
A Depth Space Approach to
Human-Robot Collision Avoidance

Fabrizio Flacco∗ Torsten Kröger∗∗ Alessandro De Luca∗ Oussama Khatib∗∗

Abstract— In this paper a real-time collision avoidance ap-
proach is presented for safe human-robot coexistence. The main
contribution is a fast method to evaluate distances between
the robot and possibly moving obstacles (including humans),
based on the concept of depth space. The distances are used
to generate repulsive vectors that are used to control the robot
while executing a generic motion task. The repulsive vectors can
also take advantage of an estimation of the obstacle velocity.
In order to preserve the execution of a Cartesian task with a
redundant manipulator, a simple collision avoidance algorithm
has been implemented where different reaction behaviors are
set up for the end-effector and for other control points along the
robot structure. The complete collision avoidance framework,
from perception of the environment to joint-level robot control,
is presented for a 7-dof KUKA Light-Weight-Robot IV using
the Microsoft Kinect sensor. Experimental results are reported
for dynamic environments with obstacles and a human.

I. INTRODUCTION

A flexible, reactive, and safety-oriented control of physi-
cal interaction between humans and robots allows a closer
cooperation in service and industrial tasks that require the
adaptability skills of humans to be merged with the high
performance in terms of precision, speed and payload of
robots [1]. The avoidance and safer handling of collisions
are basic components of this challenge. While potential in-
juries of unexpected human-robot impacts can be limited by
lightweight/compliant mechanical design of manipulators [2]
and collision detection/reaction strategies [3], preventing col-
lisions in a dynamic and largely unpredictable environment
relies on the extensive use of exteroceptive sensors.

A real-time collision avoidance method is composed es-
sentially by three parts: (1) Perception of the environment;
(2) Collision avoidance algorithm; (3) Robot control. For
its importance collision avoidance has been one of the
most studied field in robotics, and many different planning
and control approaches for obstacle avoidance have been
proposed. A large majority of the real-time capable planning
concepts are based on the famous potential field approach
introduced in [4] and further elaborated, e.g., in [5], [6].
Virtual repulsive and attractive fields are associated respec-
tively to obstacles and target, such that a motion towards
the goal is achieved while obstacles are avoided. Real-time
adaptive motion planning methods [7]–[9] are key to give
reactive motion control behaviors to robotic systems. These
works use parametrized collision-free paths (e.g, splines) to
represent calculated trajectories, and update the trajectory

∗Dipartimento di Informatica e Sistemistica, Università di
Roma “La Sapienza”, Via Ariosto 25, 00185 Rome, Italy
{fflacco,deluca}@dis.uniroma1.it. ∗∗ Artificial Intelligence Laboratory,
Stanford University, Stanford, CA 94305, USA {tkr, khatib}@stanford.edu.

parameters at runtime as the environment changes or is
discovered by the robot sensors. An on-line motion planning
approach where paths and trajectories are calculated on line
in the configuration × time space, so that the robot can
act in unknown dynamic environments has been proposed
in [10]. Collision-free vertices (“milestones”) and edges
on a road map, which is another kind of representation
of currently planned trajectories, are used in [11], [12].
In [13] both the robot and the human are represented by a
number of spheres and a collision-free trajectory is obtained
by exploring possible end-effector movements in predefined
directions. A combination of potential and circular fields,
which is suitable for complex environments and provides
good convergence properties to the goal, has been recently
proposed in [14]. Finally, the concept proposed in [15] uses
virtual springs and damping elements to be used as input
values for a Cartesian impedance controller that will generate
the motion trajectories.

Most of the above works assume that the information
about the environment needed to avoid obstacles is already
available, skipping the perception part. As a common charac-
teristic, collision avoidance algorithms are based at least on a
measure of the distances between the robot and the obstacles.
The idea of computing this distance directly from an image
of the environment was introduced in [16]. The minimum
robot-obstacle distance is obtained by expanding the convex
hull associated to the robot until the image associated to an
obstacle is reached. Since this method use only on a 2D
image, knowledge of the vector between the two points of
minimum distance is not available. The distance information
alone is useful just to slow down or to stop the robot motion
for collision prevention.

Fig. 1. A robot arm reacts instantaneously to motions of humans and other
dynamic obstacles that are detected in depth space, such that collisions are
avoided

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1404-6/12/$31.00 ©2012 IEEE 338

Nowadays, visual sensing is one of the best choices
for integrating sensor-based collision avoidance concepts in
motion control system. Moreover, the development of new
low-cost depth sensors such as the Microsoft KinectTM [17]
allows to meet many requirement with a very cheap and
powerful sensor system.. The classical way to use depth data
is to project them into a robot-oriented space, reassemble
representations of obstacles in this space, and finally compute
the information needed for collision avoidance. Examples
of this approach are [18], where Cartesian space control is
used, and [19], in which obstacles are represented in the
configuration space.

With reference to the setup shown in Fig. 1, with a
lightweight KUKA LWR IV robot [20] sharing its workspace
with a human and the associated depth image of a monitoring
Kinect camera, in this paper a new fast approach is pro-
posed that computes distances between robot and workspace
obstacles directly from depth data. This mimics the human
behavior for obstacle avoidance where, at least at the reflex
level, only visual feedback is used for a rough estimation of
the relative distances between the obstacles and ourselves.
The robot to obstacles distances are then used in a simple
variant of a classical potential field method, so as to generate
repulsive commands for the robot to avoid collisions.

The paper is organized as follows. The concept of depth
space is summarized in Sect. II. Section III introduces our
new approach to estimate robot-obstacle distances based on
depth space computations. In Sect. IV, the obtained distances
are used to generate a repulsive vector from obstacle(s) to a
point of interest on the robot. The basic repulsion concept
can be improved by considering also estimated velocities of
the obstacles (Sect. IV-A) and by the use of multiple points
of interest (control points) along the manipulator (Sect. IV-
B). Section V presents the general framework of our robot
motion controller, where the collision avoidance scheme
has been integrated. The laboratory setup and the obtained
experimental results are described in Sec. VI, using a 7-dof
KUKA LWR IV.

II. DEPTH SPACE

The depth space is a non-homogeneous 2 1
2 -dimensional

space, where two elements represent the coordinate of the
projection of a Cartesian point on a plane, and the third
element represents the distance between the point and the
plane. The depth space of an environment can be captured
by a depth sensor (e.g., a stereo, time of flight, or structured
light camera), which is modeled as a classic pin-hole camera.
The pin-hole camera model is composed by two sets of
parameters, the intrinsic parameters in matrix K, which
model the projection of a Cartesian point on the image plane,
and the extrinsic parameters in matrix E , which represent
the coordinate transformation between the reference and the
sensor frame, i.e.,

K =

 fsx 0 cx
0 fsy cy
0 0 1

 , E =
(

R | t
)
, (1)

where f is the focal length of the camera, sx and sy are
the dimensions of a pixel in meters, cx and cy are the pixel
coordinates of the center (on the focal axis) of the image
plane, and R and t are the rotation and translation between
the camera and the reference frame. Each pixel of a depth
image contains the depth of the observed point, namely the
distance between the Cartesian point and the camera image
plane. Note that only the depth of the closest point along
a given ray is stored; all occluded points that are beyond
compose, for all camera rays, a region of uncertainty called
gray area, see the example in Fig. 2.

Fig. 2. Generation of a depth image, with lighter intensities representing
closer objects. Points occluded by the obstacle compose the gray area in
the Cartesian space. The manipulator does not contribute to the gray area,
because it is removed from the image as explained in Sec. IV-B

Consider a generic Cartesian point expressed in the refer-
ence frame as PR =

(
xR yR zR

)T
. Its expression in

the sensor frame is

PC =
(
xC yC zC

)T = R PR + t, (2)

and its projection PD =
(
px py dp

)T
in the depth

space is given by

px =
xCfsx
zC

+ cx

py =
yCfsy
zC

+ cy

dp = zC ,

(3)

where px and py are the pixel coordinates in the image plane
and dp is the depth of the point.

III. DISTANCE EVALUATION

The distance between the robot and an obstacle is the es-
sential information needed for obstacle avoidance. Consider
an obstacle point O and its depth space representation OD =(
ox oy do

)T
captured by the camera. To evaluate an

useful Cartesian distance between the obstacle point O and
a point of interest P , also represented in the depth space as
PD =

(
px py dp

)T
by means of eqs. (2) and (3), two

possible cases arise (see Fig. 3). If the obstacle point has a
larger depth than the point of interest (do > dp), then the

339

distance is computed as

vx =
(ox − cx) do − (px − cx) dp

fsx

vy =
(oy − cy) do − (py − cy) dp

fsy
vz = do − dp

‖D(P ,O)‖ =
√
v2
x + v2

y + v2
z ,

(4)

where D(P ,O) =
(
vx vy vz

)T
. Otherwise, the dis-

tance w.r.t. the occluded points is considered. For this, we
assume the depth of the obstacle to be do = dp and the
distance is then obtained from eq. (4). Note that the resulting
value is not the actual Cartesian distance, but it contains
enough information for collision avoidance. This distance
evaluation is based on simple relations using only depth
space data associated to the camera. Moreover, it properly
takes into account also the gray area whereas with other
methods the distance for occluded points would not be
evaluated in an useful way.

Fig. 3. Depth space distance evaluation to a point of interest P : The two
possible cases of obstacle depth larger or not than the depth of the point of
interest are shown

Next, we would like to evaluate the distances between P
and all obstacles sufficiently close to it. Consider a Cartesian
region of surveillance, constituted by a cube of side 2ρ
centered at P , where the presence of obstacles must be
detected. The associated region of surveillance in the image
plane has dimensions

xs = ρ
fsx
dp − ρ

, ys = ρ
fsy
dp − ρ

. (5)

Therefore, all pixels in the image plane within the region of
surveillance S =

[
px − xs

2 , px + xs

2

]
×
[
py − ys

2 , py + ys

2

]
must be considered. The distance evaluation for each obsta-
cle pixel is completely independent, thus distances can be
computed concurrently speeding up the method. Moreover,
if only the minimum distance is required, the number of
distance evaluations can be reduced by considering pixels
that are closer to (px, py) first. As soon as a new local
minimum Dmin(P) = minO∈S′ ‖D(P ,O)‖ < ρ is found
among the pixels in the already explored area S′ ⊂ S, the
region of surveillance can be shrunk by setting ρ = Dmin and
using again eq. (5). Finally, distance computation is applied
only to pixels whose depth is compatible with the workspace
of the robot manipulator, so that points too far or too near
are rejected.

IV. REPULSIVE ACTION

Once the robot-obstacle distances have been evaluated,
they are used to modify on-line the current trajectory of
the manipulator so as to avoid collision. Many different
approaches for obstacle avoidance have been proposed (see
Sect. I). We present here a simple but effective method
based on the generation of repulsive vectors in Cartesian
space, which can be used as input of any preferred collision
avoidance algorithm.

Associated to the distance vector from the obstacle O to
the point of interest P obtained from eq. (4), a repulsive
vector is defined as

V C (P ,O) = v (P ,O)
D(P ,O)
‖D(P ,O)‖

, (6)

i.e., having the same direction of D(P ,O) but with magni-
tude

v (P ,O) =
Vmax

1 + e(‖D(P ,O)‖(2/ρ)−1)α
, (7)

where Vmax is the maximum admissible magnitude and α
is a shape factor. The magnitude v of the repulsive vector
will be Vmax if ‖D(P ,O)‖ = 0, and will approach zero
when the distance reaches ρ (beyond, V C is not defined).
An example profile is shown in Fig. 4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

Distance (m)

R
ep

ul
se

 M
ag

ni
tu

de

Fig. 4. Repulsive magnitude from eq. (7), with parameters Vmax = 3 [m/s],
ρ = 0.4 [m], and α = 6

A first possibility for obstacle avoidance would be to use
the repulsive vector associated only to the obstacle point with
the minimum distance

Omin = argminO∈S ‖D(P ,O)‖, (8)

namely

V Cmin(P) = V C(P ,Omin) = max
O∈S

V C(P ,O),

which is also the most common choice in the related liter-
ature. We propose instead to consider in a suitable way all
obstacle points that lie inside the region of surveillance:

V CT
(P) =

∑
O∈S V C (P ,O)

V Call(P) = v (P ,Omin)
V CT

(P)
‖V CT

(P)‖
.

(9)

In this way, all obstacle points contribute to the direction of
the resulting repulsive vector, while the magnitude depends
only on the minimum distance to all obstacle points. If all
points were used to compute the magnitude, this would be
influenced by the number of obstacle points, or if the mean
value of the distances were used, it would still be affected

340

by the ratio of near and far obstacles. These behaviors
are not desirable, since the presence of a close obstacle
with high risk of collision should provide always the same
repulsive vector magnitude. The main benefit of using all
points are that i) the repulsive vector is less sensible to noise
of the depth sensor, producing a smoother variation of the
vector direction, and ii) the presence of multiple obstacles is
handled in a better way, as shown in Fig. 5.

Fig. 5. Example of repulsive vector computation. Lighter colors refer to
obstacle points with smaller depth, the point of interest P is represented by a
red circle, and the minimum distance is represented in cyan. The repulsive
vector obtained by using the minimum distance only is shown in green,
while the one obtained by using all points in the range of surveillance is in
blue. It can be seen that the green repulsive vector points to another obstacle
(dangerous), while the blue vector points to a free area (safer)

All above repulsive vectors are expressed in the camera
frame, but can be transformed in the reference frame as
V R(P) = RTV C(P). In the following, V R(P) will be
a generic repulsive vector generated by the obstacles on the
point of interest P and expressed in the reference frame.
We shall indicate with an additional subscript a particular
implementation of the repulsive vector (e.g., V Rall(P)).

A. Using an Estimation of the Obstacle Velocity

Knowing in advance the velocity of a moving obstacle
or, more realistically, estimating it on-line in a reliable way
would clearly improve the collision avoidance behavior. For
example, when an obstacle proceeds towards the manipulator
with a greater speed than the motion capability of the manip-
ulator it would be hopeless to avoid collision by retracting
the robot in the same direction of the obstacle velocity. Like
for humans, a better reaction strategy is to escape collision
by moving the manipulator in a direction (approximately)
normal to the obstacle velocity.

Fig. 6. When an obstacle moves in the vicinity of the control point, the
pivot effect is clearly visible

The estimation of the obstacle velocity from depth images
is not trivial, and also computational expensive. Our idea

to tackle this problem is to extrapolate velocity information
by observing the time variation of the repulsive vector, i.e.,
V̇ R(P) = dV R(P)/dt. Figure 6 sketches the behavior of
the repulsive vector when an obstacle moves in the vicinity
of the point of interest (also called control point) in different
ways. This point acts like a ‘pivot’ for the repulsive vector,
and the variation V̇ R(P) approximately describes a vortex
flow around this pivot.

Taking into account this effect, we developed the following
Pivot Algorithm, which modifies the direction of the repul-
sive vector according to its variation:

a =
V̇ R(P)
‖V̇ R(P)‖

, r =
V R(P)
‖V R(P)‖

, β = arccos
(
aTr

)
if β < π

2 then

n = a× r, v =
n× a

‖n× a‖
,

γ = β +
β − π

2

1 + e−(‖V̇ R(P)‖(2/V̇Rmax)−1)c
,

V Rpivot(P) = ‖V R(P)‖ (cos γ a + sin γ v)

else

V Rpivot(P) = V R(P)

end if

In this algorithm, β represents the angle between V R(P)
and V̇ R(P). If β is larger than π/2, the obstacle is moving
away from the control point, such that no modification of
the repulsive vector is needed. Vector n is normal to the
plane Π to which both V R(P) and V̇ R(P) belong, while
vector v is normal to n and V̇ R(P). The orthonormal base
specified by the unitary vectors (a,n,v) is used to modify
the orientation of V R(P) on the plane Π. The new angle γ of
the repulsive vector on the plane Π is defined as a function
(shaped by the positive scalar c) of the magnitude of the
variation of the repulsive vector ‖V̇ R(P)‖, and it is equal
to β if the variation of the repulsive vector is zero while it
converges to π/2 if the variation of the repulsive vector tends
to the maximum allowed variation of the repulsive vector
V̇Rmax

. When β is very close to zero (i.e., a and r are
almost orthogonal), a small perturbation to the orientation
of V̇ R(P) is needed in order to apply the algorithm in a
robust fashion. Figure 7 shows two simple simulations of a
point-wise obstacle moving close to the control point. In the
first case the repulsive vector is used directly, while in the
second our pivot algorithm is applied with success.

B. Using Multiple Control Points

The repulsive vector for obstacle avoidance introduced so
far is computed for and acts on a specific point of interest.
When this point of interest is associated with the robot
manipulator, it is usually referred to as control point. We
typically consider multiple control points distributed along
the manipulator structure. From the current known config-
uration q of the robot, it is possible in principle to obtain

341

Fig. 7. Two simulations of collision avoidance using obstacle velocity
information: The obstacle (trace in blue, moving to the right) has a speed
of 1 [m/s], while the control point (in red) can move with a maximum
speed of 0.8 [m/s]. The repulsive vector is either used directly as a repulsive
velocity (top) or is processed by the pivot algorithm (bottom): In the first
case, collision cannot be avoided

the projection in the depth space of every point belonging to
the manipulator body by using the robot kinematic model to
express the point in the reference frame, and then applying
eqs. (2) and (3) to obtain its projection in the depth space.
Obviously, this is quite cumbersome since not all manipulator
points are needed or useful for collision avoidance. In a more
efficient algorithm the manipulator body is overbounded by
a sequence of spheres, each characterized by its center and
radius. The centers of the spheres will be used as control
points, and their radius will be subtracted in the distance
evaluation of eq. (4) in order to consider the sphere size.

Fig. 8. The control points on the manipulator are the red centers of the
blue spheres containing the robot body. The image on the screen below left
visualizes the depth map sensed by the sensor in which the manipulator
projection has been removed

Furthermore, the image captured by the depth sensor will
contain also points that belong to the manipulator. Indeed,
these points should not be considered as obstacles (otherwise,
the minimum obstacle-robot distance would always be zero).
To avoid this condition, the image of the manipulator is
removed from the depth space as in the screen image shown
in Fig. 8.

V. MOTION CONTROL

In this section, we discuss how repulsive vectors obtained
for the control points chosen on the manipulator can be used
in a simple way to modify the robot motion within an on-
line trajectory generation architecture. The primary task for a
robot is typically to control its end-effector motion. For this
reason, we used a different approach for the end-effector and
for other manipulator points.

A. Collision Avoidance for the End-Effector
Without loss of generality, we consider to command the

manipulator at the joint velocity level. The given motion task
for the robot is specified by a desired end-effector velocity ẋd
in the Cartesian space. For the obstacle avoidance by the end-
effector control point PEE , we simply consider the repulsive
vector as a repulsive velocity. Thus, the commanded end-
effector velocity will be

ẋc = ẋd + V R(PEE). (10)

The joint velocity is obtained by (pseudo)inversion as

q̇ = J#(q) ẋc, (11)

which is used as target velocity command for the control
algorithm.

This is indeed a simple form of the classical artificial
potential field method, which has been chosen to prove the
effectiveness of repulsive vectors. The main drawback of
this approach is the presence of local minima, which are
not considered. Note that from a safety point of view it is
acceptable that the robot stops when it is not able to avoid the
obstacles. Starting from this simple algorithm, more complex
ones can be developed (see, e.g., [14]).

B. On-Line Trajectory Generation
The repulsive action has to be very reactive in order to

avoid fast obstacles. The result of this requirement is a jerky
end-effector motion, which can both exceed the robot capa-
bilities and give to the human a feeling of an unsafe motion.
To overcome this behavior, we have used an intermediate
layer with an on-line trajectory generation algorithm [21],
[22] as interface between the proposed repulsive method and
the low-level motion controller. Thanks to this intermediate
layer, a number of advantages are achieved:
• Jerk-limited and continuous motions are guaranteed

independently of image processing signals.
• Acceleration and velocity constraints due to limited

dynamic robot capabilities can be directly considered.
• Physical and/or artificial workspace limits can be ex-

plicitly applied.
• In case of sensor failures or inappropriate image pro-

cessing results, deterministic and safe reactions and
continuous robot motions are guaranteed.

• The image processing hard- and software does not
necessarily have to be real-time capable.

• High performance due to low latencies, because motion
trajectories are computed within one low-level control
cycle (typically, 1 msec or less).

• The proposed architecture is of a very simple nature and
can be integrated in many existing robot motion control
systems.

Figure 9 shows the input and output parameters of the
corresponding algorithm. Because the underlying concept of
this framework is based on motion states only, all input
parameters may change arbitrarily based on image processing
signals, and a steady jerk-limited, executable motion trajec-
tory is always generated as output.

342

Fig. 9. The interface of the on-line trajectory generation algorithm. Based
on the current state of motion and the kinematic motion constraints, a new
state of motion is calculated which lies exactly on the time-optimal trajectory
reaching the desired target state of motion (see [22] for details)

C. Collision Avoidance for the Robot Body

For the other control points along the robot, we use a
slightly different approach. Obstacles points do not generate
repulsive velocities on these control points, but they are
rather treated as Cartesian constraints with artificial forces
that are translated into joint velocity constraints as detailed
in [23]. Our approach, based on generating and eventually
imposing joint velocity constraints while exploiting kine-
matic redundancy, will preserve the desired end-effector task
as long as possible. If we had considered instead repulsive
velocities, as for the end-effector, we would have needed to
work with multiple tasks and manage these tasks using the
magnitudes of the repulsive vectors as associated priorities.
While this approach is indeed feasible, if the end-effector
task has always the highest priority then collision avoidance
for the robot links would not be guaranteed. On the other
hand, if the end-effector task is not privileged then its
trajectory could be arbitrarily modified even when there is
no risk of end-effector collisions.

Let C be one of the control points belonging to a generic
robot link and JC be its associated (partial) Jacobian. The
minimum distance between the control point and all obstacle
points O ∈ S(C) is Dmin(C) = ‖D(C,Omin)‖. The risk
of collision is defined by the function

f (Dmin(C)) =
1

1 + e(Dmin(C)(2/ρ)−1)α
, (12)

where ρ and α have been introduced in eqs. (5) and (7),
respectively. When projected in the joint space, this collision

risk function generates a vector

s = JTC
D(C,Omin)
‖D(C,Omin)‖

f (Dmin(C)) . (13)

The component si of s represents the ‘degree of influence’
of the Cartesian constraint on the ith joint, for i = 1 . . . n.
From these, we reshape the admissible limits of the velocity
of all joints that are influenced by the Cartesian constraint
by the risk of collision function as

if si ≥ 0, q̇max,i = Vmax,i

(
(1− f (Dmin(C))

)
else q̇min,i = −Vmax,i

(
(1− f (Dmin(C))

)
,

(14)

where Vmax,i is the original bound on the ith joint velocity,
i.e., |q̇i| ≤ Vmax,i, for i = 1, . . . , n. In practice, joint motions
that are in contrast with the Cartesian constraint are scaled
down. When the constraint is too close, all joint motions
that are not compatible with the constraint will be denied.
Multiple Cartesian constraints are taken into account by
considering, for each joint i, the minimum scaling factor
obtained for all the constraints. With this approach, collision
avoidance for the robot body has always the highest priority,
while the end-effector task will continue to be correctly
executed until it is compatible with the Cartesian constraints.
Otherwise, the manipulator will stop and a recovery method
should be applied.

VI. EXPERIMENTS

A. Experimental Setup

The scenario is composed by a manipulator that exe-
cutes positional only (i.e., of dimension m = 3) motion
tasks through a sequence of desired Cartesian points, while
unknown obstacles enter its workspace (see Fig. 1). Ex-
periments have been performed on the KUKA LWR IV
manipulator having n = 7 revolute joints, with a control
cycle of 1 ms. For the primary Cartesian task, this robot has
degree of redundancy n −m = 4. The robot workspace is
monitored by a Microsoft KinectTM depth sensor, positioned
at a horizontal distance of 2 meters and at a height of 1.2 me-
ters w.r.t. the robot base frame. The Kinect captures 640×480
depth images at a frequency of 30 Hz. The implementation
of our new collision avoidance approach is executed on
an eight-core CPU. Four processors execute the repulsive
velocity computation, and the other four enable visualization
and robot motion control.

Note that three different run-time processes coexist, work-
ing at three different frequencies:

1) The vision process captures the depth image and
removes the manipulator from the image each time a
new image is captured at the sensor frequency (30 Hz).

2) The on-line trajectory generation algorithm of [21],
[22] produces a joint velocity command at the same
cycle time of the robot controller (1 kHz).

3) The obstacle avoidance process computes a repulsive
vector at a frequency lying between those of the vision
and the control processes; in fact, even if a new depth
image is available only at 30 Hz, the manipulator is

343

moving during this interval and the repulsive vector
changes.

B. Results

The following experimental results are shown in the ac-
companying video clip.

In Experiment 1, the goal is to keep the robot in the
constant (initial) configuration while avoiding any collision
between a human and the end-effector only. The parameters
used for the end-effector repulsive action are ρ = 0.4 [m],
Vmax = 2 [m/s], and α = 6. For the pivot algorithm, we used
V̇Rmax = 0.5 [m/s] and c = 5. Two different modalities are
tested; in the former, repulsive velocities are generates using
only distance information, while in the latter also obstacle
velocities are taken into account. Figure 10 shows a human
who tries to touch the end-effector. The benefits of using
obstacle velocity estimation is visible in the corresponding
plots of Fig. 11.

Fig. 10. Experiment 1: Image flows when repulsive velocity due only
to distances is used (top) and when also obstacle velocities are considered
(bottom)

Fig. 11. Experiment 1: End-effector trajectories. The red line refers to
when repulsive velocity is due only to distances and the blue line when
also obstacle velocity is considered. The green lines are the commanded
Cartesian velocities

Figures 12–13 show similarly the results for Experiment
2, in which the manipulator task is to move the end-effector
through three Cartesian points without and with dynamic
obstacles. We used here ρ = 0.3 [m] and Vmax = 0.5 [m/s].
In this case, the human does not try to collide intentionally
with the robot, so that a less reactive action is obtained.

Experiment 3 considers collision avoidance also for other
control points on the manipulator, see Fig. 14. The arm and
forearm of the robot are both covered with five control points
as shown in Fig. 7, while the base link is not considered

Fig. 12. Experiment 2: Image flows for a motion through three points in the
absence of dynamic obstacles (top) and simultaneous collision avoidance of
a human entering the workspace (bottom)

Fig. 13. Experiment 2: End-effector trajectories. The blue line refers to
the absence of dynamic obstacles and the red line to the case of collision
avoidance of a human entering the workspace. The green lines are the
commanded Cartesian velocities

because it always occupies the same Cartesian area. The task
and parameters are the same as in Experiment 2. The image
sequence and the relative plot show how the elbow avoids
the collision with the box.

Fig. 14. Experiment 3: Image flow (on the left) and end-effector (in blue)
and elbow (in red) trajectories (on the right) when all moving parts of the
robot are considered for collision avoidance. The dashed lines in the plot
represents the motion in the absence of obstacles

Fig. 15. Experiment 4: Same as for Experiment 3 but with multiple
obstacles

Finally, Experiment 4 illustrates the robot behavior when
multiple obstacles that occlude the end-effector and el-
bow trajectories are avoided simultaneously. In particular,
Figure 15 shows a situation where the end-effector turns
around the human arm. An exemplary evaluation of the
execution frequency of the repulsive velocity computations

344

is reported in Fig. 16. The average value is 689.41 Hz,
which is much faster than other robot to obstacles distance
evaluation methods, leading to no significant loss of robot
motion performance.

0 50 100 150
0

100

200

300

400

500

600

700

800

900

1000

Time [s]

Fr
eq

ue
nc

y
[H

z]

Fig. 16. Experiment 4: Instantaneous (blue) and average (red) computa-
tional frequency of the repulsive velocities

VII. CONCLUSIONS

We have presented a new collision avoidance method for
robot manipulators equipped with an exteroceptive depth
sensor. The core of the algorithm is an innovative approach
to evaluate the distances between the robot and the dynamic
obstacles in its workspace, which is based only on simple and
efficient computations on depth space data. These distances
are used to generate repulsive vectors which are processed so
as to obtain smooth and feasible joint velocity commands that
avoid obstacles. Further improvements in terms of natural
robot behavior were obtained by using also an estimation of
the obstacle velocity. A different repulsive action has been
designed for the end-effector and for the other control points
on the manipulator in order to be able to avoid collisions
while executing at best the original Cartesian motion task.
A series of experiments on the KUKA LWR IV robot using
the Kinect sensor confirmed the real-time effectiveness and
good performance of the method.

Future work will address an even closer integration of
human-robot coexistence and cooperation by monitoring the
physical interaction by means of exteroceptive and propri-
oceptive sensors and by applying safer and reactive control
methods. For instance, we would like to allow intentional
contacts between human and robot while dangerous and
undesired collisions should still be avoided. These and re-
lated problems are being addressed within the European FP7
project SAPHARI (2011-15).

ACKNOWLEDGEMENTS

This work was performed while the first author was
visiting the Artificial Intelligence Laboratory of the Stanford
University, whose hosting is gratefully acknowledged. Work
supported by the European Community, within the FP7 ICT-
287513 SAPHARI project.

REFERENCES

[1] A. Bicchi, M. Peshkin, and J. Colgate, “Safety for physical human-
robot interaction,” in Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2008, pp. 1335–1348.

[2] A. Bicchi and G. Tonietti, “[Fast and Soft Arm Tactics: Dealing
with the Safety-Performance Trade-Off in Robot Arms Design and
Control,” IEEE Robotics and Automation Mag., vol. 11, pp. 22–33,
2004.

[3] S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger, “Col-
lision detection and reaction: A contribution to safe physical human-
robot interaction,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Nice, F, September 2008, pp. 3356–3363.

[4] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[5] C. W. Warren, “Global path planning using artificial potential fields,”
in Proc. of the IEEE International Conference on Robotics and
Automation, vol. 1, Scottsdale, AZ, USA, May 1989, pp. 316–321.

[6] P. Ögren, M. Egerstedt, and X. Hu, “Reactive mobile manipulation
using dynamic trajectory tracking,” in Proc. of the IEEE International
Conference on Robotics and Automation, San Francisco, CA, USA,
Apr. 2000, pp. 3473–3478.

[7] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments.” Int. J. of Robotics Research,
vol. 21, no. 12, pp. 1031–1052, 2002.

[8] S. Lindemann and S. LaValle, “Current issues in sampling-based
motion planning,” in Proc. of the Eighth Int. Symp. on Robotics
Research, P. Dario and R. Chatila, Eds. Berlin, Germany: Springer,
2004, pp. 36–54.

[9] O. Brock, J. Kuffner, and J. Xiao, “Manipulation for robot tasks,” in
Springer Handbook of Robotics, 1st ed., B. Siciliano and O. Khatib,
Eds. Berlin, Heidelberg, Germany: Springer, 2008, ch. 26, pp. 615–
645.

[10] J. Vannoy and J. Xiao, “Real-time adaptive motion planning (RAMP)
of mobile manipulators in dynamic environments with unforeseen
changes,” IEEE Trans. on Robotics, vol. 24, no. 5, pp. 1199–1212,
Oct. 2008.

[11] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation in dynamic environ-
ments,” in Proc. of Robotics: Science and Systems, Philadelphia, PA,
USA, Aug. 2006.

[12] ——, “Elastic roadmaps — motion generation for autonomous mobile
manipulation,” Autonomous Robots, vol. 28, no. 1, pp. 113–130, Jan.
2010.

[13] L. Balan and G. Bone, “Real-time 3D collision avoidance method
for safe human and robot coexistence,” in Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, Beijing, PRC, October 2006, pp.
276–282.

[14] S. Haddadin, S. Belder, and A. Albu-Schaeffer, “Dynamic motion
planning for robots in partially unknown environments,” in IFAC World
Congress (IFAC2011), Milan, Italy, September 2011.

[15] S. Haddadin, H. Urbanek, S. Parusel, D. Burschka, J. Roßmann,
A. Albu-Schäffer, and G. Hirzinger, “Real-time reactive motion gen-
eration based on variable attractor dynamics and shaped velocities,” in
Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, Taipei, Taiwan, Oct. 2010, pp. 3109–3116.

[16] S. Kuhn and D. Henrich, “Fast vision-based minimum distance deter-
mination between known and unknown objects,” in Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, San Diego, CA, USA,
November 2007, pp. 2186–2191.

[17] Microsoft Corporation, 1 Microsoft Way, Redmond, WA 98052-7329,
USA, “Microsoft kinect homepage. http://xbox.com/Kinect (accessed:
Mar. 28, 2011),” Internet, 2011.

[18] L. Bascetta, G. Magnani, P. Rocco, R. Migliorini, and M. Pelagatti,
“Anti-collision systems for robotic applications based on laser Time-
of-Flight sensors,” in IEEE/ASME Int. Conf. on Advanced Intelligent
Mechatronics, July 2010, pp. 278–284.

[19] R. Schiavi, F. Flacco, and A. Bicchi, “Integration of active and passive
compliance control for safe human-robot coexistence,” in Proc. IEEE
Int. Conf. on Robotics and Automation, 2009, pp. 259–264.

[20] KUKA Laboratories GmbH, Zugspitzstraße 140, D-86165 Augsburg,
Germany, “Homepage. http://www.kuka-labs.com/en (accessed: Aug.
22, 2011),” Internet, 2011.

[21] T. Kröger and F. M. Wahl, “On-line trajectory generation: Basic
concepts for instantaneous reactions to unforeseen events,” IEEE
Trans. on Robotics, vol. 26, no. 1, pp. 94–111, Feb. 2010.

[22] T. Kröger, “Opening the door to new sensor-based robot
applications — The Reflexxes Motion Libraries,” in Proc. of the IEEE
International Conference on Robotics and Automation, Shanghai,
China, May 2011.

[23] F. Flacco, A. De Luca, and O. Khatib, “Motion control of redundant
robots under constraints: Saturation in the null space,” in Proc. IEEE
Int. Conf. on Robotics and Automation, 2012.

345

