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ABSTRACT 

Although there have been many devices developed for Haptic applications, SensAble’s PHANToM Omni 

and Desktop models have gained wide popularity among the researchers in Haptics community. Recent 

haptics application such as medical simulations, stroke rehabilitation, dental restorations, and others 

require attachments of additional equipments to the stylus of the Phantom in order to make it appear as 

realistic virtual environment. In any virtual reality application, the inertial and gravitational properties 

characterizing the haptic manipulator may represent a disturbance which can strongly affect the 

simulation realisms. In the scope of this research, we focus on the problem of compensating the apparent 

gravity acting on the end-effector, due to the gravitational contributions acting on the whole kinematic 

chain of the haptic device. In this paper, we present a kinematic and dynamic study of the PHANToM 

Omni Haptic interface and its implementation in gravity compensation technique. The kinematic analysis 

is carried out for the system and the dynamic analysis is carried out using the DeNOC methodology. The 

equations of motion and the expressions for the necessary torque at respective joints are established using 

the symbolic toolbox included in Matlab. The expression along with the necessary logic is implemented 

in the SensAble’s Open Haptics Toolkit (HDAPI) software interface where the gravity compensation 

technique is carried out. The gravity compensation worked well, eliminating the effects of gravity even at 

the edges of the device workspace. The computational method used in this work is simple and can be used 

to calculate the compensation torques for various masses added to the end-effector. 

Keywords: Force feedback devices, Virtual Reality, DeNOC. 

1 INTRODUCTION 

Although force feedback devices exist earlier than 1990s, the first successful force reflecting haptic 

interface device PHANToM, originally designed by Massie and Salisbury (1994) [1], and subsequently 

commercialized by SensAble Technologies, Inc.(Woburn, MA) [2],  came into existence only in 1994. It 

is being widely used in a multitude of applications ranging from designing toys and footwear to research 

and robotic applications. Its wide use in the haptics community is predominantly due to its generic in 

nature, large workspace, low inertia, low friction and high position precision characteristics. However 

recent haptic applications such as medical simulations, stroke rehabilitation, dental restorations, and 

others require attachments of additional equipments or instruments to the end-effector or stylus of the 

PHANToM in order to make it appear realistic virtual environment. In any virtual reality application, the 

inertial and gravitational properties characterizing the haptic manipulator may represent a disturbance 

which can strongly affect the simulation realisms. 

In the scope of this research, we focus on the problem of compensating the apparent gravity acting on the 

end-effector, due to the gravitational contributions acting on the whole kinematic chain of the haptic 

device. Several works can be found in the literature where different techniques have been employed in 

order to actively cancel the effects of gravity on haptic manipulators [3, 4, 5, 6, 7]. The commercially 



available toolkit such as Open-Haptics does not provide tools for modifications of the Phantom dynamics, 

which requires a detailed knowledge of the system parameters of the haptics device not generally known 

to the end users.  

In this paper, we present a detailed study of the mechanical properties of the PHANToM Omni haptic 

interface specifically for gravity compensation. Although, similar works have been reported on the 

PHANToM® premium models [8], we specifically focus here on the Omni model of the Phantom family. 

Here, we first derive and subsequently analyze the kinematics and the dynamic equations of motion for a 

generalized model of the device, assuming infinitely stiff joints and negligible friction. The solution is 

then applied to a particular case of PHANToM model. The established equations of motion are used in 

writing a program in SensAble’s Open Haptics Toolkit [9] HDAPI (Haptic Device Application 

Programming Interface) in achieving gravity compensation for the device. The HDAPI provides low-level 

access to the haptic device, enabling haptics programmers to render forces directly. It offers control over 

configuring the runtime behaviour of the drivers, and provides convenient utility features and debugging 

aids.  

In this paper, we use the notations used by Saha [10], in representing rigid body transformations, 

kinematics and dynamic equations. Dynamic analysis is carried out using the DeNOC methodology [14], 

which has proven to be computationally efficient. The analysis is implemented in the Open Haptics 

toolkit HDAPI [11] for achieving the gravity compensation. The units used are in Meter-Kilogram-

Second (MKS), unless otherwise stated. Throughout the paper, parameters and measurements are based 

on the PHANToM Omni model. 

2 KINEMATICS 

In this section the kinematic analysis of the PHANToM Omni manipulator is performed. Although some 

of the results given here are already implemented in the SensAble’s GHOST and Basic Input Output 

libraries, it is useful to have the explicit expressions for an open architecture, and to use in tasks and 

functions not supported in these libraries. In the following subsections, solutions of the forward and 

inverse kinematics are presented, followed by the calculation of the manipulator Jacobian and a basic 

analysis of the workspace.  

2.1 Modeling 

The architecture of the PHANToM Omni can be visualized as a 3-bar Revolute-Revolute-Revolute (RRR) 

spatial manipulator. The kinematic diagram is shown in Figure 1. With the base frame attached to the 

ground, the architecture can be easily described using the Denavit- Hartenberg (DH) parameters shown in 

Table 1. 
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Figure 1. Kinematic diagram of PHANToM Omni. 

 



Link # bi θi (JV) ai αi 

1 0 θ1 0  π / 2 

2 0 θ2 a2 0 

3 0 θ3 a3   0 

Table 1. DH parameters 

where, bi : Joint offset, θi : Joint angle, ai: Link length,  αi : Twist angle. 

2.2 Forward Kinematics 

The kinematic configuration of the manipulator is characterized by the following vectors:  

 [ ]0 0 1
T

ij =e ; [ ]= 0 0
T

ij iaa , for i =1,2,3. 
(1) 

where,  is the unit vector along ith joint axes expressed in the jth frame for i = j; and  is the position 

vector of ith link in jth frame. Moreover, the transformation matrices representing the position and 

orientation of a coordinate frame with respect to its previous one are given by: 

ije ija
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where,  is the transformation matrix of the frame attached to body i, i.e. frame i+1, represented in 

frame i attached to the body (i-1). The terms and , for i = 1, 2, 3, represent 

iT

is ic sin iθ  and cos iθ , 

respectively.  

The homogeneous transformation matrix of the end-effector frame with respect to the fixed frame is then 

given by: 

 
1 2 3T = T T T   (3) 

i.e.,   

 
1 23 1 23 1 1 2 2 3 23

 1 23 1 23 1 1 2 2 3 23

23 23 2 2 3 23

c c -c s -s c ( c  + c )

s c -s s c s ( c + c )
=  

-s -c 0 -( s  + s )

0 0 0 1

a a

a a

a a

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
T  (4) 

From equation (4), the forward kinematics map is given by: 

 
1 2 2 3 23 = c ( c  + c ) ;xp a a

1 2 2 3 23= s ( c  + c ) ;yp a a 2 2 3 23= -( s  + s ) ;zp a a  (5) 

where, xp ,  and  are the components of the positions of the end-effector, i.e., point E in Figure 1. yp zp

The isometric workspace in the XZ plane and the reachable boundary in YZ plane for the measured 

parameters given in Appendix are shown in Figures 2(a) and 2(b), respectively. 
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Figure 2. Workspace of Phantom Omni 

2.3 Inverse Kinematics  

As this is a 3-degrees of freedom (DOF) manipulator, its inverse kinematics problem is to find 

1 2 3, andθ θ θ  which would move the manipulator to a desired end-effector position, i.e.,  

 
( ) = 

T

x y zp p p⎡ ⎤⎣ ⎦p θ  (6) 

where θ  represents the vector of joint positions 1 2 3
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Figure 3. Manipulandum top and side views 

Note that 1θ  can be determined by inspection from the top view of Figure 3(a), whereas the angles 

2  and 3θ θ  are determined from the geometry of Figure 3(b) and are given by: 

 
1 = atan2 ( ,  ) ;y xp pθ 2 2 2Δ       x y zp p p≡ + +  (7) 
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Δ
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 (8) 
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Since the model is conceptually a 3-RRR spatial manipulator, it has four admissible inverse kinematic 

solutions. As for the PHANToM Omni interface, the constraints imposed lead to a particular set of 

inverse kinematic solution only. 

2.4 Manipulator Jacobian 

In order to obtain the Manipulator Jacobian, the end-effector twist [13] is defined as the 6-dimensional 

vector array of angular velocity and linear velocity of the end-effector, namely, E of Figure 1. The 

Jacobian relates the twist with its joint rate vector θ  as $

 =t J θ$  (10) 

where J is the Jacobian matrix, or simply Jacobian. It is the 6 x 3 matrix given by 
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Since the Phantom Omni has only 3-DOF force feedback, the last three rows of  are relevant. Hence, 

the Jacobian resulting from the last three rows, which is denoted by  can be used for singularity and 

other studies. Note that apart from boundary singularities, the system has no singularity inside its 

workspace. 

J
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2.5 Manipulability 
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Figure 4. Manipulability graph for Phantom Omni 

The manipulability measure used here is defined from [13] as 

 
min max( ) / ( )l lμ σ σ= J J  (12) 



where  and  are the minimum and maximum singular values, and  is the 3x3 Jacobian 

matrix that corresponds to the positioning of end-effector, E of Figure 1, only. This measure is based on 

the 2-norm condition number, as shown in Figure 4. The plots reveal that the Phantom Omni interface has 

a singularity-free workspace with quite uniform manipulability over a significant portion of the 

workspace, which is a favorable kinematic property. 

minσ maxσ lJ

3 DYNAMICS 

It is necessary to know the dynamic equations of motion of the Phantom Omni to implement the high 

performance controllers such as gravity compensation or the computed torque control algorithm. The 

dynamic equations of motion governing the motion of the serial 3-RRR spatial manipulator are derived 

here using the Newton-Euler equations of motion for the rigid bodies and the corresponding Decoupled 

Natural Orthogonal Complement (DeNOC) matrices. The DeNOC matrices relate the angular and linear 

velocities of the rigid bodies in the system to the associated joint rates. 

For the angular velocity of a rigid link say, i, , and its linear velocity of the mass centre , the 

twist, , is defined as the 6-dimensional vector as 

iω i
c$

it

 
i

i
i

≡ ⎡ ⎤⎢ ⎥⎣ ⎦
ω

t   
c$

 (13) 

Accordingly, if the moment and the force acting on the rigid link are denoted with ni and fi, respectively, 

the 6-dimensional vector of wrench, , is defined by  
i

w

 
i

i
i

≡ ⎡ ⎤⎢ ⎥⎣ ⎦
n

w
f

 (14) 

Next, the Newton Euler equations of motion for the ith rigid link is written in compact form as  

 
i i i i i iM t  + W M t = w  $  (15) 

where the left hand side of the above equation is associated with the inertia wrenches which is equated to 

external wrenches. The 6×6 matrices of the mass, Mi, and of the angular velocity, Wi, are defined as  

 
i

i
im

≡ ⎡ ⎤⎢ ⎥⎣ ⎦
I O

M    
O 1

, i
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ω O
W   

O O

#
 (16) 

where Mi is the mass matrix that embodies the mass and inertia properties of the ith body about the center 

of mass (Ci). The unconstrained NE equation of motion for the complete system are then written as 

 Mt + WMt = w $  (17) 

where the 6n × 6n matrices – n being the number of links in the serial system and also the degree of 

freedom (DOF) as there are n-joints to connect the n links serially,  and  are the generalized mass 

and angular velocity matrix respectively, namely 

M W

 [ ]1 ndiag≡M  M , , MA , [ ]1 ndiag≡W W , , WA  (18) 

Also, the 6n-dimensional vectors of the generalized twist and wrench are given as 

 [ ]1 , ,
T

n≡t t tA , [ ]1

T

n≡w   w , ..., w  (19) 

 

 



The generalized twist of the system is then expressed in compact form as 

 ≡t  N θ$ , where  l d≡N  N N  (20) 

where  is the Natural Orthogonal Complement (NOC) matrix [15] of  6n × n  dimension, and ,  

are the DeNOC matrices [14]. The  and 6

N lN dN

6 6n n× n n×  block matrices  and  are expressed as lN dN
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where, [ ]1 2  
T

nθ θ θ≡θ$ $ $ $A ,  is the joint-rate propagation vector and  is the is the twist 

propagation matrix. They are given by  

ip ijB
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where ei is the 3-dimensional unit vector parallel to the axis of rotation for a revolute joint and di is the 3-

dimensional position vector of the mass center ci from the ith joint location and  is the skew symmetric 

matrix associated with the cross product of the vector joining the mass centers of links  i and j. Now, pre-

multiplying the transpose of the DeNOC matrices to the unconstrained NE equations of motion for the 

system in equation (17), the following set of constrained independent dynamic equations of motion are 

obtained: 

ijc#

 I θ + h = τ$$ , where  ≡h  Cθ$ (23) 

where, : the n x n Generalized Inertia Matrix, which is symmetric and positive definite; 
T≡I N MN

T≡C  N ( MN + WMN )$ : the n x n Matrix of Convective Inertia (MCI) terms; 

≡h Cθ $ : the n-dimensional Vector of Convective Inertia (VCI) terms; 

where and
e g e T E g T≡ =τ  τ  + τ , τ N w τ N w

G=  are the 6-dimensional vector of generalized forces due to 

the driving torques/forces, and those resulting from gravity respectively. 

The advantage of using DeNOC methodology enables estimation of the elements of the Generalized 

Inertia Matrix (GIM), MCI and the 6-dimensional vectors of generalized forces recursively [10]. Using 

equation (23), the expression for torque can be obtained for inverse dynamics, i.e., for a given trajectory 

at the joints, the necessary torque needed to counteract the gravitational effects can be obtained. The 

detailed expressions for the dynamics are given in the Appendix. 

4 EXPERIMENTAL EVALUATIONS 

Several validation experiments have been performed by applying the proposed algorithm to Omni model 

of Phantom family. This was based on the estimation of the gravity at the desired position of the 

workspace and providing the equal but opposite torques at the joint motors. This may be useful for those 

not interested in force accuracy, perhaps designers or such like, but it is appropriate for our uses. The 

following are the considerations made for implementing the gravity compensation: 

4.1 Calculation of masses and lengths 

A similar Phantom Omni was dismantled [12] and the masses of the required parts were measured using 

an electronic weighing scale. Calculation of the centre of masses and the moments of inertia was done 

using approximations. Since these values can vary slightly from device to device we have analyzed and 

coded using variables and have substituted for them appropriately to obtain the final results. Hence the 

analyses can be used for other 3-DOF devices by assigning the appropriate values for the parameters. 

 



4.2 Torque calculations 

The expressions for the torques that act on different motors were obtained using the DeNOC-based 

methodology. Study of the internal mechanism of the Phantom Omni [12] showed that the torque was 

transmitted using a metallic wire and the torque given by the motors was amplified by winding the thread 

over a segment of disc. Therefore, the anti-torque values given to the motors were multiplied by the 

amplification factor. The ratio of the radius of the shaft to the radius of the disc is 0.125 and hence the 

torque amplification factor is 0.125. This is true for both the arms of the Phantom Omni. During the entire 

analysis the frictional effects have not been considered. They could be accounted for by multiplying the 

torques by appropriate factors. This is completely device dependent. Hence these values can vary from 

device to device. We are using a factor of 1 for motor 2 and a factor of 8 for motor 3. 

4.3 Conversion of torque to DAC values 

The assignment of torques to the motors was achieved using Digital to Analog (DAC) values. We have 

assumed a linear relationship between the DAC values and the torques. The constant for linearization was 

obtained by dividing the maximum allowable value of DAC with the maximum permissible torque for 

Phantom Omni. The end-effector was moved to different locations within the workspace with different 

velocity using hands and left at the location to check if its location was changing. The location did not 

change even at the edges of the workspace. Hence the gravity compensation scheme worked successfully.  

5 CONCLUSIONS 

In this work we derived dynamic equations of motion of the Omni model of Phantom. Along with the 

approximation of inertial parameters of each of the links, we were able to implement a gravity 

compensation control scheme. The gravity compensation worked very well, eliminating the effects of the 

gravity even at the edges of the phantom workspace. We have also successfully implemented other 

control strategies, such as the computed torque algorithm, that rely on the use of accurate dynamic 

equations. 

The computational method used in this work is simple and can be used to calculate the compensation 

torques for various masses added to the end-effector. It does not involve any iterative control strategy 

such as in [3]. Our method does not need to approximate the whole workspace to grids and sample for 

kinematics as described in their work. The experimental results are in good agreement with the theoretical 

derivation. 

Although this paper focused on the kinematics and dynamics of the Phantom Omni, much of the results 

and analysis apply to the Phantom Desktop, due to the similarity in the kinematics of both models, with 

obvious variations in the parameter values.  
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APPENDIX 

Non-zero elements of matrix N for 3-DOF Phantom Omni are (18 rows; 3 columns): 

 
3,1 9,1 15,1

N N N = 1= = ,
8,2 14,2 14,3 1

N  N N = c= = ,
7,2 13,2 13,3 1

N  N N = - s= = ,   

 ( )
12,2 2 2

N = - c / 2a , ( )
10,1 10,2 2 1 2

N N = - s c / 2a= , ( )
11,1 2 1 2

N = c c / 2a ,   

 ( )
11,2 2 1 2

N = - s s / 2 ,a ( )
16,1 2 1 2 3 1 23

N = - s c - s c / 2 ,a a ( )
17,1 2 1 2 3 1 23

N = c c + c c / 2 ,a a   

 ( )( ) ( )
16,2 2 2 1 3 1 23

N = - s 1 + c / 2 - c s / 2a a , ( )
17,2 2 1 2 3 1 23

N = - s s - s s / 2a a ,   

 ( ) ( )
16,3 3 1 23

N = - c s / 2 ,a
17,3 3 1 23

N = - s s / 2a , ( )
18,2 2 2 3 23

N = - c - c / 2a a ,   



 ( )
18,3 3 23

N = c / 2a .   

Non-zero elements of matrix M 

 ( )2 2 2

7,7 1 2 xx 2 2

2

yy 2 2 zz 1
M = c I c + I s + I s , ( )2 2

7,8 8,7 1 1 2 xx 2 2 yy 2 2 zz 1 1
M M = s c I c + I s - I s c= ,   

 ( )7,9 9,7 1 2 2 2 xx 2 yy
M M = - c c s I - I= , ( )2 2 2 2

8,8 1 2 xx 2 2 yy 2 2 zz 1
M = s I c + I s + I c ,   

 ( )8,9 9,8 1 2 2 2 xx 2 yy
M M = - s s c I - I= , ( )2 2

9,9 2 xx 2 2 yy 2
M = I s + I c ,   

 
10,10 11,11 12,12 2

M M M = m= = , ( )2 2 2 2
,

13,13 1 3 xx 23 3 yy 23 3 zz 1
M =c I c -I s +I s   

 ( )2 2

13,14 14,13 1 1 3 xx 23 3 yy 23 3 zz 1 1
M M = s c I c + I s - I s c= ,   

 ( )13,15 15,13 1 12 12 3 xx 3 yy
M M = c s c - I + I= , ( )2 2 2

14,14 1 3 xx 23 3

2

yy 23 3zz 1
M = s I c + I s + I c ,   

 ( )14,15 15,14 1 23 23 3 xx 3 yy
M M = - s s c I - I= ,

15,15 3 xx 23 3

2 2

yy 23
M = I s + I c ,   

 
.

16,16 17,17 18,18 3
M M M m= = =   

Non-zero elements of matrix W  

 
1,2 2,1 7,8 8,7 13,14 14,13 1

W = - W = - W = W = - W = W = θ ;$
7,9 9,7 1 2

W = - W = c θ .$   

 
8,9 9,8 1 2

W = - W = s  θ ;$ ( )
13,15 15,13 2 3 1

W = - W = θ + θ c ;$ $ ( )
14,15 15,14 2 3 1

W = - W = θ + θ s .$ $   

Elements of vector 
gτ  

 g

1
τ = 0; τ ( )g

2 2 2 2 2 3 2 3 3
= 0.5 2 m c + 3 m c  + m c ;a a ag

23
( )g

3 3 3
= 0.5 m c .ag

23
τ   

Inertial Parameters: 

The spatial frame used in dynamic analysis is centered at the base of the system identified in Figure 1. 

The notation followed is similar to the one used by Saha [10]. To calculate the inertial parameters for the 

system, the links have been assumed to be of cylindrical in nature with the diameter of the cylinder 

comparatively smaller than its length.  

Link lengths: 

a2 = 0.135m, a3 = 0.135m. 

Mass of links: 

m2 = 0.035 kg; m3 = 0.1 kg (including the stylus attached to the end effector). 

Torque magnification factor (through inextensible string pulled over a disc) = 8. 

Moment of Inertia: 

2 xx

2 2 yy

2zz

I 0 0

I = 0 I 0

0 0 I

⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦
;

3xx

3 3yy

3zz

I 0 0

I = 0 I 0 .

0 0 I

⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦
 

I2xx = 0, I2yy = 2.126 x 10-4 kgm2, I2zz = 2.126 x 10-4 kgm2 ; I3xx = 0, I3yy = 6.075 x 10-4 kgm2, I3zz = 6.075 x 

10-4 kgm2. 

Range of joint variables: 

θ1 = -40o – 60o; θ2 = 0o – 100o; θ3 varies as θ2 moves from 0o – 100o (mechanical constraint provided) 

θ3 = -140o to -10o at θ2 = 0o, and  -140o to -95o at θ2 = 100o, a linear relation was used to approximate the 

variation. 
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