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Dynamic Gravity Cancellation
in Robots with Flexible Transmissions

Alessandro De Luca

Abstract— We consider the problem of perfect cancellation
of gravity effects in the dynamics of robot manipulators having
flexible transmissions at the joints. Based on the feedback
equivalence principle, we aim at designing feedback control
laws that let the system outputs behave as those of a desired
model where gravity is absent. The cases of constant stiffness
(elastic joints), nonlinear flexible, and variable nonlinear flexible
transmissions with antagonistic actuation are analyzed. In
all these situations, viable solutions are obtained either in
closed algebraic form or by a simple numerical technique.
The compensated system can then be controlled without taking
into account the gravity bias, which is particularly relevant
for safe physical human-robot interaction tasks where such
compliant manipulators are commonly used. Simulation results
are reported illustrating the obtained performance.

I. INTRODUCTION

Robots in physical interaction with humans are conve-
niently controlled so as to achieve zero-gravity operation [1].
This avoids biasing the robot reaction to unintended colli-
sions along the gradient of the gravitational potential, with
a uniform and more predictable (thus safer) robot behavior
in its whole workspace [2]. Perfect cancellation of gravity is
trivial for fully rigid manipulators. In fact, for their standard
dynamic model

M(q)q +c(q,q) +g(q) =T,
the choice

T =Tg+ To, Ty =9(q)

removes gravity from the picture in a complete way (i.e.,
both statically and dynamically), thanks to the colocation
of gravity and input torques (and to the full actuation of
the system). The additional command 7 is left to the
control designer for performing desired tasks, e.g., set-point
regulation, trajectory tracking, or reaction to a contact with
the environment.

However, robots intended for physical Human-Robot In-
teraction (pHRI) include compliant elements in their me-
chanical construction, in order to reduce the possibility of
injuries due to unexpected collisions [3]. Robot links are
designed as lightweight but rigid, while compliance is typ-
ically concentrated in the transmissions at the joints, either
with finite constant stiffness K, e.g., when using harmonic
drives [4], or with variable (and independently actuated)
nonlinear stiffness [5].
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The common dynamic model of robots with (constant)
joint elasticity takes the form [6]

M(q)g+c(q,q) +9(q) + K(g—0) =0
Bé+K(0—q) =T,

where actuation torques 7 appear on the motor side of the
elastic joints (i.e., performing work on @), while gravity
loading g(q) affects primarily the dynamic behavior of the
variables on the link side (i.e., q). This non-colocation is
a major problem for control. Gravity compensation laws
have been proposed for the case of regulation tasks, when
the link position g has to be asympotically stabilized to a
desired constant value g,. A first solution is based on motor
PD feedback with constant gravity compensation at steady
state [7]

TOZKP(ed*O)*KDGa Ty =9(qq),

with 8, = q, + K 'g(q,), Kp > 0, and Kp > 0. In
order to show asympotic stability by Lyapunov arguments,
K p should be larger than a positive parameter that bounds
the norm of the gradient of g(q). Indeed, this compensation
cancels gravity only in the final stzatic condition. Since the
gravity term changes with the robot configuration, an on-line
compensation has been proposed in [8] by evaluating g in
T4 with a gravity-biased measure of the motor position

T,=90), 0=60-K 'g(q,).

While the transient performance is largely improved, the
theoretical restriction on K p could not be removed in the
Lyapunov analysis. A better result is achieved in [9], with a
gravity compensation of the form

where, for any measured motor position 6, () is computed
by numerically solving g(q) + K(q — 0) = 0 (quasi-
static relation). This variant relaxes the lower bound on K p
and asymptotic stability can be shown through a modified
Lyapunov function.

All the above control laws have the merit of using only
feedback from the motor variables @ and 6. However,
none of them is able to remove completely the effects of
gravity, especially in highly dynamic tasks: only a partial
compensation, and not a cancellation, of the gravitational
load acting on the robot link motion is obtained. In the
context of robot reaction to collisions, we also note that a
practical solution for compensating gravity in elastic joint
robots has been proposed in [10], based on the availability
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of joint torque sensors. The use of this additional sensor can
be interpreted as involving also the link position g in the
control law. Furthermore, under the assumption that full state
is available, it is known that all robots with elastic joints can
be exactly linearized by means of a static [11] or dynamic
state feedback (the latter is needed when some extra inertial
terms are included in the model) [12]. This structural control
property will be further exploited in this paper.

The most recent research in pHRI calls for the use of
variable stiffness actuation (VSA), in which each joint is
driven by two independent actuators allowing to control the
link motion as well as the device stiffness [13]-[16], and to
shape the compliant interaction with the environment. Actu-
ators are typically arranged in antagonistic mode, with both
motors of each joint involved in robot motion and stiffness
variation. In order to modify the device stiffness, a nonlinear
characteristics of the flexible transmissions is needed. This
can be realized using either nonlinear springs or linear
springs mounted on a nonlinear kinematic transmission. For
VSA systems, the paradigm is “design for safety, control
for performance” [5]. In particular, the robot can be made
more compliant at high speeds and stiffer at low speeds, thus
limiting the energy exchange in the first few instants after
an unexpected impact. Up to now, the presence of gravity
in VSA-based robots has not been treated rigorously, with
experimental single-dof devices moving in the horizontal
plane or using only a partial gravity compensation —just as
in the constant stiffness case. Nonetheless, a large class of
VSA-based systems of the antagonistic type has been shown
to be feedback equivalent to linear, controllable, and input-
output decoupled systems [17], [18], with the linearizing
outputs being the link position and the device stiffness. Also
for this class of flexible devices, such a control property will
be useful for removing the dynamic effects of gravity in a
complete and efficient way.

In this paper, we present new control results that allow
perfect gravity cancellation in dynamic conditions for a
variety of robotic systems with flexible transmissions. Based
on the general principle of feedback equivalence [19], we
design for all cases static state feedback control laws that
accurately match the dynamic behavior of the driven links as
if they were moving in the absence of gravity. In Sect. II, we
consider the case of robots with n elastic joints having con-
stant stiffness and single actuation. In Sect. III, the analysis is
extended to transmissions with nonlinear flexibility. The case
of antagonistic actuation with variable nonlinear stiffness is
handled in Sect. IV. For VSA-based robots, we will be able
to impose also a dynamic behavior to the nonlinear stiffness
of the device which is identical to that of the no-gravity case.
[lustrative simulation results are given in each section.

II. ROBOTS WITH ELASTIC JOINTS

Consider a robot manipulator having n elastic joints of
constant stiffness and n driving motors. Let g and 6 be the
n-dimensional vectors of link and motor variables. Under
the simplifying modeling assumption of Spong [11], and
including also viscous effects at the motor and link side,

the dynamic model takes the form

M(q)q+c(q,9) +9(q) + Dyg+ K(g—0) = 0 (1)
BO+Dy0+K@O-q) =T, (2

where M > 0 is the robot inertia matrix, the constant
diagonal matrix B > 0 contains the motor inertias, ¢ is
the vector of centrifugal and Coriolis terms, g is the gravity
vector, i > 0 is the diagonal matrix of joint stiffnesses,
and D, and Dy are positive semi-definite diagonal matrices
of viscous friction coefficients. In terms of transmission
deformation ¢ = g — 0, the elastic potential U, = %(bTK o}
associated to (1-2) leads to the linear elasticity torque vector
T, and constant device stiffness (diagonal) matrix o

T
TE:(8U6> _ Ko, 0_287'6:
oq

Our control goal is to define a (nonlinear) feedback law
T = ‘r(q,G,q,é,To) in (2) such that the behavior of the
compensated system matches in suitable coordinates the one
of an equivalent model without gravity, i.e.,

M(q0)dq, + c(g0, o) + D,q, + K(qy—60) =0 (3)
B, + Dy + K (6o — q;) = 7o, (4)

where a subscript 0 characterizes the variables of the robot
without gravity.

It is well known [11] that system (1-2) is exactly lin-
earizable by means of a static state feedback into decoupled
chains of four integrators, with g and its first three time
derivatives being the linearizing coordinates. The same holds
true also for system (3—4). Therefore, thanks to the feedback
equivalence principle, by imposing the equality

q(t) = qo(t),

one should obtain the desired result without resorting to the
complexity of a complete feedback linearization process. It
can be easily verified that this is achieved by choosing the
control law as

vt >0

T=T4+To 5)
with
7, =9(q) + DoK 'g(q) + BK 'g(q),  (6)
where
. 0 )
9(q) = 7%21) q
0
g(q) = %(qq)Ml(Q) (K(6—q)—c(q,9)—9g(q)—D,q)
— d%g(q) . .
+ Pt 8qaql qqla

provided that matched initial conditions hold at time ¢ = 0:

q(0) = q,(0) i(0) = ,(0)
q(0) = g,(0)  ®(0) = g)(0),

with the notation ¢[!l = d’q/dt".

)
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The expression of the control law (5-6) is obtained by
imposing q!*(0) = qgl](O), taking into account that the
identities (7) are automatically enforced for all ¢ > 0. A
notable feature is that this control law can be computed in
closed form. Moreover, in any static condition, i.e., with
g = q = 0, the gravity cancellation torque becomes
T4 = g(q), as expected. Instead, in dynamic conditions T,
includes terms that are proportional to the inverse of the joint
stiffness K. Thus, the more rigid are the transmissions the
less extra dynamic torque is needed for gravity cancellation.
We remark that, despite of the need of inverting the robot
inertia matrix M (q), the gravity cancellation torque (6) is
much simpler than the expression of a feedback linearization
control law, which would involve also the time derivatives of
the model terms M (q) and ¢(q, ¢) up to the second order.

There are indeed differences in the state behavior between
the gravity-free system (3—4) and system (1-2) under the
gravity cancellation control law (5-6). While the two systems
will evolve in an identical way when looking at the lineariz-
ing coordinates g(t) = g, (t), the inverse mappings of this
evolution in terms of the respective motor variables will still
be different. In fact, since the initial matching conditions (7)
will be satisfied also for all £ > 0, it is

0(t) = 0o(t) + K "g(a(t)) # 6o(t)

00) = 0ult) + K228 g0y 2 60
This should not be surprising from a physical point of view:
the gravity-loaded robot needs the presence of a deformation
q — 0 # q — 0 that dynamically balances the gravity on the
link side. The control law (5-6) will only cancel the effects
on the link (output) motion, which is what we actually need
during robot interaction with the environment/human.

The torque input 7¢ in (5) can be chosen according to
the task, e.g., for a torque-based robot reaction to detected
collisions as in [2], or for a regulation task to a constant link
position q,.

A. Simulation results

To illustrate the performance of the control law (5-6), it
is sufficient to compare the behavior of a single link with an
elastic joint in the absence of gravity and that under gravity
but with dynamic gravity cancellation. In this case, the link
inertia is a constant scalar M and the gravity term is given
by g(q) = mdgosin g, where m is the mass of the link, d
is the distance of its center of mass from the joint, and gg
is the gravity acceleration. The dynamic gravity cancellation
term 7, in (6) is

7, = mdgo {(1 — £ %) sing - %m%qo sin g cos q
(3)
+%QCosq+%(97q)cosq}.

Using M = 8.333, B = 50 [N-mm-s?/rad], m = 0.1 [kg],
d = 250 [mm], D, = 0.1, Dy = 1 [N-mm-s/rad], and
K =100 [N-mm/rad] as data, we simulated the two systems
starting at rest from the downward equilibrium, and applying

T T
q with r:xuﬂg
osll - - qowwm =T,

- - -qWwith T=T +9(a)

Link position [rad]

5
Time [s]

(a)

BWith 1= 1,71
0g

06 ) wuhr:t0
- _Bwith T=T +g(a)

Motor position [rad]

Tlmse [s]
(b)

Fig. 1. Comparison of link (a) and motor (b) position for a single elastic
joint without gravity under 7o [dot-dashed, black], and with gravity under
7o and a link-based compensation g(g) [dashed, blue] or under 7o and the
dynamic cancellation law 74 in (8) [continuous, red]

=T +
TR

P L A TC)

Torque [N mm]

s
Time [s]

Fig. 2. Total applied torques with g(g) only [dashed, blue] and with 74
in (8) [continuous, red] for the motion of Fig. 1

the open-loop torque 7y = sin0.17t for T' = 10 s. Figure 1
shows the obtained evolution of the link (a) and motor
(b) angles in the absence or presence of gravity. For the
latter case, we compare also the use of a simpler link-based
compensation g(q) in place of the dynamic cancellation 7,
given by (8). From Fig. 1(a), it can be seen that ¢(t) = go(t)
exactly in the case of dynamic cancellation, while an error
is present when using g(g). On the other hand, 6(t) # 0o (t)
(both with dynamic cancellation and link-based compensa-
tion) despite the initial states of the systems with and without
gravity were fully matched at ¢ = 0, with no initial joint
deformation (see Fig. 1(b)). The total torques (i.e., including
Tp) for the link-based gravity compensation and for its perfect
cancellation are reported in Fig. 2, showing that the dynamic
torque contribution is indeed non-negligible.
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III. JOINTS WITH NONLINEAR FLEXIBILITY

In this section, we extend the previous analysis to the case
of transmissions with nonlinear flexibility [20]. For the sake
of simplicity, only a single dof will be considered, but the
generalization to multi-dof systems is straightforward. Using
the same notation of Sec. II, we assume that a potential
energy U.(¢) > 0 is associated to the deformation ¢ = ¢—8,
so that the flexibility torque 7. = OU./0q = T.(¢) is a
nonlinear function of ¢ and the stiffness o = 07./9q = o(¢)
will be non-constant.

The dynamic model of a single link moving under gravity
and driven through such a flexible transmission is then

MG+ Dy + g(q) + 7e(¢) = 0 )
BO + Dyl — 7o(¢) = T. (10)

We wish to define a feedback law 7 = 7(q, 6, ¢, 0, 79) in (10)
so as to match the behavior of some variable of the model
without gravity

Mo + DyGo + Te(¢o) = 0
By + Doy — 7e(¢0) = o

Y
12)

It is easy to verify that the nonlinear systems (9-10)
and (11-12) are exactly linearizable by means of a static state
feedback into a chain of four integrators, with ¢ and its first
three time derivatives as linearizing coordinates. Therefore,
the two systems are feedback equivalent, and the solution to
our problem is obtained by imposing ¢(t) = qo(t) for all
t > 0. In particular, from ¢! = q([)4] we get

Dy

_ B
7= glq) + mg(q) + @Q(Q)
1+ 2@ =960) (54 aryi 4 (D, + Do)d)

o ()
B (00() 15 00(d0) 52\ , 9(d0)
o(o) ( ¢ ¢ 0o %) + a(®)

= Ty + Q4To,

13)

7o

where § (to be used also in §(g)) is computed from (9) as

=~ (Dyd+ 9(a) + ().

M
In addition, the initial matching requires
7(0) = 40(0) G(0) = Go(0) a4
Q(0) = @(0)  ¢(0) = a5 (0).

The expression (13) collapses into (5-6) for a transmission
with constant stiffness ¢ = K. However, differently from the
case of linear elasticity, the control law (13) contains terms
that require the knowledge of the deformation ¢y = q — 6,
and of its rate gf)o, pertaining to the model without gravity.
Also, the torque 7 applied in the gravity-free case needs
now to be scaled by the factor ay = o(¢o)/0 ().

The value ¢( is computed by solving the nonlinear equa-
tion 7.(¢po) = —M{ — D,q, which is obtained from (11) by
taking into account the first three identities in (14). Using (9),

the right-hand side can be written as a function of the state
(actually, of the configuration variables only) of the gravity-
loaded system as

Te(¢0) = 9(q) + 7e(¢) = a(q, ).

Equation (15) needs to be solved at each time ¢ > 0, as a
function of the current system state. As a representative ex-
ample, consider a flexible joint transmission with associated
potential given by U, = 1 K¢? + 1K ¢*, with K > 0 and
K. > 0 [21]. The flexibility torque is a cubic function of ¢
and the stiffness has a quadratic dependence:

Te(0) = K¢+ K>,  o(¢) = K + 3K.¢%

At a given (g, ), equation (15) results in the cubic equation
K.$3 + K¢o — a(q,0) = 0, which has always two complex
roots and one real (positive or negative) root, thanks to the
positivity of K and K. The real root is given by

b0 = i/l ala.f) | b(q,0) + \3/1 “0,6) _ b(g, ),

5)

(16)

2 K, 2 K,

27
general stiffness profiles, a solution to (15) should be
searched numerically.
Once ¢y has been found, the value of ¢, that appears
in the control law (13) is obtained by time differentiation
of (15) (or, equivalently, from the fourth identity in (14)) as

L (s 99()
¢0_0’(¢o)< @)+ dq q>'

3 2
where b(g,0) = ¢1 gf(() + 1 % > 0. For more

a7)

Link position [rad]
:

5
Time [s]

(a)

Motor position [rad]
.

Tlmse [s]
(b)

Fig. 3. Comparison of link (a) and motor (b) position for a single nonlinear
flexible joint without gravity under 79 [dot-dashed, black], and with gravity
under the dynamic cancellation law (13) [continuous, red]
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As a result, the gravity cancellation control law (13) can be
computed in closed form from full state measurements in
the case of cubic stiffness (and for other simple nonlinear
dependences). Note that for multi-dof robots with nonlinear
flexible joints one needs to solve n similar equations of the
form (15), whereas (17) is replicated component-wise.

A. Simulation results

We simulated a joint with cubic flexibility torque 7.(¢)
having K = 100 [N-mm/rad] and K. = 500 [N-mm/rad].
With these data, the joint stiffness o(¢) increases by about
45% w.rt. its value at ¢ = 0 when the joint deformation
is |¢| = 0.18 [rad]. All other model parameters, the initial
conditions, and the open-loop input torque are the same as in
Sect. II-A. Figure 3 shows the evolution of the link (a) and
motor (b) angles obtained in the absence or in the presence
of gravity under the dynamic gravity cancellation law (13).

IV. VARIABLE STIFFNESS JOINTS WITH ANTAGONISTIC
ACTUATION

Progressing in the generalization of the dynamic gravity
cancellation approach, we consider in this section the case
of joints with (actuated) variable stiffness. Use of variable
nonlinear stiffness actuation is highly recommended for safe
pHRI, with the antagonistic arrangement of two motors for
each joint as the most common realization [13], [15], [16].
For the sake of notational simplicity, consider a single link
under gravity driven by a VSA system. The dynamic model
is expressed in terms of three generalized coordinates, g for
the link position, and ¢, and 6, for the position of the two
motors. Let ¢; = g—6;, i = 1,2, be the deformations of the
transmissions at the two sides of the joint. We have

MG+ Dyg+ g(q) + Te(¢1) + Te(d2) = 0 (18)
Bé1+D091_Te(¢1) =7 (19)
By + Dby — 7e(¢2) = 72, (20)

where 71 and 79 are the torques supplied by the two motors.
Without loss of generality, we have assumed in (18-20) a
full symmetry for the two actuation/transmission systems.
Accordingly, the total stiffness o; of the device is given by
the separable function

1e(91) + 1e(92))
dq

As before, the target behavior is specified by a dynamic
system of the same form of (18-20), but with g(q) = 0
and all its variables labeled by a 0 subscript.

Since the system has two inputs, according to the feedback
equivalence principle, we should determine two independent
system output functions that play the role of linearizing
coordinates in a feedback linearization scheme. Based on
the results in [18], these two outputs are the link position ¢
and the total stiffness o;. In fact, differentiating (18) w.r.t.
time gives

Mq[3] + DyG + 9(q) + U(¢1)¢1 + 0'(¢2)(b2 =0.

oi(P1, ¢2) =

= O'(¢1) + U(¢2). (21)

(22)

Differentiating once more, using (19-20), and rearraging
terms, we obtain

Mg+ Dyq® +ii(q) + 2552 3+ 2582) @3+ 0y
= 0(¢1)01 + o(h2)02 (23)
_ 1 T1+Te(¢1)—D991>
- B ( 0(¢1) 0(¢2) ) (7_2 “FTQ((ZSQ) _ D(} 92 .
Similarly, by differentiating (21) w.r.t. time, we have
do(¢1) ; do(¢2) .
= 24
o 90, 1+ 369 b2 (24)
and, by rearraging terms and using again (19-20),
br = T g + T g 4 (25len) 4 2ela))
_ 99(¢1) g, 9a(¢2)
= 5t 01+ 55 6 (25)
_1 ( do(¢1) Do(d2) ) 71+ Te(¢1) — Do 01
B\ 9% O¢2 Ty + Te(¢2) — Do b2 )

It can be shown that the decoupling matrix associated to the
output vector (g, 0;) is proportional to the matrix

o(¢1) o(¢2)
A(d1,02) = | do(¢1) Oo(da) |-
ofz} 02
which is generically nonsingular, except when 6; = 6o

(a condition that can be always avoided by suitably pre-
charging the actuation system). Therefore, the outputs g,
together with its first three derivatives, and oy, with its first
derivative, are linearizing coordinates for system (18-20).

Comparing the expressions (23) and (25) with those of
the gravity-free case (with a O subscript), the solution to
the problem of dynamic gravity cancellation is given by the
control torques 7, and 7

(n)=(Da i) va
{Aww’w () (-

"o, 42) -

— Dy 9:10 >)
— Dy O

90(¢i) .o 00(gi0) 1o
)+ Z < 0¢; ot 0pio io)
2
+B do(¢i) _ 9a(dio) \ . },
;( ofon Ipio >q
& 20(¢i) o 0%0(dio) 19
+ZZ=; ( 062 ¢; — 7&1)120 ¢i0>
(26)

where the link acceleration § (to be used also in §(q)) is
computed from (18) as

57 (D + 90) + 7e(60) + 7e(62)

In addition, an initial state matching given by

9(0) = qo(0) d(0) = do(0) (0) = dio(0) ¢®(0) =

i=-

3
a5 (0)
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and
0:(0) = 0¢(¢1(0), $2(0)) = 0(¢10(0), $20(0)) = 040(0)
6+(0) = 64(0)

should hold between the gravity-loaded and the gravity-free
system. Note that the above identities will hold for all ¢ > 0
thanks to the chosen control law.

The control law (26) physically replaces all terms that
are affected by gravity (motor variables, flexible deformation
torques, partial derivatives of the stiffness functions) with
those of the gravity-free target system. For the considered
single-dof VSA-based joint, the dynamic gravity cancellation
law is very similar to a feedback linearization law from the
point of view of complexity. However, these two controllers
will differ consistently when considering multi-dof VSA
robotic systems —in much the same way as for the case
of single actuation of linear or nonlinear flexible joints.

Beside measurements of the state of the gravity-loaded
system, in order to evaluate (26) we need also knowledge
of the deformations ¢;g, ¢ = 1,2, and of their rates <Z.5io,
1 = 1,2, pertaining to the target system without gravity. Note
that from ¢;y, we directly obtain also 6; = g—¢;o. Similarly
to Sect. III, the deformations ¢19 and ¢2g are determined by
solving the coupled system of two nonlinear equations

Te(@10) + Te(Pp20) = —MG— Dyg = ai(q,bh,02)
a(p10) +o(p20) = 01(q,01,02),

where the right-hand sides of (27) are expressed in terms of
current state measurements using (18) and (21). Due to the
symmetry, if (¢4, ¢p) is a solution of (27) then (¢, ¢, ) is a
solution as well.

In general, system (27) needs to be solved numerically.
Some additional insight is provided in the case of cubic
flexibility torques, see (16). We have then

K(d10 + ¢20) + Ke(d39 + ¢39) = a1(g,01,602) (28)
2K + 3K (02 + ¢29) = 01(q,01,02). (29)
Since by definition
o — 2K
3K,

the solutions to equation (29) can be parametrized by a scalar
a € [0,27) as ¢19 = Rcosa and ¢o9 = Rsin a. Replacing
these in (28) yields the single trigonometric equation in o

27)

=R?>>0,

Ot — ai

3K KR’ (30)
Figure 4 shows a plot of one of the two branches of the ex-
pression on the left-hand side of (30), obtained for K = 100,
K. = 500, and o4 = 220. The horizontal line corresponds
to the case a; = 10, and the associated root « provides the
solution ¢19 = 0.1136 and ¢99 = —0.0209 [rad]. It can be
seen that equation (30) is sufficiently smooth, and thus easily
solvable by a numerical root finder (e.g., the £zero routine
of Matlab). Assume now that the device stiffness o; can be
changed within the interval (2K, 4K), i.e., from its minimum
physical value to a 100% increase. It can be shown that a

(cosa +sina)+ (cos® a+sin’ a) =

. . . . .
J //7
0

05k

-2 -15 -1 -0.5
alpha [rad]

Fig. 4. A typical functional form of eq. (30) and a possible solution

pair of solutions « to (30) always exist in this interval for
o¢, provided that |a;| < V2K R[1 +0.5(c; — 2K)/(3K)].
It should be stressed that the existence of pairs of solutions is
not a source of problems. In fact, system (27) will be solved
at every (discretized) instant ¢ > 0. Once a specific solution
has been chosen at ¢ = 0, the process is repeated on line
and a local numerical search around the previous solution
generates a single update.

Finally, having determined ¢;¢ and ¢4, their rates are
obtained by time differentiation of (27) as

< P10 > :A_1(¢107¢20)< —Mq[3.] — Dyt )
$20

Ot
a(¢1)é1 + 0 (¢)d2 + a%i(qq)q
9o (1) j 0o (d2) ;

O¢1 ¢1 + 3¢22 ¢2

where (22) and (24) have been used to express all quantities
in terms of the original VSA system state only.

=AY ($10, Pa0)

A. Simulation results

We have simulated the dynamic gravity cancellation
law (26) for a symmetric antagonistic joint with cubic
flexibility torques, using the numerical data of Sec. III-A
duplicated as needed. In the present case, the input torques
T19 and 799 have been chosen of the bang-bang type as
in Fig. 5(c). Figure 5 shows the validity of the proposed
scheme: both the link position (a) and the device stiffness (b)
have identical evolutions in the absence of gravity and when
gravity is present but dynamically canceled. Note that the
stiffness variation during motion is as large as 2.5 [Nm/rad].
The total applied torques are shown in Fig. 6.

B. The VSA-II Variable Stiffness Joint

We report also a numerical result on gravity cancellation
for the VSA-II experimental device developed at the Uni-
versity of Pisa [16] and sketched in Fig. 7. The VSA-II is
based on a bi-directional antagonistic arrangement of two
motors driving a single joint through a nonlinear flexible
transmission system that uses pairs of 4-bar mechanisms (the
so-called Grashof neutral linkage) with linear springs.

The VSA-II dynamic model takes the form (18-20), with

0B(¢; .
Te(¢i) = 2Kﬁ(¢1) ﬁaib(b )7 1= 172a
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where K is the constant stiffness of each of the two torsional
elastic springs and
B(¢s) = arcsin <C’ sin(?)) —%, 1=1,2,

being C' > 1 a geometric parameter of the 4-bar mechanisms.
Due to this arrangement, the dynamic gravity cancellation
law for the VSA-II is a particular instance of eq. (26).

Figure 8 shows the obtained evolution when using the
same open-loop torque input of Fig. 5(c) and the numerical
data from [16], [18]. The total applied torques are reported
in Fig. 9.

V. CONCLUSIONS

We have considered the problem of perfect dynamic
cancellation of gravity effects acting on the link motion
of robot manipulators having flexible transmissions. The
cases of flexible transmissions with constant, nonlinear, and
variable nonlinear stiffness with antagonistic actuation have
been analyzed. Based on the feedback equivalence principle,
state feedback control laws have been designed that let the
system outputs behave as those of a reference model where
gravity is absent. In the case of VSA-based manipulators,
this includes also intervention on the device stiffness. While
dynamic gravity cancellation involves in general the on-line
computation of inertial terms, the presented control laws are
much simpler than those needed for feedback linearization.
Control solutions are obtained either in closed algebraic form
or by using simple numerical techniques. In particular, the
parallel simulation of the gravity-free system to be matched
is never required.

The presented results can be used for different control
purposes. For set-point regulation tasks of robots with elastic
joints, a PD-type control law on the motor position error
can be designed on top of the gravity cancellation law,
and its global asymptotic stability can be shown without
the need of a strictly positive lower bound neither on the
proportional gain nor on the joint stiffness [22]. Regulation
controllers should be more easily obtained in this way also
for VSA-based manipulators, where the link position as well
as the device stiffness need to be asymptotically stabilized
to a desired constant value. Moreover, the proposed dynamic
gravity cancellation is useful in safe physical human-robot
interaction. In general, unexpected collisions may occur at
any time during motion and the compliant robot should react
as soon as the impact is detected (e.g., with a sensorless
residual-based method as in [2]). Through the permanent
cancellation of the gravitational loads on the robot links, a
physical torque-based reaction strategy can be designed so
that the controlled robot rapidly flees away from the danger
area in a gravity-unbiased dynamic fashion. This subject is
currently under investigation.
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