = \frac{h_0 + h_1 z^{-1}}{1 + f_1 z^{-1}} \right)$, procedendo in modo analogo

si ottiene la soluzione

$$h_0 = u(0)$$
 $f_1 = -\frac{u(1) - K_f}{u(0) - K_f}$ $h_1 = u(1) - u(0)(1 - f_1)$

per dati campioni di controllo u(0) e u(1) desiderati. Per la stabilità di $G_f(z)$ occorre poi che $|f_1| < 1$, da cui

$$u(1) < u(0)$$
 e $h_1 < f_1 u(0)$