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Abstract— We revisit the classical problem of estimating the
dynamic parameters of an unknown payload rigidly held by
the robot end effector. The approach relies on the analysis
of the symbolic expressions of the robot dynamic coefficients
(i.e., combinations of dynamic parameters) when working with
and without payload, with no special assumptions on payload
structure. The linearity of the associated changes in the dynamic
coefficients due to the payload addition is exploited so as to
estimate the gravity and inertial parameters of the payload. The
procedure is illustrated in simulation on a planar 2R robot with
asymmetric payload and through experiments on a 7R KUKA
LWR arm with medium payloads. Accurate estimates of non-
inertial payload parameters can be obtained even by running
the identification scheme on few small motions in a restricted
area. The results are shown to be useful for improving the
sensorless collision detection capabilities of a robot arm in the
presence of an a priori unknown payload.

I. INTRODUCTION

Complete and accurate dynamic models of robot manip-
ulators are needed in the design of advanced control laws,
both for free motion and in environment interaction [1]. In
addition, recent methods for safe handling of human-robot
interaction rely on a good knowledge of the individual terms
in the robot dynamic model, e.g., for designing a sensorless
strategy to detect and react to collisions [2], or for regulating
force or imposing a desired impedance at the contact [3], [4].

For control purposes, it is often sufficient to identify the
so-called dynamic coefficients, also known as base param-
eters, in the robot equations of motions [5], [6]. These
coefficients are combinations of the dynamic parameters
of the (serial) chain of bodies constituting the robot —
10 parameters for each link (the scalar mass, the three
components of the position vector of the center of mass,
and the six elements of the symmetric inertia tensor), plus
additional parameters local to each joint, when including
in the model also friction effects, motor inertias, current-
to-torque ratios, transmission elasticity, and so on. The
dynamic coefficients always appear linearly in the second-
order differential equations of the robot. They represent the
dynamic quantities that can be excited during motion and
thus properly identified —see [5], [7] for state-of-the-art
identification methods and [8], [9] for variants in case of
the KUKA LWR robot equipped with joint torque sensors.

On the other hand, there is no guarantee of identifiability
of all dynamic parameters for a multi-body robot. Nonethe-
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less, numerical values of the dynamic parameters of the robot
links are needed in some applications, for example when
performing dynamic simulations with standard CAD-based
systems like V-REP [10], or when the use of an efficient
recursive Newton-Euler (N-E) algorithm [11] is mandatory
for implementing complex model-based control laws (e.g.,
feedback linearization) under hard real-time constraints. In
such cases, wishing to avoid an additional customization, all
dynamic parameters (and not just the dynamic coefficients)
will be required as input data. To address this issue, we
proposed in [12] a handy method for extracting from the
previously identified robot dynamic coefficients a complete
set of feasible dynamic parameters, which are consistent with
(i.e., return back) the numerical values of the coefficients and
satisfy also physical, user-defined upper and lower bounds.

In this paper we consider the problem of estimating the
10 extra dynamic parameters of an unknown payload rigidly
held by the end effector of a robot, without resorting to extra
sensory systems (e.g., a F/T sensor as in [13]). This is a
classical topic for which model-based strategies [14], [15] or
machine learning techniques using neural networks [16], [17]
have been proposed. Model-based methods consider two sets
of experiments made first without and then with the payload.
Here, we revisit and clarify an identification scheme that can
use either the previously estimated dynamic coefficients of
the robot without payload or the values of feasible dynamic
parameters extracted from them. The structural changes due
to the presence of a payload occurring in the symbolic
form of the dynamic coefficients of the loaded robot are
exploited in order to set up the regressor equations for
payload identification. In this framework, we address in
particular the following questions:

Q1. What is the rule of change of the original dynamic
coefficients when a payload is added?

Q2. Do we obtain again a linearly parametrized problem?
And does this property rely on some specific choice
of reference frames, e.g., the conventional [1] or the
modified [15] Denavit-Hartenberg (DH) assignments, or
any convention can be used?

Q3. Can we estimate the entire set of 10 dynamic parameters
of the payload from the values of the robot dynamic
coefficients identified with and without the payload?

Q4. Can we use the estimated parameters of the payload in
combination with any set of feasible dynamic parame-
ters for the unloaded robot (for instance, in a NE-based
control routine), obtaining consistently good results?

We will provide constructive answers to these questions.
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After reviewing the basics of modeling and identification
procedures (Sec. II), Section III provides a closed-form
expression of the changes in the robot dynamic coefficients
when a payload is added, and sets up the payload identifica-
tion procedure. Two illustrative case studies are considered:
estimation of an asymmetric payload for a planar 2R robot,
with validation results obtained in simulation (Sec. IV), and
experimental estimation of all dynamic parameters of both a
heavy and a very light payload carried by a KUKA LWR 4+
robot (Sec. V). Finally, in Sec. VI further experimental
results are presented when running the identification scheme
on few small motions in a restricted area, and when using
the obtained payload estimate to improve the robot collision
detection capabilities.

II. PRELIMINARIES

For each link `i, i = 1, . . . , n, of a n-dof robot, let mi be
the mass and

iri,ci =

 cix
ciy
ciz

T, iI`i =

 Iixx Iixy Iixz
Iixy Iiyy Iiyz
Iixz Iiyz Iizz

, (1)

be respectively the position of the center of mass (CoM)
with respect to the i-th link frame and the symmetric inertia
tensor relative to the CoM of link i (both constant).

With q ∈ Rn as generalized coordinates, the total potential
energy U = U(q) of the robot is

U =
n∑
i=1

U`i = −
n∑
i=1

miγ
Tr0,ci, (2)

where γ(g0) is the gravity vector in the absolute reference
frame and g0 = 9.81 the gravity acceleration. By using
homogeneous transformation matrices, the absolute position
r0,ci of the center of mass of link i is obtained from iri,ci
and will depend linearly on it.

The total kinetic energy T = T (q, q̇) uses König theorem
for each link,

T =
n∑
i=1

T`i =
1
2

n∑
i=1

(
mi

ivTci
ivci + iωTi

iI`i
iωi
)
, (3)

in which ivci is the linear velocity of the CoM of link i and
iωi is the angular velocity of the link i, both expressed in
the local frame. The velocity ivci can be related to the linear
velocity ivi of the origin of a known, generic kinematic
frame i as

ivci = ivi + S
(
iωi
)
iri,ci = ivi + ST

(
iri,ci

)
iωi, (4)

where S(·) is the skew-symmetric operator representing the
vector (×) product. Moreover, the inertia tensor iI`i is
expressed with respect to the same local frame i as

iJ `i =

 Jixx Jixy Jixz
Jixy Jiyy Jiyz
Jixz Jiyz Jizz

= iI`i+mi S
T
(
iri,ci

)
S
(
iri,ci

)
.

(5)

Therefore, we can rewrite eq. (3) as

T =
1
2

n∑
i=1

(
mi‖ivi‖2+iωTi

iJ `i
iωi+2mi

irTi,ci
(
ivi × iωi

))
.

(6)
From the Euler-Lagrange equations, we obtain the robot

dynamic model as

M(q)q̈ + S(q, q̇)q̇ + g(q) = τ , (7)

where the inertia matrix and the gravity vector follow from
symbolic differentiation of the kinetic energy T and potential
energy U as

M(q) = ∇2
q̇T (q, q̇) ∈ Rn×n, g(q) = ∇qU(q) ∈ Rn, (8)

the Coriolis and centrifugal term S(q, q̇)q̇ ∈ Rn is obtained
by analytic differentiation of the elements of M(q) [1], and
τ ∈ Rn is the vector of motor torques.

At this stage, if we use the form (6) for the kinetic energy
and collect the dynamic parameters of all the robot links in
the three vectors p1 ∈ Rn, p2 ∈ R3n, and p3 ∈ R6n, with

p1 =
(
m1 . . . mn

)T
,

p2 =
(
c1xm1 c1ym1 c1zm1 . . . cnxmn cnymn cnzmn

)T
,

p3 =
(
J T1 . . . J Tn

)T
,

(9)
where

Ji =
(
Jixx Jixy Jixz Jiyy Jiyz Jizz

)T
, (10)

then it is possible to rearrange (7) as

Y (q, q̇, q̈)π(p1,p2,p3) = τ . (11)

The vector π ∈ Rp of dynamic coefficients appears linearly
in the dynamic model (11), multiplied by the n×p regressor
matrix Y of known time-varying functions. Moreover, it can
be easily shown that only linear combinations of the dynamic
parameters in (9) will appear in the dynamic coefficients π.

When the regressor Y has full rank, the dynamic coeffi-
cients π are identified by collecting M � np motor torque
samples (as obtained from the commanded motor currents) as
well as M link position samples from a sufficiently exciting
motion, while velocity and acceleration are computed by
off-line differentiation. For each retrieved numerical sample
(τ k, qk, q̇k, q̈k), we have

Y k(qk, q̇k, q̈k)π = τ k, k = 1, . . . ,M. (12)

By stacking these quantities in vectors and matrices, one has

Y π = τ , (13)

with τ ∈ RMn and Y ∈ RMn×p. Following [8], we can
prune the stacked regressor Y so as to obtain a matrix with
full column rank, and then estimate the dynamic coefficients
by solving a least-squares problem via pseudoinversion

π̂ = Y
#
τ . (14)

3034



With the solution π̂ from (14), we provide an associated
motor torque estimate as

τ̂ = Y (q, q̇, q̈)π̂ (15)

which can be used for validation on any new robot motion
q(t). Finally, following [12], one can extract from the
identified vector π̂ a feasible set of dynamic parameters
p̂ = (p̂1, p̂2, p̂3) —not necessarily the true ones—, such
that π(p̂1, p̂2, p̂3) = π̂ and upper/lower bounds on the
components of pi, i = 1, 2, 3, are also satisfied.

III. MODIFIED DYNAMIC COEFFICIENTS
DUE TO A PAYLOAD

We assume that accurate values of the robot dynamic
coefficients have been identified in the absence of a payload.
An unknown rigid payload is then added on the robot end
effector, having mass mL, position of its CoM with respect
to the last frame n given by nrn,cL =

(
cLx cLy cLz

)T
,

and a 3 × 3 inertia tensor JL relative to the last frame n.
Under these assumptions, the dynamic parameters of the last
robot link n will change as

mn → mn +mL,

cnx →
cnxmn + cLxmL

mn +mL

cny →
cnymn + cLymL

mn +mL

cnz →
cnzmn + cLzmL

mn +mL
,

(16)

Jn → Jn + JL =Jnxx + JLxx Jnxy + JLxy Jnxz + JLxz
Jnxy + JLxy Jnyy + JLyy Jnyz + JLyz
Jnxz + JLxz Jnyz + JLyz Jnzz + JLzz

 .
(17)

Note that weighted averages appear in (16). Moreover,
addition of the two inertia tensors of the last link and
payload in (17) is feasible, being both expressed in the same
kinematic frame. If the inertia tensor IL of the payload were
expressed instead in a frame placed in the payload CoM that
is not oriented as frame n, we define the rotation matrix nRL

and then use Steiner theorem to obtain

JL = nRL IL
nRT

L +mL S
T (nrn,cL)S (nrn,cL) . (18)

In the parametrization (9), the coordinates of the CoM
of a link always appear multiplied by the mass of the link
they refer to. Most notably, when modifying the dynamic
parameters of the last link as in (16), we will obtain

cnxmn → cnxmn+cLxmL
mn+mL

(mn +mL) = cnxmn + cLxmL

cnymn → cnymn+cLymL
mn+mL

(mn +mL) = cnymn + cLymL

cnzmn → cnzmn+cLzmL
mn+mL

(mn +mL) = cnymn + cLymL,
(19)

preserving the linearity of the parameter transformation.

A. Estimating the dynamic parameters of the payload

Let the vector pL of dynamic parameters of the payload
be defined as

pL =
(
mL cLxmL cLymL cLzmL JL

)T ∈ R10.
(20)

We consider two different vectors of dynamic coefficients,
labeled π = π(p1,p2,p3) and πL = πL(p1,p2,p3,pL),
respectively in the absence and presence of the payload. The
symbolic difference vector

ε(pL) = πL(p1,p2,p3,pL)− π(p1,p2,p3) (21)

contains indeed combinations of the dynamic parameters of
the payload. Equations (16–17), (19), and (21) answer to the
introductory question Q1. Note that some components of ε
will vanish, namely those that are not affected by the addition
of the payload. We shall discard these zero components and
label the remaining vector as εnz .

Assume that a reliable estimate π̂ of π has been obtained
in advance (without the payload). When the unknown pay-
load is present, thanks to (21), we can write for the dynamics
of the loaded robot

Y L(q, q̇, q̈)π(p1,p2,p3) +Y L(q, q̇, q̈)ε(pL) = τL, (22)

where Y L is the same regressor matrix of the unloaded
case, evaluated under the action of the torque τL and
in the presence of the payload. Equation (22) reveals a
superposition property when adding a payload, given the
linearity in the dynamic coefficients. Thus, the estimated
dynamic behavior of the loaded robot will be the same
no matter if the estimated dynamic coefficients π̂ or some
feasible set of estimated values p̂ for the parameters are used.

The identification procedure for the payload parameters
pL works similarly to the unloaded case, but takes advantage
of the previously estimated dynamic coefficients π̂. The
robot will execute a set of sufficiently exciting trajecto-
ries [18], which may be the same or differ from those of
the unloaded case. We collect motor torques τL and motion
data, process them and organize a linear set of equations as

Y LπL = τL, (23)

where Y L is the stacked regressor evaluated during the set
of experiments. The estimated coefficients of the loaded case
are again computed as

π̂L = Y L
#
τL, (24)

and, using (14), we obtain the numerical difference vector ε̂
as

ε̂ = π̂L − π̂. (25)

We note that in some cases, the robot control software (e.g.,
the KUKA FRI interface) provides the user with numerical
values of the joint torques associated to a static configuration
or to the dynamic trajectory under execution, computed
without consideration of the presence or not of a payload.
Let τ be the stacked vector of these torques with the robot
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carrying the unknown payload. We can compute then the
estimate as

ε̂ = Y
#

L ∆τ , with ∆τ = τL − τ , (26)

where τL is the stacked torque measured during the loaded
experiment. Hence, in this case there is no need to estimate
the vectors π̂ and π̂L, nor of using data from experiments
without the payload. A one-shot solution is obtained.

Independently from the use of eq. (25) or (26), by defining
the payload Jacobian Jε as the matrix of symbolic partial
derivatives of ε(pL) with respect to vector pL, we have

Jε =
∂ε(pL)
∂pL

⇒ JεpL = ε. (27)

Equation (27) gives a positive answer to question Q2. More-
over, in view of the analysis in Sec. II, this result holds
whatever kinematic frame convention is adopted. Therefore,
the payload parameters are estimated as

p̂L = J#
ε ε̂. (28)

Note also that it is convenient to reduce the Jacobian
evaluation only to the non-zero components εnz(pL) of ε.
Having obtained the estimate m̂L in p̂L, it is immediate to
isolate ĉLx, ĉLy , and ĉLz from the estimated ĉLxmL, ĉLymL,
and ĉLzmL. The inertial elements of the payload are instead
estimated directly. Thus, the answer to question Q3 is again
yes, provided that the regressors and the payload Jacobian
will have full rank.

IV. PAYLOAD ESTIMATION IN A 2R PLANAR ROBOT

We illustrate the procedure first on a 2R planar robot
moving under gravity with γ =

(
0 −g0

)T
, with or without

an asymmetric payload, see Fig. 1. Because of the planar
nature of the problem, only four parameters for each link
and for the payload will influence the robot dynamics —
in total 12 dynamic parameters: the three masses m1, m2,
and mL, the three positions of the CoMs in the plane,
respectively, r1,c1 =

(
c1x c1y

)T
, r2,c2 =

(
c2x c2y

)T
, and

r2,cL =
(
cLx cLy

)T
, and the scalar elements J1zz , J2zz ,

and JLzz of the inertia tensors.
Deriving the dynamic model (7) and rearranging it as

in (11), we obtain the vector of dynamic coefficients π ∈ R6

π =



1
2

`
m2a2

2 + J2zz

´
+ a2c2xm2

c2xm2 + a2m2

c2ym2

1
2

`
J1zz + a2

1m1 + a2
1m2

´
+ a1c1xm1

c1xm1 + a1m1 + a1m2

c1ym1

, (29)

where a1 and a2 are known kinematic parameters. We have
chosen the following kinematic and nominal dynamic values:
a1 = 1, a2 = 0.5 [m]; m1 = 3, m2 = 2 [kg]; c1x = −0.6,
c1y = 0.01, c2x = −0.2, c2y = 0.02 [m]; J1zz = 1.3303,
J2zz = 0.1225 [kg·m2].

  

y
0

x
0

y
1

y
2

x
1

x
2

q
1

q
2

a1

a 2

g

payload

Fig. 1. A 2R planar robot carrying an asymmetrical payload, with the
chosen conventional Denavit-Hartenberg frames.

When a payload is added, the new vector of dynamic
coefficients πL ∈ R6 becomes

πL=



1
2

`
a2
2 (m2+mL)+J2zz +JLzz

´
+ a2 (c2xm2+cLxmL)

c2xm2 + cLxmL + a2 (m2 +mL)

c2ym2 + cLymL

1
2

`
J1zz + a2

1m1 + a2
1 (m2 +mL)

´
+ a1c1xm1

c1xm1 + a1m1 + a1 (m2 +mL)

c1ym1

.
(30)

The values of the payload parameters considered as ground
truth are: mL = 1.5 [kg]; cLx = 0.3, cLy = 0.1 [m]; and
JLzz = 0.1813 [kg·m2].

The symbolic expression of ε(pL) in (21) is

ε(pL)=

(
εnz(pL)

0

)
=



1
2

`
a2
2mL + JLzz

´
+ a2cLxmL

cLxmL + a2mL

cLymL

1
2
a2
1mL

a1mL

0

.
(31)

The Jacobian in (27) is evaluated in its reduced form as

Jε,nz =
∂εnz(pL)
∂pL

=



1
2a

2
2 a2 0 1

2

a2 1 0 0
0 0 1 0

1
2a

2
1 0 0 0

a1 0 0 0

 , (32)

being

pL =
(
mL cLxmL cLymL JLzz

)T
. (33)

Two sets of joint torques have been generated in a slightly
noisy simulation, with the robot tracking two sinusoidal
reference trajectories of different amplitude and frequency
for each joint. The values were collected as stacks τ (without
payload) and τL (with payload). Using eqs. (14) and (24),
the estimates π̂ and π̂L, and from these the numerical vector
ε̂nz , are obtained as

π̂ =


0.1112

0.6

0.04

1.3651

3.2

0.03

, π̂L =


0.6144

1.8

0.19

2.1152

4.7

0.03

 ⇒ ε̂nz =


0.5032

1.2

0.15

0.75

1.5

.
(34)
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Fig. 2. Comparison of torques in a validation test on the 2R robot using
the true [blue] and the estimated [green] dynamic parameters. The plots
fully superpose in practice: the mean square error is 3.187 [Nm]2 for τ1
and 0.387 [Nm]2 for τ2.

Using (28) and the payload Jacobian in (32) yields the
following estimate for pL in (33):

p̂L =
(

1.5 0.45 0.15 0.1814
)T
. (35)

Being m̂L = 1.5, from the second and third components
we obtain ĉLx = 0.3 and ĉLy = 0.1. Thus, the obtained
estimates match perfectly the ground truth.

As a final validation, following the procedure in [12], we
searched for a feasible set of dynamic parameters extracted
from π̂ in (34), namely for the robot without payload, and
belonging to the interval defined by lower and upper bounds
on the 8 relevant dynamic parameters of the two links (in
the order m1, m2, J1zz , J2zz , c1x, c1y , c2x, c2y)

LB=
(

0 0 0 0 −1 −0.02 −0.5 −0.02
)T

UB=
(

5 3 2 1 0 0.02 0 0.02
)T
,

(36)

with the additional global constraint 3 ≤ m1 +m2 ≤ 6. The
optimization problem defined in [12] returns the solution:

p̂ =
(
1.5064 2.4598 0.2965 0.2374

−0.5086 0.0199 −0.2561 0.0163
)T
.
(37)

Next, the payload was added and the parameters m̂2, ĉ2x,
ĉ2y , and Ĵ2zz of link 2 in (37) were modified according
to (16–17) and (19), with the payload estimates in (35).
To address in practice question Q4, a N-E routine was fed
with all these data in order to compute the inverse dynamics
torque needed to execute sinusoidal motions for both joints
(with amplitude 2π rad and frequency 0.05 Hz for joint 1,
and π rad and 0.3 Hz for joint 2). Figure 2 compares the
torques obtained using the true and the estimated dynamic
parameters. As expected, the two plots are overlapping.

V. PAYLOAD ESTIMATION IN A KUKA LWR 4+ ROBOT

We applied the proposed identification procedure to a
KUKA LWR 4+ robot. In the experiments, we have used
the embedded joint torque sensors to measure the (elastic)
joint torques τ J in place of the motor torques τ . In this case,
the left-hand sides of (7) and (11) represent the dynamics of

dee

i ai αi di θi

1 0 π/2 0 q1
2 0 −π/2 0 q2
3 0 −π/2 d1 = 0.40 q3
4 0 π/2 0 q4
5 0 π/2 d2 = 0.39 q5
6 0 −π/2 0 q6
7 0 0 0 q7

Fig. 3. Denavit-Hartenberg frames and parameters of the KUKA LWR 4+.
All x-axes point toward the viewer (frames displaced sideways for clarity).

the robot links (beyond the elasticity at the joints). Figure 3
shows this 7R robot arm in the q = 0 position, together with
the link frames and the table of kinematic parameters chosen
according to the classical DH convention.

In [8], we have identified the dynamic coefficients of the
gravity vector and of the inertia matrix that are used by the
KRC (Kuka Robot Controller) in FRI mode to return online
the numerical values of these model terms [19], [20]. In
particular, we reported the symbolic form of the 12 dynamic
coefficients πg appearing in the gravity vector (see eq. (28)
in [8]). When incorporating a payload on the end effector,
these coefficients will be modified according to (16) as

πL,g =



c7ym7 + cLymL

c7xm7 + cLxmL

c6xm6

c6zm6 + c7zm7 + cLzmL

c5zm5 − c6ym6

c5xm5

c5ym5 + c4zm4 + d2(m5 +m6 +m7 +mL)

c4xm4

c4ym4 + c3zm3

c2xm2

c3xm3

c2zm2 − c3ym3

+ d1(m3 +m4 +m5 +m6 +m7 +mL)



, (38)

where mL is the mass and 7r7,cL =
(
cLx cLy cLz

)T
is

the payload CoM position, expressed in the robot frame 7.
The composite payload that we used is shown in Fig. 4.

Since the structure of the payload is always symmetric, we
set cLx = cLy = 0, while we computed the value of cLz
from (simplified) geometry. The results reported here refer
to the nominal values:

mL = 3.028 kg, 7r7,cL =

 0
0

0.1190

 m. (39)

Using (38), it is possible to estimate first and separately
the non-inertial dynamic parameters pL,g of the payload, i.e.,
those excited by gravity:

pL,g =
(
mL cLxmL cLymL cLzmL

)T ∈ R4. (40)
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For this, 500 random joint configurations were chosen,
the robot was moved to each configuration in sequence
and then kept still, and the measured joint torques τ J
were retrieved in static conditions using the FRI function
GetMeasuredJointTorques. Since q̇ = q̈ = 0, we have
from (7) and (11)

g(q) = Y g(q)πg, Y g(q)πg + ν = τ J , (41)

where ν represents noise due to some unmodeled effects.
Following the identification procedure, we collected stacks of
joint torque measurements and of joint positions, respectively
without and with payload. We discarded then the data from
joint 1, since this joint is not affected by gravity. The
obtained numerical estimates are:

π̂g =



1.6136× 10−5

−0.0013

−0.0046

0.0315

−0.0417

0.0054

1.3544

0.0183

−0.0036

0.0271

−0.0129

3.4459


, π̂L,g =



0.0016

−0.0021

−0.0093

0.3983

−0.0409

0.0033

2.5458

0.005

−0.0032

0.0629

−0.0028

4.6775


. (42)

Considering the difference vectors εg(pL,g) and ε̂g as in
eqs. (21) and (25), we have for their symbolic non-zero
components (i.e., for components 1, 2, 4, 7 and 12) and
their associated estimates1

εg,nz(pL,g) =


cLymL

cLxmL

cLzmL

d2mL

d1mL

 ⇒ ε̂g,nz =


0.0016

−8.13× 10−4

0.3667

1.1914

1.2316

.
(43)

Using the reduced payload Jacobian Jεg,nz , we obtain the
estimates

m̂L = 3.067 kg, 7r̂7,cL =

 −2.6 · 10−4

5 · 10−4

0.1196

 m. (44)

These estimates are reasonably accurate. The remaining
errors are attributed to noise in the joint torque measures, to
neglecting static friction effects, as well as to simplifications
made in establishing the ground-truth values in (39).

In order to estimate also the inertial parameters of the
considered payload, one should handle a complete regressor,
as in (11), which is rather cumbersome for a 7-dof robot
as the KUKA LWR, needing high computational power to
be evaluated symbolically. Therefore, to reduce the size of
the regressor for inertial payload estimation, we designed

1As indicated in general by eq. (26), it is also possible for this
robot to compute a numerical estimation ε̂g using the FRI function
GetCurrentGravityVector, which returns the manufacturer’s estimation
of the gravity vector of the unloaded robot ĝ(q). Hence, we may avoid
obtaining the two estimations of the coefficients π̂g and π̂L,g , and use
instead the joint torque measures retrieved statically with the loaded robot.

� �

������������������

������������������

����

������������������

������������������

����

������������������

������������������

�����

������������������

������������������

�����

������������������

������������������

�	

��

���������������������

���������������

������

������������������

������������������

��
���
  

z
7

x
L

x
7

y
7

y
L

d
ee

= 7.8 cm

KUKA LWR 6th link

tip

KUKA LWR 7th link

z
L

flange

d
f
= 1 cm

Fig. 4. The payload structure with variable weight used in the experiments.

simplified, but still sufficiently exciting trajectories to retrieve
joint positions, velocities, accelerations and torque data to be
used for identification. In particular, we designed a motion
only for the first joint, keeping the other joints fixed in
three different ways, but with the arm (links 2 to 7) always
essentially straight and parallel to the ground:
• qA(t) =

(
q1(t) π

2 0 0 0 0 0
)T

• qB(t) =
(
q1(t) π

2 0 0 0 −π2 0
)T

• qC(t) =
(
q1(t) π

2 0 0 −π2 0 0
)T

.
With these configurations, motion of the first joint maximizes
the dynamic effects of the inertial components of the payload,
which is attached at the end of the arm. On the other hand,
only a maximum of 19 dynamic coefficients are involved
along these trajectories. For joint 1, q1(t) is a sinusoidal
signal with increasing frequency, sweeping from low veloci-
ties and accelerations up to ±100 deg/s and ±150 deg/s2,
respectively. Each trajectory lasts for 15 seconds and is
performed with and without the payload. Joint positions
and torques are read every 5 ms and then off-line filtered
using a low-pass Butterworth filter with a cutoff frequency
1 Hz. Joint velocities and accelerations are obtained by
numerical differentiation from the filtered positions. Finally,
500 samples are extracted from the previous data sequences.

At this stage, one may compute the symbolic difference
vector ε(pL) and its numerical estimate ε̂, as shown in
eqs. (21) and (25). Again, this operation is performed at
best by considering only the estimates ε̂nz of the non-zero
symbolic elements εnz(pL). The payload Jacobian Jε,nz can
then be easily obtained from εnz(pL). However, in order to
exploit all the information collected so far, we have stacked
the two Jacobian matrices Jεg,nz and Jε,nz and the two
numerical vector estimates ε̂g,nz (see eq. (43)) and ε̂nz ,
producing a new complete estimate as

p̂L =
(
Jεg

Jετ

)#(
ε̂g
ε̂τ

)
. (45)

We obtained the following numerical results:

m̂L = 3.041 kg, 7r̂7,cL =

 −7.5 · 10−4

−3.8 · 10−3

0.1212

 m,

ĴLxx = 0.157831, ĴLyy = 0.044259, ĴLzz = 0.003716,

ĴLxy = 0.000795, ĴLxz = −0.007835 ĴLyz = −0.019714
kg ·m2.

(46)
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TABLE I
NOMINAL AND ESTIMATED PARAMETERS FOR A LIGHT PAYLOAD

mL [kg] r7,cLx [m] r7,cLy [m] r7,cLz [m]

Nominal value 0.144 0 0 0.1146
Estimated value 0.143 0.003 0.002 0.1124

These estimates have been successfully validated on different
motion trajectories. Finally, we repeated the experiment
using a very light payload. As reported in Tab. I, also in
this case the mass and the position of the center of mass
were estimated with high precision.

VI. MORE EXAMPLES AND USE OF PAYLOAD ESTIMATION

We consider two application examples involving the
KUKA LWR 4+ arm, focusing for simplicity only on the
estimation of non-inertial parameters of the payload, i.e.,
pL,g in eq. (41), or, equivalently, assuming JL = 0 or that
inertia is negligible.

A. Estimating with few data

In some industrial tasks, the robot needs to execute pick-
and-move or pick-and-place operations, handling multiple
objects with unknown/uncertain dynamic characteristics. In-
deed, having a good and quick estimation of the dynamic
parameters of the payload would allow a more accurate
execution of the task, without wasting too much time. Ideally,
for a reliable estimation of the payload a large number of data
samples should be retrieved from different regions of the
robot workspace. However, such a procedure is unpractical,
both because of the amount of time needed and because
of the restricted motions allowed in a typically cluttered
workspace. With this in mind, we have evaluated the payload
identification phase of our method when performing just a
few small movements in the neighborhood of the Cartesian
pick position. Only 10 samples are taken from static posi-
tioning of the robot with increments of ±7◦ per joint around
the pick configuration. When the robot moves to the next
position in the list, it waits 1 sec before retrieving more
reliable position and joint torque measurements. At the end,
the payload mass and its CoM position are estimated as in
Sec. V and the dynamic model is immediately updated2.
We implemented a complete algorithm in C++ for such a
pick-estimate-and-move operation, which can be seen in the
accompanying video. For the nominal payload of about 3 kg
in (39), we obtained the following estimates:

m̂L = 3.059 kg, 7r̂7,cL =

 −2.8 · 10−3

1.1 · 10−2

0.1283

 m. (47)

Despite the estimation errors have slightly increased, the
results are still satisfactory. This can be appreciated also
from the torque comparison on a validation trajectory shown
in Fig. 5: torque estimation errors remain always below
1.5÷ 3 Nm as a maximum.

2Using a commercial PC with an i7 Intel processor and 16 GB of RAM
memory, all computations take less than 1 second.
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Fig. 5. Comparison of measured torques τJ [dashed-green] and computed
torques τ̂J [solid-blue] in a validation test on the KUKA LWR robot
carrying the medium-weight payload (39). The computed torques use the
estimated values in (47).

B. Sensorless collision detection

In recent years, much attention has been devoted to
collision detection strategies able to ensure safer human-
robot interaction. One of the most successful strategies [2],
which was also implemented by KUKA in their lightweight
robot series (LWR and iiwa), is based on monitoring a so-
called residual vector r(t) ∈ Rn, which is computed online
on the basis of a previously identified dynamic model of
the robot. The residual remains nominally at zero during
free robot motion. When one or more components of r(t)
exceed some predefined threshold, a collision is detected and
the robot can react, e.g., by stopping. The residual returns
exponentially to zero as soon as there is no contact anymore,
so that the robot can restart its motion task. Indeed, all these
nice properties are corrupted by the addition of an unknown
payload, which changes the robot dynamic model and thus
drives away from zero also an untuned residual. This would
generate false positives, i.e., a contact is detected when there
is none, or false negatives, disregarding a contact because of
the large threshold used to overcome model uncertainties.

To overcome these critical issues, the proposed payload
estimation method can be integrated directly in the evaluation
of an estimated residual r̂(t) as

r̂ = KI

„
M̂(q)q̇ −

Z t

0

“
τJ + Ŝ

T
(q, q̇)q̇ − ĝL(q) + r̂

”
ds

«
,

(48)
where KI > 0 is a diagonal gain matrix, τ J is measured,
the estimates of M and S are obtained without payload,
while only ĝL uses the p̂L,g estimated as in Sec. VI-A. The
accompanying video shows two experiments with multiple
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Fig. 6. Monitoring three human-robot collisions (at t = 1, 8, and 17
sec) during robot motion: signals from KUKA FRI [blue] and residuals
computed with our eq. (48), using the estimated mass and position of the
payload [green]. All three collisions are detected by our residual, when at
least one components exceeds a threshold of 6 Nm. Conversely, collisions
are hardly detectable by the KUKA FRI since its signals often exceed this
threshold during free motion.

human-robot contacts detected by using (48) with a threshold
of 6 Nm. At every detected collision, the robot stops for
2 sec and then resumes motion. Figure 6 illustrates the
improvement when using a tuned residual instead of the
embedded external torque detector of the KUKA FRI.

VII. CONCLUSIONS

We have revisited the problem of estimating the dynamic
parameters of an unknown payload held by the robot end
effector, using a method that relies on the identification of
the robot dynamic coefficients without and with the payload,
We have exploited the linear changes that occur in the
symbolic expressions of the original dynamic coefficients
when a payload is added. The method was presented here
as a two-stage identification procedure, but estimation of
payload parameters can be implemented also in a single
stage, combining data collected both from loaded and un-
loaded experiments. With respect to the state-of-the-art [15],
we have clarified once for all that the approach does not
require the use of any particular kinematic frame convention.
Moreover, it can be tailored to the estimation of only
a subset of payload dynamic parameters, and is accurate
enough to handle also very light payloads or few small
motions in the data collection for identification. It can also be
simplified when the robot control software already provides
a routine that computes the expected joint torques without
payload on the current (loaded) motion, so that there is
no need to perform experiments without the payload. The
results obtained in various case studies provide evidence

of a reliable and consistent performance. The estimated
payload parameters can be used in a recursive Newton-Euler
implementation of model-based control algorithms, together
with a set of physically feasible dynamic parameters that are
extracted from the previously identified dynamic coefficients
of the unloaded robot. Finally, as an important application
in physical human-robot interaction, we have shown the
dramatic improvement that payload estimation can have on
the model-based collision detection and isolation method
of [2], which is the most efficient one available at present.
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