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Contents page 
This document reports about the work performed within Task 5.2 “Control Design” for the ball-array and the 
linear designs of the CyberCarpet, represented in Fig. 2 and Fig. 21, respectively. In particular, the control 
problem for the ball-array kinematics is considered in Part I of the Control design section, while the linear 
concept of the platform is examined in Part II. Conclusions are drawn in a final section and references are 
included. 
Indeed, most of this report appears dedicated to the ball-array kinematics, since it presents a larger number of 
control issues (e.g., the presence of singularities that prevent the direct application of standard decoupling 
and linearizing schemes, whereas the linear kinematics is already linear and decoupled). Furthermore, many 
results devised for the ball-array design can be almost directly specialised to the simpler linear case. 
The general control problem, including objectives and constraints, and the overall control architecture, are 
the same for the two platform designs, and are described in the introducing section, while we refer to deliv-
erable T5.1/D1 for details on kinematic modeling and mobility analysis, and to preliminary deliverable 
T5.3/D1@M24 for the first results of control implementation on the small-scale prototype platform.  
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Control objectives and architecture 
The main motion control objective for the CyberCarpet is to keep the walker absolute position within a suf-
ficiently small distance from the center of the platform, despite of the voluntary and unpredictable locomo-
tion of the user. The evaluation of a safe distance from the platform boundaries should be based on the maxi-
mum admissible velocity assumed for the walker locomotion and on the actuator capabilities. Although the 
knowledge of the walker orientation is needed for the correct display of the virtual environment to the user, 
this information is not relevant for the stated control task. Moreover, in order to achieve a natural and com-
fortable operation, the linear (and angular) velocities and accelerations (as well as inertial forces/moments) 
felt by the walker should be kept limited. These limits will reflect into state-dependent upper bounds on the 
input commands to the platform. Here, these constraints are not explicitly taken into account. However, by 
tuning the parameters in the control laws it is always possible to comply with physiological constraints in an 
easy way. Indeed, by lowering the control gains also the transient time needed for recovering the user at the 
center of the platform will be longer.  
 

 
Fig. 1: Control system architecture 

 
The overall control system architecture is shown in Fig. 1. The high-level visual tracker provides the abso-
lute location of the walker on the platform. These measurements, together with the platform state (the angu-
lar orientation of the turntable —for the ball-array platform—, and also the platform velocities in the case of 
acceleration control), are available for the low-level platform motion control. This control output drives the 
two actuators of the platform. In principle, either kinematic or direct torque controllers can be used: in the 
first case, which is considered here and is the most common in conventional servo-drives, velocity or accel-
eration commands are taken as reference for direct-level PIDs. 
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Control design 

Part I —The ball-array platform 
This part of the report describes the control design approach pursued for the ball-array design of the 
CyberCarpet, represented in Fig. 2. 
 

 
Fig. 2: The ball-array concept for the CyberCarpet  

For this platform, having a linear and an angular actuating device, the control problem is similar to that of 
output regulation for nonholonomic wheeled mobile robots in the presence of an unpredictable disturbance 
due to walker's locomotion. Based on the first-order kinematic model (see Sect. I.1), a velocity control de-
sign achieving input-output decoupling and linearization is first proposed in Sect. I.2. In order to address the 
singularity issues related to this law, two simple but global kinematic control schemes are then presented in 
Sect. I.4. The feedback stabilizing part, which is based only on the user's pose information, is complemented 
by a feedforward term derived from a walker's velocity observer (see Sect. I.5). Numerical and graphical 
simulation results are reported in Sect. I.6. In Sect. I.7, the kinematic model is extended to the second order 
(acceleration commands are used as control inputs) and, based on this model, two different approaches are 
proposed in Sects. I.8.1 and I.8.2 for moving the velocity-level control laws of Sects. I.4-I.5 to the accelera-
tion level. Simulation results, including the dynamic effects experienced by the walker (see Sect. I.9 and de-
liverable T5.1/D1), are reported in Sect. I.10. 

I.1 First-order kinematic model 
Given the ball-array surface of the CyberCarpet, any actuated motion of the belt/turntable will result in a re-
verse motion imposed to the walker standing on top of the ball array, i.e., a forward motion command will 
move the user backwards, and a clockwise rotation will turn the user counter-clockwise. Keeping this in 
mind, a first-order kinematic model of the CyberCarpet can  be derived with the help of Fig. 3. Therein, 
(X0 , Y0 ) is the absolute frame (also attached to the fixed overlooking camera) and (Xt , Yt ) is the frame ro-
tated by an angle θ and attached to the treadmill, with the Xt -axis in the direction of the belt (along which 
linear motion is actuated). Both frames have the origin at the center of the CyberCarpet. The walker abso-
lute position and orientation are (x, y) and θw , respectively, with R being his/her distance from the center. 
The angle α = atan2(y, x) −θ locates the position of the walker in the frame (Xt , Yt ). The pair (R,α) repre-
sents the polar coordinates of the walker position and will be often used later in the control design. On 
the left side of Fig. 3 also the Xw axis (directed as the walker’s sight) of the frame attached to the walker is 
displayed (the Zw axis is directed as Z0 and Yw is defined accordingly). This frame is used to describe the 
kinematic and dynamic effects on the user due to the platform motion (see Sect. I.6 and deliverable 
T5.1/D1). 
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Fig. 3: Frames and variables definition: walker and platform still (left) and in motion (right) 

 
When the walker is in motion the kinematic model is (see deliverable T5.1/D1 for details) 
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where v and ω are the linear and angular commands of the belt and turntable, respectively (under the ball-
array). The absolute linear and angular walker velocities are denoted as Vw = (Vw,x, Vw,y) and Ωw , respectively 
(see right of Fig. 3). These walker's velocities in eqs. (1) will be treated as “disturbances” acting on the con-
trol system and will be always assumed to be not directly measurable. 

I.2 Velocity-level control design: Input-output feedback linearization 
A number of feedback control laws developed for nonholonomic wheeled mobile robots can be modified to 
address the regulation problem for the CyberCarpet, so as to bring the position (and orientation) of a stand-
ing user to zero by suitable maneuvers. However, since only the walker's position has to be asymptotically 
stabilized to the origin (actually, to an arbitrarily small circle around the origin), we present here a simpler 
design based on input-output feedback linearization. The control law will use only the instantaneous sensor 
information on the walker position (the system output to be regulated). 
Consider first the case of no disturbances, i.e., Vw = 0 and Ωw = 0 (walker standing still in the virtual envi-
ronment) and define the controlled output as z = [x y ]T. Differentiating z in time and using eq. (1) gives 
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where v1 and v2 are auxiliary velocity inputs to be defined. The resulting closed-loop input-output behavior is 
constituted by simple integrators  
 

ż 1 = ẋ  = v1,       ż 2 = ẏ  = v2, 
 
i.e., it is decoupled and linearized by the feedback law (2). The control design can be completed by the pro-
portional laws 
 

v1 = - k1 x ,   v2 = - k2 y ,              (3) 
 
with positive gains ki (i =1, 2), thus exponentially stabilizing the walker's position to the origin. The above 
derivations hold outside the singularities of matrix A, i.e., whenever x cos θ + y sin θ = R cos α ≠ 0 (see Fig. 
3). For the purpose of analysis, a more convenient expression for v and ω can be found by choosing the gains 
k1 = k2 = k >0 and replacing eq. (3) into (2). This yields 
 

        

  

v = k
x2

+ y2

x cos! + y sin!
=

kR2

Rcos"
=

kR

cos"
,    (4) 

 
and 

!
!

!
"

##

##
$ tan

cos

2
cos

sincos

sincos
k

R

R

k
yx

xy
k =

%
&

'
(
)

*
+

=

+

+
= .                       (5) 

 
A limit study for R going to zero and cos α ≠ 0 shows that v and ω are continuous, with v vanishing and ω 
remaining bounded. Moreover, the control singularity at α = ± π/2 is relevant only at the initial instant if the 
walker is located on the Yt-axis (see Fig. 3), in which case it may be also managed by a simple heuristics ap-
plied within a small zone including the Yt-axis. For all other initial conditions, the angular control law (5) 
will automatically drive the walker away from this singularity. However, this problem cannot be easily man-
aged when the walker moves, and for this reason we will more carefully deal with the issue of control singu-
larities in Sect. I.4. Another interesting property of the designed controller arises from the linear and decou-
pled behavior of the closed-loop system. With the walker standing in an initial position (x0, y0), the time evo-
lution of his/her position will be forced by eq. (3) to be  
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so that the user will be pulled toward the origin along the connecting straight line. 
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Fig. 4 The nonlinear control scheme (top) and its equivalent input-output linear representation (bot-
tom) 

The block diagram of the overall nonlinear control scheme is shown in Fig. 4, with G(s) = - diag (k, k) being 
a constant (instantaneous) block.  
The disturbance signal d represents the walker's motion, i.e., when any or both of Vw and Ωw are different 
from zero in eq. (1). A persistent locomotion will in general prevent the convergence of the walker position 
to the platform center when using the control law (2-3). In fact, the closed-loop input-output equations be-
come in this case  
 

ẋ  = - k x + Vw,x,        ẏ  = - k y + Vw,y. 
 

If the user walks indefinitely along a straight line with constant velocity V , he/she will reach a steady-state 
position at a distance kVR /=  from the origin. In this case, from standard linear control analysis, the 
steady-state error can be completely eliminated by adding an integral action in the control loop before the 
disturbance entry point, i.e., by replacing eq. (3) with 
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for suitable k > 0 and a > 0. These proportional-integral (PI) gains can be chosen so as to assign desired 
closed-loop poles (two for each input-output channel) in the left-hand side of the complex plane. With refer-
ence to the equivalent linear scheme in Fig. 4, this PI action is realized by setting each diagonal component 
of G(s) equal to - k(s+a) / s. The obtained astatic behavior copes with an unconstrained infinite walking of 
the user along a straight line. However, an overshooting of the controlled output is typically associated to the 
presence of the integral control term. For more general motion patterns, the control law given by eqs. (2) 
and (6) may not lead to full recovery of the walker position to the origin. Nonetheless, in the absence of an 
estimate of the walker velocity, not much more can be done (some videos, developed using Simulink and 
Visual Nastran, can be found at the website http://www.dis.uniroma1.it/labrob/research/CW.html). 
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I.3 Simulation results 
In order to allow a comparison with the performance of the feedback/feedforward schemes presented in 
Sects. I.4-I.6, we report here some simulation results obtained with the feedback laws (2-3) and (2,6) for the 
square path1 with 3 m sides shown in Fig. 5. The walker starts at rest from the ‘Init’ absolute position (1, 
0) and moves along each edge with a trapezoidal velocity profile, having symmetric acceleration/de-
celeration phases at 2.4 m/s2 for 0.5 s each and a cruise velocity of 1.2 m/s kept for 2 s. At each corner, 
the walker stops and turns ccw with an angular speed of π/2 rad/s. Therefore, the total trajectory lasts 16 s. 
Note that, without motion control of the platform, the walker would exit from the boundary of the circular 
platform of radius 2.5 m. 
The absolute motion of the walker under the platform control law (2-3), with k1 = k2 = 2.5, and the corre-
sponding commands (v, ω) are shown in Fig. 6 and Fig. 7, respectively. The absolute orientation of the 
walker is displayed by a segment, while different patterns/colours (in the order, blue, red, green, and violet) are 
used for the virtual motion along each side of the square. As expected, each time the walker stops at a cor-
ner to perform a turn, he/she is pulled towards the origin along a straight line.  
 

 
Fig. 5: Walker virtual locomotion: A square path executed counter-clockwise starting from the Init 
point (the dotted circle represents the platform boundary) 

 

                                                        
1 The walker’s path and time trajectory have been chosen so as to avoid control singularities for the laws (2-3) and (2,6). 



 10 

 
Fig. 6: Walker absolute locomotion under the platform controller (2-3): at start, axis Xt coincides with 
the horizontal axis X0 

   

 
Fig. 7: Linear and angular velocity commands with controller (2-3) 
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Fig. 8: Walker absolute locomotion under the platform controller (2, 6): at start, axis Xt coincides with 
the horizontal axis X0 

 

 
Fig. 9: Linear and angular velocity commands with controller (2, 6) 
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I.4 Velocity-level control design: Handling of singularities 
The Cartesian expression of the decoupling control law (2-3) is singular when x cos θ + y sin θ = R cos α = 0 
(where the determinant of the decoupling matrix is zero), i.e., either when the walker stands on the Yt-axis or 
is at the origin. On the other hand, the expression of the control law in polar coordinates given in eqs. (4-5) 
clearly shows the control singularity at α = ± π/2, while the singularity at the origin of the (x,y) space is hid-
den by the fact that the angle α is not defined there. However, a step of ± π rad in the value of α is experi-
enced when crossing the origin, which makes the control input ω suddenly change sign. As a consequence, 
even measurement noise on the x and y variables can cause an undesired chattering in the value of ω when 
the walker approaches the platform center.  
In the following we shall introduce modifications that deal with these control singularities, while trying to 
preserve some convenient characteristics of the decoupling law (4-5). We consider first the case of absence 
of disturbances, Vw = 0 and Ωw = 0 (walker standing still in the virtual environment), dealing later with the 
motion of the walker (Sect. I.5).  

I.4.1  Singularity at cos α = 0 
The singularity at α = ± π/2 can be eliminated by simply taking 

 
v = k R sgn(cos α),                       (7) 

and 
ω = k sin θ  sgn(cos α),                      (8) 

 
with sgn x = 1 for x ≠ 0 and sgn x = -1 otherwise. The control law (7-8) is formally obtained by multiplying 
eqs. (4-5) by |cos α|. The resulting closed-loop input-output dynamics is now 

 
ẋ  = - k |cos  α| x,       ẏ  = - k |cos α  | y,      (9) 

 
that is not anymore linear nor decoupled, since the angle θ depends on both x and y. However, note that 
from (9) it follows 
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just as with the decoupling and linearizing law (4-5). Therefore, a user standing still will be driven along the 
straight line connecting its initial position to the origin. 
In order to show that the control law (7-8) asymptotically stabilizes the walker position (x, y) to the origin, 
consider the positive definite Lyapunov function 
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so that V&% = 0 for (x, y, α) ∈ S as well as for cos α = 0. However, the latter does not correspond to closed-
loop system equilibria, since ω = ± k at these configurations. Therefore, S is the largest invariant set for the 
system, and (x,y) converges to the origin by virtue of LaSalle's theorem. 

I.4.2  Singularity at R = 0 
The control law (7-8) is clearly not continuous at the origin, due to the discontinuity of the angle α which is 
not defined at x = y = 0. This causes a chattering of the control input ω when the walker is in a small region 
around the platform center2. In order to avoid this problem, we propose next two different strategies. 

I.4.2.1 Dead zone around the origin 
A simple way to overcome input chattering when the walker approaches the platform center is to introduce a 
small dead zone for the input commands v and ω around the origin, i.e., setting v = ω = 0 for R < Rd. At the 
cost of a small (namely, of amplitude Rd) error in the final configuration, which is consistent with the task 
specification, this strategy is sufficient to solve the problem in the absence of walker's motion: the platform 
stops as soon as the walker is brought inside the dead zone. However, when the walker moves, the chattering 
of the input commands may appear again at the border of the dead zone. In order to at least reduce the fre-
quency of this chattering, some hysteresis can be introduced at the border of the dead zone by defining two 
different thresholds, Rd,off and Rd,on, for triggering the switch-off and switch-on of the control law (7-8). This 
heuristic approach usually shows a satisfactory performance both in terms of input commands behavior and 
of walker's executed path (see the simulation results in Sect. I.6). 

I.4.2.2 A smooth nonsingular control law 
A more elegant solution to the chattering problem is obtained by replacing the feedback control law (7-8) 
with 

v = k R 2 sgn(cos  α) = k (x 2 + y 2) sgn(x cos θ + y sin  θ),              (11) 
and 

ω = k R sin α sgn(cos α) = k (y cos  θ - x sin θ) sgn(x cos θ + y sin θ),      (12) 
 
which are formally obtained by multiplying eqs. (7-8) by the radial distance R. For the sake of clarity, both 
the expressions in polar coordinates and in Cartesian coordinates are given. The control law (11-12) is de-
fined at any system configuration. Furthermore, the angular velocity command ω converges to zero as (x,y) 
approaches the origin, so that no chattering problem exists in this case. Under the feedback law (11-12), the 
closed-loop behavior becomes 

ẋ  = - k R |cos α| x,  ẏ = - k R |cos α| y,   (13) 

that can be proved to be asymptotically stable at the origin by the same Lyapunov arguments used for the 
control law (7-8). Furthermore, note that eq. (10) still holds for the solutions of (13), i.e., the user is pulled 
toward the origin along the connecting straight line. 
Finally, in comparison with the discontinuous control modification of Sect. I.4.2.1, the smooth and nonsingu-
lar feedback law (11-12) does not exhibit any steady-state error. However, the convergence rate of x and y 
drops quadratically to zero as the walker approaches the origin. In view of our main control objective, this 
should not be seen as a negative feature. 

I.5 Dealing with walker's velocity 
When the walker is in motion, Vw and Ωw are in general both different from zero and the system kinematics is 
described by eq. (1). A persistent walker locomotion will in general prevent the convergence of her/his posi-
tion to the platform center when using the control laws (7-8) or (11-12). For example, it can be shown that, 

                                                        
2 Although a term sgn(cos α) appears also in the expression of v, the chattering phenomenon for this control input is 
overcome by the presence of the factor R vanishing at the origin. 
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when the user walks indefinitely in the virtual environment along a straight line with constant velocity V , a 
steady-state position at a distance R V k=  from the origin will be reached, just as in the case of the decou-
pling and linearizing law (2-3). In Sect. I.2, using standard results from linear control theory, we suggested to 
add in eq. (6) an integral action in order to completely eliminate this steady-state error. However, a poor dy-
namic performance results, due to the typical output overshooting associated to the presence of an integral 
control term. We propose here a different approach to deal with walker's locomotion. Based on an estimate 

w
V̂  of the walker linear velocity Vw , we shall include a suitable feedforward term in eqs. (7-8) or in 
eqs. (11-12) as follows 

                                                          vc = v + vf = v + [cos θ   sin θ ]·
w
V̂ , 

                                                         ωc = ω + ωf = ω + sat(1/R [ - sin θ   cos θ ]·
w
V̂ ). 

 
Here, sat(·) is the standard saturation function, with lower/upper saturation limits to be defined according to 
given (or desired) constraints on the input velocities. It is readily verified that, for 

w
V̂ = Vw, the feedforward 

term vf in eqs. (14) compensates for the component of the walker velocity along the direction of the Cyber-
Carpet linear motion, while ωf (when the saturation is not active) cancels the component of Vw in the or-
thogonal direction3. 
In order to get an accurate estimate 

w
V̂  of the walker velocity, consider the two scalar dynamic systems 

(these are velocity observers) 

                                                                  
x

!&  =  – v cos θ  + y ω + kw (x – ξx) 

                                                               
xw

V ,
ˆ  =  kw (x – ξx), 

and 

                                                                 y!
&  =  – v sin θ – x ω + kw (y – ξy) 

                                                               ywV ,
ˆ =  kw (y – ξy), 

 
where kw > 0. From eqs. (15-16) and (1), it follows 
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i.e., the estimates are low-pass filtered versions of absolute Cartesian components of of the actual absolute 
walker velocity Vw. In particular, for kw large enough, they accurately reproduce the two components Vw,x and 
Vw,y. Note that, even after this feedforward compensation, the system is still affected by a residual distur-
bance 
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Therefore, a constant velocity of the walker in any direction is fully compensated at steady state for any posi-
tive kw, while for walker's ramp-wise velocities (i.e., when moving with constant acceleration) the associated 
steady-state error can be made in principle arbitrarily small by increasing kw — an astatic disturbance rejec-

                                                        
3 The saturation in ωf is formally necessary to exclude a possible divergence when (x, y) approaches the origin. How-
ever, for Vw smooth enough, the platform tends to align with Vw so that ωf is always close to zero at steady state. 

         (14) 

         (15) 

         (16) 
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tion behavior is recovered by using the feedback/feedforward control scheme (14-16). Note that the overall 
controller is no longer instantaneous, as it includes the dynamics of the walker’s velocity observer. 

I.6 Velocity-level control: Simulation results 
We present some selected simulation results obtained with the motion control laws discussed in Sects. I.4 
and I.5 (see deliverable T5.3/D1@M24 for experimental results on the small-scale platform). In all case stud-
ies, the walker starts at rest from the initial absolute position (0, 1) m —one that would immediately lead to 
control problems for the laws (2-3) and (2,6). Fig. 10 to Fig. 13 refer to the walker moving indefinitely along 
a straight line directed along the Yt-axis in the virtual space (i.e., for a fixed platform), with a constant veloc-
ity of 1 m/s. Initially, we have θ = 0 (Xt is aligned with X0) and θw = π/2. 
In Fig. 10, the actual motion of the walker in the absolute space is shown. The absolute orientation θw of the 
walker is displayed by a segment. The platform is controlled here by the combined feedback/feedforward 
scheme (14), wherein the feedback law (7-8) is used together with a dead zone/hysteresis as described in 
Sect. I.4.2.1. The control parameters are: k = 1, kw = 10, Rd,off = 0.05 m, Rd,on = 0.1 m, and |ωf| ≤ 2 rad/s. We 
note that there is a small error at steady state, just within the distance Rd,off, where the input commands are 
simply vc = vf  and ωc = ωf (note that the dead zone applies only to the feedback terms). At the end, the plat-
form is oriented in the same direction of the walker’s motion, at an angle θ = θw = π/4. The linear and angu-
lar velocity commands shown in Fig. 11 confirm that the feedforward terms in the control law converge to 
the actual velocity of the walker (vf = 1 m/s and ωf = 0), thus achieving an exact motion compensation.  
The same task is performed again with the feedback/feedforward scheme (14), but using next the smooth 
feedback law (11-12) and the same relevant control parameters as above. A zero final position error is ob-
tained (Fig. 12). The control behavior shown in Fig. 13 clearly indicates the absence of discontinuities, but 
transients of the input commands v and ω are now somewhat longer. 
As a more complex motion, we report the results for the virtual square path with 3 m sides shown in Fig. 14 
(the same as in Fig. 5 but with a different starting point). We report only the results for the smooth feedback 
law (11-12) used within the scheme (14), see Fig. 15. The control parameters are chosen as before. Thanks to 
the combined feedback and feedforward actions, the walker is rapidly brought close to the platform center and 
then kept there (compare the absolute walker motion of Fig. 15 with that of Fig. 6 and Fig. 8). The linear con-
trol input is smooth (see Fig. 16) and, after an initial transient, never exceeds the walker’s voluntary speed. On 
the other hand, the saturation on the angular feedforward term (|ωf| ≤ 2 rad/s) becomes relevant when the 
walker is close to the origin and takes a sharp turn (starting with the corner after the red edge 2). Note that the 
platform lags behind any turn performed on place by the walker, since there is no feedforward action triggered 
by a walker’s angular motion without linear displacement. Finally, it can be recognized that a periodic behav-
ior is eventually reached, starting with the green edge 3 of the square path.  
In order to fully appreciate the overall motion of the platform/walker system, a 3D graphical simulation envi-
ronment has also been developed, using Simulink and Visual Nastran. Videos of the presented motion tasks 
are available at http://www.dis.uniroma1.it/~labrob/research/CW.html. 
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Fig. 10: Virtual straight line: Walker absolute locomotion under the platform controller (14), using the 
feedback law (7-8) and a dead zone with hysteresis around the origin 

 

 
Fig. 11: Linear and angular velocity commands for Fig. 10 
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Fig. 12: Virtual straight line: Walker absolute locomotion under the platform controller (14), using the 
smooth feedback law (11-12) 

 

 
Fig. 13: Linear and angular velocity commands for Fig. 12 
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Fig. 14: Walker virtual locomotion: A square path executed counterclockwise starting from the Init 
point (the dotted circle represents the platform boundary) 

 

 
Fig. 15: Virtual square path: Walker absolute locomotion under the platform controller (14), using the 
smooth feedback law (7-8) 
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Fig. 16: Linear and angular velocity commands for Fig. 15 

 

I.7 Second-order kinematic model  
If we assume that the platform motion is commanded through the linear and angular acceleration inputs a 
and η, the first-order kinematic model (1) is extended as 
 

!"

"#

"#

"#

"#

=

=

$+%=

=

+%%=

++%=

&

&

&

&

&

&

av

Vxvy

Vyvx

ww

yw

xw

,

,

sin

cos

         (17) 

 
that corresponds to the addition of two integrators on the velocity inputs of model (1). The linear and angular 
velocities v and ω of the platform become now two further states of the system. Thus, in order for the whole 
system state to be still available, we must assume that both these linear and angular platform velocities are 
measurable. Note that the second-order kinematic model (17) is characterized by the same motion singulari-
ties of the first-order model (1). 

I.8 Acceleration-level control 
When a control law, with the same objectives stated in the introducing section of this report, has to be de-
vised for the extended (second-order) system (17), the availability of some  stabilizing laws v = vd(x,y,θ) and 
ω = ωd(x,y,θ) for the first-order system (1) can be exploited in different ways. We describe in the following 
two different approaches, one based on backstepping (see, e.g., [9]) and the other on the theory of cascaded 
systems (see. e.g., [10]).  
We note preliminarily that both approaches apply independently from the particular platform kinematics 
(“ball-array” or “linear”). The specific platform will affect only the particular expression of the first-order 
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feedback stabilizing law vd and ωd on which the second-order control design relies. In Part II of this docu-
ment we shall, however, address a more direct solution for the acceleration control of the linear platform. 

I.8.1 Backstepping 
This technique provides a constructive systematic method to devise globally stabilizing control laws for the 
general class of triangular nonlinear systems of the form 
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where u is the actual control input to the system. This is obtained in the following way. First consider ξ1 as a 
virtual input to stabilize the first subsystem with state ξ. Let ξ1

d be the control law that solves this first sub-
problem and V1(ξ) a corresponding Lyapunov function (used to show asymptotic stability). Next, define z1 to 
be the difference between ξ1 and its desired value ξ1

d, and consider ξ2 as a virtual input to stabilize the [ξ z1]T 
subsystem. In order to find a desired behavior for ξ2 that stabilizes this second subsystem, we build a 
Lyapunov function candidate by simply augmenting V1(ξ) with a quadratic term in z1, i.e., 
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We choose then ξ2 so as to make 
  

  

˙ V 
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< 0 . Proceeding step by step along these lines, one finally arrives at de-
fining a stabilizing law for the control u.  
For the second-order system (17), in the absence of walker’s intentional motion, we have n = 1 in (18) and  
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f(ξ) = f1(ξ,ξ1) = 0,  g(ξ) = A(x,y,θ),  g1(ξ,ξ1) = I2, 
 
being I2 the 2 × 2 identity matrix. In the first step of the backstepping procedure we may select ξ1

d = [vd ωd]T 
as the stabilizing control law (14), (11–12). Correspondingly, we can use the Lyapunov function V1(ξ) as in 
Sect. I.4. In the second (and last) step, we build the Lyapunov function V2 as in eq. (19). Along the system 
trajectories it holds 
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From eq. (21), it is clear that a control law making the overall system (17) asymptotically stable is 
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for any positive definite, typically diagonal matrix K. Correspondingly, it is 
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t( )  is the time derivative of the Lyapunov function V1(ξ) evaluated along the solution trajectories 

ξ(t) of subsystem (1), when ξ1 = ξ1
d. Note that the control law (22) guarantees also the convergence of ξ1 to 

ξ1
d. However, the computation of 
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 is required for its implementation. 
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I.8.2 Cascaded approach 
An alternative method for deriving a second-order feedback law based on the available first-order control 
laws of Sect. I.4 is to use a result on the stability of cascaded systems (see [10] for details). We can roughly 
summarize it by saying that, under certain conditions, the stability of the following autonomous system (ob-
tained once the control input u has been chosen) 
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can be concluded from the stability of the two subsystems 

  

˙ ! 1 = f1 t,!1( )  and 

  

˙ ! 2 = f2 t,! 2( ). In order to be able 
to use this result for the stabilization of system (17), we have to put it in the form (23). To this purpose, using 
the same notation of Sect. I.8.1, it is sufficient to perform the change of coordinates 
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so that the system equations become 
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From the results of Sect. I.4, we know already that the “downstream” system (described by the first set of 
eqs. (24)) is asymptotically stable for ζ2 = 0 , i.e., for ξ1 = ξ1

d. In order to stabilize the overall cascaded system 
it is thus sufficient to stabilize the “upstream” system (described by the second set of eqs. (24)) to the origin, 
i.e., to bring ζ2 to zero. This can be obtained by the simple control law 
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for any positive definite, typically diagonal matrix K. Compared with the backstepping design (22), the con-
trol law (25) is certainly simpler to compute, and therefore it has been selected for implementation.  
The acceleration control law (25), as well as (22), requires the differentiability of the velocity control law ξ1

d. 
When choosing this as in eqs. (11-12), we easily see that differentiability is missing at configurations where 
the argument of the sgn function is zero. This problem, however, can be simply solved by setting 

  

˙ ! 
1

d
= 0  in 

eq. (25) at such configurations (i.e., by setting   

  

d /dz sgn z( ) ! 0 , for all z). Note also that an analytical ex-
pression of 

  

˙ ! 
1

d  can be computed from eqs. (11-12) and the model (17), assuming that the walker velocity Vw 
can be treated as locally constant.  

I.9 Effects of platform motion on the walker  
Due to the platform motion, the “virtual world” frame attached to the walker is in general non-inertial. In 
particular, even when the walker moves with constant velocity in the virtual world, she/he will feel “appar-
ent” accelerations due to the rotation and/or not uniform translation of the carpet. These accelerations must 
be evaluated in order to verify that they do not exceed the limits of physiological comfort. Note that, having 
moved the control action to the acceleration level, these computations can be more reliably performed in ana-
lytical form, since platform acceleration commands are available and it is not necessary to resort to numeri-
cal differentiation. In particular, when the user walks at constant velocity wVw in the non-inertial virtual 
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world4, the total apparent acceleration being felt equals her/his absolute acceleration (computable by differ-
entiation of the first two equations in (17)), changed in sign. This acceleration is usually decomposed into 
three different components depending, respectively, on the linear and angular accelerations of the reference 
frame (inertial acceleration), on the square of the frame angular velocity (centrifugal acceleration), and on 
the coupling between the frame angular velocity and the walker relative velocity (Coriolis acceleration). All 
these components should be expressed in the frame (Xw, Yw, Zw) attached to the walker, in order to evaluate 
the physiological effects on the user. The results of the described computational procedure are reported be-
low (see also deliverable T5.1/D1). 

- Inertial acceleration (due to the linear and angular accelerations of the reference frame): 
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- Centrifugal component (due to the frame rotation) 
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- Coriolis component (due to the coupling between the walker relative velocity and the rotation of the 

non-inertial frame) 
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where 
w

w
V

r
is the walker intended velocity, expressed in her/his frame. 

Note that, for the inertial and centrifugal components, we have also given an expression that is computable 
and does not depend on the angle α (which would not be defined at the origin). 

I.10 Acceleration-level control: Simulation results 
In order to evaluate the performance of the proposed acceleration control scheme (25), we report here 
the results for the virtual square path of Fig. 14. In  

Fig. 17, the absolute motion of the walker (as seen by the overlooking camera) is shown. The absolute orien-
tation θw of the walker is displayed by a segment. Initially, we have θ = 0 and θw = π/2. In law (25), it is K = 
diag(20,20), while the “reference” behavior ξ1

d for the linear and angular carpet velocities is given by the 
smooth feedback law (11-12) used in scheme (14), with associated control parameters k = 1, kw = 10, and |ωf| 
≤ 2 rad/s. The corresponding linear and angular acceleration commands are shown in Fig. 18. Furthermore, 
in Fig. 19, the resulting linear and angular velocities of the carpet (blue, solid) are compared with the veloc-
ity commands (red, dashed) that would be generated by the first-order feedback controller (11-12) and (14) 
under the same walker path. This comparison confirms that the second-order controller achieves the same 
performance of the first-order law, while allowing a direct monitoring of system accelerations. In particular, 
thanks to the combined feedback and feedforward actions, the walker is rapidly brought close to the platform 
center and then kept there. As in the case of velocity control, note that the platform lags behind any turn per-

                                                        
4 Note that a constant velocity wVw in the virtual world does not correspond to constant absolute velocities (Vw,x, Vw,y) in 
eq. (17). 
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formed on place by the walker, since there is no feedforward action triggered by a walker's angular motion 
without linear displacement. Finally, Fig. 20 displays the inertial, centrifugal and Coriolis components of the 
apparent acceleration felt by the user in the Xw and Yw directions, due to the platform accelerations of Fig. 18, 
and computed as illustrated in Sect. I.9. Videos of this and other motion tasks are available at 
http://www.dis.uniroma1.it/˜labrob/research/CW.html. 
 
 

 
 

Fig. 17: Virtual square path: Walker absolute locomotion under the second-order platform controller 
(25), where the reference velocity behaviors are given by the smooth feedback law (11-12) used in 
scheme (14) 
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Fig. 18: Linear (top) and angular (bottom) acceleration commands for  

Fig. 17  

 
Fig. 19: Carpet linear (top) and angular (bottom) velocities (blue, solid) corresponding to the accelera-
tion commands of Fig. 18, compared with the velocity commands (red, dashed) generated by the first-
order feedback controller (11-12) and (14) for the same walker path of Fig. 14 
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Fig. 20: Inertial, centrifugal, and Coriolis components of the apparent acceleration felt by the user in 
the Xw (top) and Yw (bottom) directions, due to the carpet accelerations of Fig. 18 
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Part II —The linear platform 
 
In this second part of the report, the control problem for the two-dimensional (2D) linear platform shown in 
Fig. 21 is considered (see deliverable T5.1/D1 for details on the kinematic design).  

 
Fig. 21: The linear concept for the CyberCarpet 

In principle, the design of a control law at the acceleration level may be performed in this case as already 
done for the ball-array kinematics, i.e., starting by tackling the (simpler) problem at the velocity level, and 
then moving the control law to the acceleration level by one of the methods of Sect. I.8. However, due to the 
much simpler (in particular, linear and decoupled) structure of the system model, we decided in this case to 
face the control problem directly at the acceleration level based on the following second-order kinematic 
model of the platform 
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In eqs. (26), for each of the two controlled directions (labeled i = 1,2, with x1 = x and x2 = y) on the planar 
platform surface, xi is the (measurable) absolute position of the walker, vi is the (not measurable) absolute ve-
locity of the walker, aci is the carpet acceleration (our control input), and awi is the walker voluntary accelera-
tion (not measurable and regarded as a disturbance). 
Since the system model and the corresponding control problem is exactly the same in the two orthogonal di-
rections of platform motion, we will drop the index i in the following and consider from now on the control 
problem as one-dimensional (1D). 

II.1 Acceleration-level control 
The simplest way for stabilizing the linear system (26) to a desired position xref would be to use a control law 
of the form 
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with kv >0 and kx > 0. However, this would require the availability of the unmeasurable quantities v and aw. 
This problem can be solved by replacing v and aw in eq. (27) with proper estimates   
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 is considered in the next two subsections. 
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II.1.1 Estimation of the walker voluntary acceleration 
The walker voluntary acceleration aw is estimated by the linear observer 
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with k1 >0 and k2 > 0. In fact, in the Laplace domain, it results 
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showing that the estimation 
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w

 is a stable, low-pass filtered version of the unknown quantity

  

a
w
. 

II.1.2 Estimation of the walker absolute velocity 
Similarly, an estimation of the walker absolute velocity v is provided by the linear observer 
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with k3 >0, yielding 
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Note that the dynamics of the two estimations v̂  and 
w
â  are completely independent. Furthermore, having 

available a good estimation v̂  allows to estimate also the walker voluntary velocity vw as  
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where vc is the carpet velocity (assumed measurable). 
The block diagram of the overall control law (28), where eqs. (29) and (30) are used for the estimations 

w
â  

and v̂ , is represented in Fig. 22. By standard manipulation of the block diagram, the equivalent closed-loop 
system is shown in Fig. 23, where 
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There are five control parameters to choose: 
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. Using Routh’s criterion, we get that both )(1 sP  

and 
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2
(s)  are asymptotically stable if and only if all these parameters are positive. Note also that )(2 sP  is a 

high-pass filter; therefore, it allows recovering to zero the position error for any constant disturbance aw.  
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Fig. 22: The block diagram of control law (28) with the estimations 
w
â  and v̂  given by eqs. (29) and 

(30) 

 
Fig. 23: An equivalent scheme for the closed-loop system of Fig. 22 

 

II.2 Simulation results 
We report here the results of a simulation, where the walker moves with a bang-coast-bang acceleration (0.5 

2
/ sm for 2 s, 1 

  

m /s for 8 s, and -0.5 2
/ sm for 2 s), starting from the platform center with zero velocity and 

stopping the voluntary motion after 12 s. The five control parameters were chosen as follows:  
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Note that these values result into real and coincident poles at -7 for both observers (29) and (30), thus pre-
venting overshooting of the estimates, and that the observation transients are more than critically damped 
and slightly faster than the position error recovery. 
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In Fig. 24 we report the behaviors of the walker voluntary acceleration 
w
a  (blue) and of its estimation 

w
â  

(red), while Fig. 25 shows the walker absolute velocity v  (blue) and its estimation v̂ (red). In particular, the 
estimation v̂  accurately reproduces v , so that a good estimate of the walker voluntary velocity 

cw
vvv != ˆˆ  

can be also obtained as a byproduct (see Fig. 26). In the same Figure, the behavior of the alternative estima-
tion 

  

  

ˆ v 
w

int

= ˆ a 
w
dt!  (open-loop integration of the estimated walker voluntary acceleration) is also displayed 

(in green). This second approach would avoid the need of the observer (30) for v̂ , replaced in this case by 
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+ v
c
, but, of course, it would not allow recovering from any error on the initial state, noise, nu-

merical drift, and so on. Finally, the (smooth) acceleration command 
c
a  and the resulting walker absolute 

position x  are reported in Fig. 27 and Fig. 28, respectively. 
 
 

 
 
Fig. 24: Walker voluntary acceleration 

w
a  (blue) and its estimation 

w
â  (red) with observer (28) 

 

 
 
Fig. 25: Walker absolute velocity v  (blue) and its estimation v̂  (red) with observer (30) 
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Fig. 26: Walker voluntary velocity 

w
v  (red), and its estimations 

cw
vvv != ˆˆ  (blue) and 

  

  

ˆ v 
w

int

= ˆ a 
w
dt!  

(green) 
 

 

 
 
Fig. 27: The acceleration command

c
a  

 

 
 
Fig. 28: Walker absolute position x  
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Conclusions 
In the two parts of this report, motion control laws for the two design concepts of the CyberWalk omnidirec-
tional platform have been presented. We have considered both velocity-level and acceleration-level control 
designs, combining a position feedback action with a feedforward action at the differential level. In this 
framework, the use of dynamic observers allows to fully compensate for the intentional unknown motion of 
the walker and/or to avoid the use of quantities that are unavailable for direct measure (e.g., the velocity and 
acceleration of the walker).  
For the “ball-array” platform, special care has been devoted to eliminate the problems occurring from the 
nonholonomic nature of the system (which prevents, in certain configurations, actuating instantaneous direc-
tions of walker’s recovery toward the platform center). In this case, first a smooth nonlinear and singularity-
free velocity-level controller has been incrementally designed and then completed with an estimator of the 
walker’s intentional velocity. Next, the controller has been moved to the acceleration-level by using a cas-
caded approach that relies on the already developed velocity control laws. 
For the “linear” platform, by taking advantage of the linearity and decoupled characteristics of its kinematic 
model, a control solution has been derived directly in terms of acceleration inputs to the system. The com-
plete design for the 2D platform is the simple composition of the two independent controllers in the two or-
thogonal directions of actuation of the platform.  
For ease of reference, the best performing control laws presented in this report (with reference to the equa-
tions needed) and the number of control parameters involved are summarized in the following Table. 
 

 Ball-Array platform Linear platform 

Velocity control 
Eq. (14)  

with (11)-(12) and observers (15)-(16) 
2 parameters 

None 
(but possible time integration 

of acceleration law below) 

Acceleration control 
Eq. (25) 

using all 5 equations above 
4 parameters 

Eq. (28) 
with observers (29)-(30) 

5 parameters 
 
Assuming velocities or accelerations (translational and rotational for the ball-array platform, and both trans-
lational for the full-size 2D CyberWalk linear platform) as control commands complies with the available in-
puts to servo-drives commonly used for the direct actuation of such mechanical systems. It should be 
stressed that the acceleration-level design allows to evaluate more accurately dynamic effects acting on the 
walker because of the controlled motion of the platform and to generate smoother and constrained commands 
that satisfy physiological upper bounds. Last but not least, even if the actuation hardware of the platform ac-
cepts only velocity inputs, these can be generated by a simple integration of the acceleration commands. 
Extensive numerical tests of the proposed controllers have been performed by simulation, including a 
graphical environment to visualize the overall motion of the walker/platform system. Videos are available at 
the web page http://www.dis.uniroma1.it/˜labrob/research/CW.html of the UOR partner, which is accessible 
also from the project web site http://www.cyberwalk-project.org/.  
The velocity control laws have been already successfully implemented on the small-size ball-array platform 
developed by the partner TUM-U (see Fig. 31), including also the 2D visual tracking system developed by 
the partner ETHZ. Similarly, the acceleration control laws have been already tested with satisfactory per-
formance on the 1D linear treadmill available at the site of the partner MPS (see Fig. 32), where also pre-
liminary test on virtual immersion have been conducted. At the time of deliver of this report, work is already 
under way for the final implementation on the 2D large-scale linear platform designed at TUM-U (see Fig. 
33). The full details on the control implementation, including software integration and hardware interface, 
sampling rates of the visual and communication systems, fine tuning of control parameters for taking into ac-
count the additional perceptual constraints, and so on will be described in the deliverable T5.3 due @ M36. 
A preliminary version @M24 is already available. 
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Fig. 29: The ball-array platform in its small-size version at the partner site TUM-U 
 

 
 
Fig. 30: The 1D linear treadmill at the partner site MPS 
 

 
 
Fig. 31: The current status of the 2D linear platform at the partner site TUM-U 
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