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Abstract

We present a simple approach for planning the mo-
tion of nonholonomic robots among obstacles. Eristing
methods lead to open-loop solutions which are either ob-
tatned in two stages, approzimating a previously built
holonomic path, or computationally intensive, being
based on configuration space discretization. Our non-
holonomic planner employs a direct projection strategy
to modify on-line the output of a holonomic incremen-
tal planner, and generates velocity control inputs that
realize the desired motion in a least-squares sense. As
a result, a feedback scheme is obtained which can use
only local sensor information. The proposed approach
is applied to unicycle kinematics, with artificial poten-
tial fields or vortex fields as local holonomic planners.

1. Introduction

Robots whose motion is subject to non-integrable con-
straints involving time derivatives of the configuration
variables belong to the class of nonholonomic mechan-
ical systems [1]. Typical examples are wheeled mo-
bile robots moving on the plane under perfect rolling
constraints. The effect of these constraints is to limit
the local mobility of the robotic system, though not
restricting in the large the accessibility of the whole
configuration space.

For nonholonomic robots, the design of feasible tra-
Jectories joining arbitrary initial and final configura-
tions is not straightforward, and can be tackled as an
intrinsic nonlinear control problem [2]. In this respect,
open-loop schemes and feedback control are possible
solutions. Based on a differential geometric analysis,
open-loop commands that exactly drive to the goal
have been derived in [3-5] for the class of mobile robots
that can be put in the so-called chained form. Feed-
back schemes are indeed more robust but subject to
a basic limitation: nonholonomic systems cannot be
stabilized to a given configuration by means of a con-
tinuously differentiable feedback law, as follows from
a general result due to Brockett [6]. This motivated
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the more complex design of discontinuous [7], smooth
time-varying (8], or hybrid [9] feedback control laws.
A common characteristic of these open- or closed-loop
methods is that a sequence of maneuvers is required
in order to complete a point-to-point motion, like in
parking a car or docking a truck with trailers. The
presence of obstacles in the operational space is not
taken into account at this stage.

On the other hand, for conventional (holonomic)
robots the literature on motion planning with obsta-
cle avoidance is quite rich [10]. Two major approaches
can be identified, namely algorithmic and incremental
planning. Methods of the first class search for a solu-
tion path in the free configuration space, directly facing
the combinatorial complexity of the problem. Tech-
niques from real algebraic geometry are used to guar-
antee completeness, that is finding a solution whenever
one exists. The resulting algorithms are powerful but
very difficult to implement for high-dimensional con-
figuration spaces. Moreover, shape and location of all
obstacles must be known a priori.

Incremental methods are more heuristic in nature
but operate in feedback mode, thus being more suit-
able for sensor-based navigation through partially un-
known environments. With the standard artificial po-
tential field method, the robot moves under the local
effects of repulsive fields associated to obstacles and
the attractive field pulling toward the goal [11]. These
fields may be defined in the configuration space or,
more conveniently, in the cartesian space. One typical
limitation is the arising of spurious local minima in the
total potential field, where no descent direction exists
for the motion.

Several modifications have been introduced to over-
come this problem, ranging from use of repulsive
fields with elliptic isocontours [12], definition of special
global fields [13], or generation of a numerical poten-
tial field [14]. Another method avoiding the genera-
tion of ‘motion stops’, but which can be defined using
only local information, is the vortez field method [15].
Repulsive actions are there replaced by velocity flows
tangent to the isocontours so that the robot is forced



to turn around the obstacles.

Few methods exist that attempt to solve the plan-
ning problem taking explicitly into account the non-
holonomic constraints and the presence of obsta-
cles [16-18]. All of them are essentially open-loop
schemes. In [16,17] a two-stage approach is followed for
a car-like robot in the plane: first, generate a complete
path avoiding obstacles with any holonomic planner;
then, decompose and approximate this path with fea-
sible segments complying with the nonholonomic con-
straints. A discretization of the configuration space is
essential in [18], where graph search based on Dijkstra
algorithm is performed.

In this paper we propose a more direct navigation
technique for nonholonomic vehicles. The idea is to
employ a feasible projection strategy to modify on-line
the output of a holonomic incremental planner. The
resulting feedback scheme uses only local information,
limited e.g. to the range of distance sensors. The cru-
cial feature of this strategy is that it should not create
additional blocking points in the configuration space
of the nonholonomic vehicle. We highlight the gen-
eral approach and then apply it to the kinematics of a
unicycle, modeling a real mobile robot situation. Sim-
ulation results are reported in which artificial potential
fields or vortex fields are used in the conventional holo-
nomic planner.

2. Incremental motion planning for
nonholonomic robots

We consider the planar motion of a wheeled mobile
robot. Denoting by X € IR" the vector of generalized
coordinates, assume that the system motion is subject
to a set of p < n nonholonomic constraints in the form

(1)

that arise in connection with the ‘rolling without slip-
ping’ condition on the wheels. Note that the presence
of rolling wheels does not necessarily imply that motion
on the plane is subject to nonholonomic constraints.
Wheels with side rollers or other complex mechanisms
may be used to guarantee omnidirectionality.

Since constraint (1), involving the time derivatives
of the generalized coordinates, is not integrable, the di-
mension of the configuration space cannot be reduced.
However, all feasible velocities X should satisfy the
following equation

AX)X =0,

X =G(X)u, u € R"P, (2)

where the n — p independent columns of G(X) are a
basis for the null space of A(X). Equation (2) is the
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kinematic model of the mobile robot. Depending on
the choice of the null space basis, the components u;
will have a different meaning. Indeed, there is one
choice which leads to a convenient physical interpreta-
tion of u in terms of the available commands.

We assume in the following that control inputs are
at the velocity level. In practice, this is not restrictive
for real mobile robot control. Although the modeling
can easily be extended to second order and to include
the system dynamics [19], eq. (2) already displays the
main difficulty due to nonholonomy. In fact, system (2)
is essentially underactuated, having strictly less inde-
pendent inputs » than motion planning variables X.

Given any desired trajectory X (t), a straightfor-
ward approach is to design the input command « using
pseudoinversion

w=G*(X) Xs = [6T(X)G(X)] ' GT(X) Xa. (3)

This solution locally minimizes the error (X4 - X)in
a least-squares sense. A weighted pseudoinverse can
also be used to balance error components and to han-
dle nonhomogeneous unit dimensions. If the desired
velocity Xg satisfies the nonholonomic constraint (1)
at the current X, eq. (3) will result in zero velocity
error. Note that the pseudoinverse is computed using
the actual configuration so that the command u is a
feedback control.

In eq. (3), X4 can be chosen as the output of an
incremental holonomic planner. If artificial potentials
are used to drive the robot, then

Xa=-VxU(X) = -Vx(Ua(X) + Ur(X)), (4)

with an attractive potential U, to the goal X, and a
repulsive potential U..

However, working with potentials defined in the
whole configuration space X is computationally inef-
ficient [10]. In view of the planar nature of the mo-
tion problem, one can partition X as (X,, Xy), with
the positional part X, = (z,y) € IR? and the angu-
lar part Xg € JR"2. For example, in a car with N
trailers, X, are the cartesian coordinates of one rep-
resentative point of the robot (typically, the position
of the last trailer [20]), while X, contains the orien-
tation and the steer angle of the car as well as the
relative orientation of each trailer. Potential fields can
then be set up for X, i.e., directly in the operational
space where obstacles live, by defining several cartesian
points P; = (z;,y;) on the (multibody) mobile robot.
Each of these control points will be subject to a field
Ui + Urep, being U, ; the attractive field associated
to the goal for P;. The desired motion becomes

Xd = — Z‘LT(X)VX, (Ua,i(Pi) + Ur(Pi))y (5)



where J;(X) is the Jacobian of the kinematic mapping
P; = fi(X) of the i-th control point.

Substitution of egs. (4) or (5) in (3) yields a non-
holonomic motion planner. Its performance obviously
depends on the characteristics of the holonomic plan-
ner, but also on the interaction between the latter and
the projection scheme. In order to allow for more flex-
ibility in the design, one can then keep the positional
part X, 4 of eq. (5) and specify the desired motion of
the angular part in a more general form

Xo,a = (X, Xp.4), (6)

where an explicit dependence of the angular planning
on the positional one has been introduced. The de-
sign of a suitable ® is strictly related to the kinematic
structure of the vehicle and is critical for the success of
the method. In particular, one should guarantee that
no additional blocking points are generated in the con-
figuration space X of the nonholonomic vehicle, beside
those possibly existing for X,. In Sec. 4 we show how
to achieve this for a unicycle.

We note that, as long as the overall feedback law (3)
is continuously differentiable, the scheme will not be
able to stabilize the mobile robot at a given configura-
tion X, (or, equivalently, not all control points P; will
reach their final position). In fact, this would violate
the theoretical result of Brockett [6], as applied to non-
holonomic systems. However, since our objective is the
definition of a navigation method among obstacles, we
are not interested in the specific configuration reached
at the end of the motion, provided that the positional
coordinates of the robot reach their destination X, ,.

Finally, we point out a possible shortcoming of the
method. Since the commands of the holonomic planner
are realized only in a least-squares sense, there is no
complete guarantee that obstacles will be avoided dur-
ing motion. Therefore, use of motion safety margins
related to the maximum velocity error is advisable.

3. Local holonomic planners

One basic component of the proposed planner is its
holonomic part which can be essentially based on any
local approach. According to eq. (5), we will work
with artificial potentials defined in the cartesian space
IR®. More specifically, we follow [11] and superpose
one attractive field with paraboloidic profile

K

- ™

with a hyperboloidic repulsive field for each obstacle

Ua(Xp) 1Xp,e — Xoll?,

’Y .
LS (;plz;y - ,,—10) (X)) <m ()
0

else,

Ur(Xp) = {

1
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where 7(X,) is the minimum distance of X, from the
obstacle, 7y is the influence range of the repulsive field,
and v > 2 shapes the radial profile of the potential.
Note that the gradient of U =U, 4 U, is continuous.

It is easy to see that, in the case of m circular obsta-
cles, the total field has always at least m saddle points
but no isolated local minima other than the goal [13].
In the presence of obstacles of arbitrary shape, and in
particular with boundary segments of zero curvature,
local minima. will appear with possibly large basins of
attraction.

As a less conventional approach, we will also use
the vorter field method [15]. The basic idea is to re-
place the antigradient of the given repulsive field with
a flow rotating around the obstacle. Analytically, this
amounts to moving along the direction defined by

BU-(Xp)

y }
_au,gxg) ’
'z
with the + sign corresponding to counterclockwise
(CCW) rotation of the vortex (see Fig. 1). Note that
the norm of the vortex field F, is the same of VU,,

and it goes to zero at distance o with continuity. The
attractive field is left unchanged.

Fy(Xp)== [ (9)
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Fig. 1 - Vortex field for a rectangular obstacle

In the case of convex obstacles with domains of influ-
ence that do not overlap, it is possible to guarantee the
completeness of the vortex field method. The choice of
CW or CCW rotation for an obstacle should be made
so that the relative angle a between the attractive di-
rection —VU, and F, when entering its influence range
is € 90° . The method has to be complemented with a
suitable relazation procedure which discards the vortex
—and thus the influence of the ‘bypassed’ obstacle—
when the angle o goes to zero [15]. Other higher-level
strategies can be devised to generalize the method to
non-convex obstacles or uncertain environments [21].
We stress that the heuristics for vortex rotation and
relaxation are locally defined and can be implemented



on line in a sensor-based planner. Finally, note that
the vortex field method does not enforce an explicit
repulsive action, so that a more conservative choice of
the gains in (7-8) will be necessary to avoid the robot
approaching too closely the obstacles.

4. Application to the unicycle

In this section, we apply the proposed approach to the
kinematics of a unicycle (Fig. 2), where X = (z,y,0)
is the configuration vector. In this case, there is only
one nonholonomic rolling constraint of the form (1):

T
[sinf —cosé O]|gy| =0. (10)
/]
The kinematic model is determined as
T = cos 0 uq
y=sinf u; (11)

0:U2,

where u; is the driving velocity and ug is the steer-
ing velocity. This model applies to a large class of
mobile robots, including the Nomad 200  available
in our Laboratory. Nomad has a circular base of ra-
dius R ~ 28 cm with three wheels that translate to-
gether, controlled by one motor, and rotate together,
controlled by a second motor.

According to eq. (3), the control input is chosen as

. Tq
cosf siné 0] (12)

Yd
0 0 1 4,

u=G*(X)X4 = [
This expression has a direct geometric interpretation.
The driving velocity u; is the orthogonal projection
of the (possibly infeasible) desired cartesian velocity
along the robot main axis, while the steering velocity
ug exactly realizes the desired rotation. Note that in
the present case G* = G7; also, unitary translational
and rotational velocities are given the same weight.

A

Fig. 2 — Kinematic structure of a unicycle
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The desired velocity X4 in eq. (12) comes from an
incremental holonomic planner. In the following, we
assume that the orientation of the mobile robot has
no relevance for obstacle collision, as in the case of
Nomad. As a consequence, the obstacles can be grown
by R and holonomic planning will be made only for
the central point of the robot!. The positional part
Xp.a = (%4,9a) is then obtained from eq. (5) as

Xpa=—Vx, (Ua(Xp) +Ur(Xp)) (1)
if artificial potentials are used, or as
Xp,d = "VX,,Ua(XP) + Fv(Xp) (14)

for the wvortez field method.

To complete the planning method we assign the ro-
tational part of X 0,d = 64 by specifying the form of &
in eq. (6). For the unicycle it is convenient to use

8; = atan2 {z4,ya} — 6. (15)

The rationale for this choice is simple. Since the uni-
cycle can instantaneously execute linear motions only
along its main axis, we force the vehicle to align itself
with the field flow. Although the robot has circular
symmetry, it is implicit in eq. (15) that the forward di-
rection (i.e. the one characterized by 6) will be aligned.
By defining atan2{0,0} = 6, the above function re-
mains continuous along any approaching direction to
the goal. The resulting command will be
uy = kp(£4 €086 4 yasinf)

16
uy = kg(atan2 {zq4, ya} — 9), (19

where 4 and g4 are given by eq. (14). Gains k, and
ke are introduced to allow for additional freedom in
weighting the two input commands. This is equivalent
to use a weighted pseudoinverse in eq. (12).

We prove next, using a Lyapunov argument, that
the motion of the unicycle under the control law (16)
converges to the desired position goal X, , in the ab-
sence of obstacles. Let
A

1 1
V= §"Xp,g - Xl = §"Ep”2 > 0. (17)

Since Xp,d = —koE, from eq. (13) (or (14)), the time
derivative of V along the closed-loop trajectories is

V=-X]E,=—u;(cosf sin0)E,

18
~kpka EY ( s

cos 8
sin @

)(cos& sing)E, <0.

t We are using a single control point. In the case of non-
circular robots, it will be necessary to specify multiple control
points on the robot body for successful motion planning.



We have that V = 0 iff the row vector (cosd sin6)
is orthogonal to E,. Whenever V =0 and Ey, # 0,
the system dynamics becomes & =3 = 0, § = +n/2.
Hence, the largest invariant set such that V = 0 is
Xp = Xp,4- By LaSalle’s theorem, the result follows.

The above argument shows that the control law does
not introduce further local minima in the configuration
space of the nonholonomic robot, beside those possibly
due to the holonomic field in JR?. Note that it is not
possible to prove convergence for position and orienta-
tion, in view of the continuous differentiability of the
chosen control law in the absence of obstacles.

5. Simulation Results

We simulated the proposed planner for a unicycle in a
scene with circular obstacles, although both the arti-
ficial potential and the vortex field methods apply to
obstacles of arbitrary shape. Input saturations were
included, with bounds on u; and up respectively at
2 m/sec and 360°/sec, the bounds of Nomad scaled by
a factor of 5 to speed up simulations. The steering
saturation limits the reorientation capability of the ve-
hicle. Controller gains were always set to k,=1, kg=5,
while the holonomic planner parameters were k, =1,
kr=2, y=2, no=2 m. Integration was performed us-
ing the fifth order Runge-Kutta method of SIMULINK,
with sampling interval T, =0.001--0.01 sec.

In Figs. 3 and 4, we first show for comparison two
successful outputs of the holonomic planners obtained
respectively with artificial potentials and with vortex
fields. The two paths are topologically different, due to
the choice of a CW vortex direction for the first encoun-
tered obstacle. The nonholonomic motions obtained
for (0) = 0 are shown respectively in Figs. 5 and 6,
with the associated control inputs. In both cases the
nonholonomic motion closely approximates the holo-
nomic one, and the position error exponentially goes
to zero in the terminal phase. Note that the unicycle
in Fig. 6 undergoes initially a large reorientation, be-
cause its heading opposes the chosen vortex direction
(CW) of the first obstacle. Correspondingly, the steer-
ing input saturates. This suggests more in general to
keep into account the actual vehicle orientation when
deciding the vortex direction for a sensed obstacle.

While navigating among obstacles, the driving ve-
locity obtained using vortex fields is saturated at all
instants. This is due to the non-repulsive nature of
the vortex: when approaching an obstacle the robot
does not experience an opposing field. On the other
hand, artificial potential fields tend to slow down mo-
tion when facing an obstacle. A nonholonomic plan-
ner based on vortex fields is thus expected to generate
faster point-to-point motions.
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In some cases, the performance of the two holonomic
planners is drastically different. Using artificial poten-
tials, a blocking saddle point can be met; this motivates
the unsuccessful output of the nonholonomic planner
in Fig. 7. Three large reorientations occur near saddle
points located in front of obstacles, before the motion
definitely stops. Instead, in Fig. 8 a solution path is
obtained with the scheme based on vortex fields.

We have applied the proposed method to several
other situations, and the performance was always sat-
isfactory. Accurate tuning of the controller gains was
not necessary, but we argue that it may be needed to
handle complex situations (e.g., when only sudden re-
orientation would avoid collision).
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6. Conclusions

We have proposed a general approach for planning the
motion of wheeled mobile robots among obstacles. The
nonholonomic planner consists of two basic compo-
nents: a local holonomic planner generating an incre-
mental output, and an on-line projection scheme which
modifies it so to yield a feasible path together with the
corresponding control inputs. As a result, a feedback
scheme is obtained which can be used in real-time by
feeding sensor data simply to the holonomic planner.

This approach has been applied to the case of a uni-
cycle with circular symmetry. The artificial potential
field and the vortex field methods have been elicited as
holonomic planners. Their actions on desired orienta-
tion and the projection scheme have been devised so to
avoid generation of additional blocking points. Simu-
lation results show that the proposed planner performs
satisfactorily in most situations.

Current work includes the derivation of explicit
safety margins for the nonholonomic planner and the
application to car-like mobile robots (X = (z,y,9, §)).
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