Robots with kinematic redundancy
Part 1: Fundamentals
Prof. Alessandro De Luca
Redundant robots

- direct kinematics of the task \(r = f(q) \)

\[
f : Q \rightarrow R
\]

joint space (dim \(Q = N \)) task space (dim \(R = M \))

- a robot is (kinematically) redundant for the task if \(N > M \) (more degrees of freedom than strictly needed for executing the task)

- \(r \) may contain the position and/or the orientation of the end-effector or, more in general, be any parameterization of the task (even not in the Cartesian workspace)

- “redundancy” of a robot is thus a relative concept, i.e., it holds with respect to a given task
Some E-E tasks and their dimensions

TASKS [for the robot end-effector (E-E)]:
- position in the plane: 2
- position in 3D space: 3
- orientation in the plane: 1
- pointing in 3D space: 2
- position and orientation in 3D space: 6

A planar robot with \(N = 3 \) joints is redundant for the task of positioning its E-E in the plane \((M = 2) \), but NOT for the task of positioning AND orienting the E-E in the plane \((M = 3) \).
Typical cases of redundant robots

- 6R robot mounted on a linear track/rail
 - 7 dofs for positioning and orienting its end-effector in 3D space
- 6-dof robot used for arc welding tasks
 - task does not prescribe the final roll angle of the welding gun
- dexterous robotic hands
- multiple cooperating manipulators
- manipulator on a mobile base
- humanoid robots, team of mobile robots ...
- “kinematic“ redundancy is not the only type...
 - redundancy of components (actuators, sensors)
 - redundancy in the control/supervision architecture
Uses of robot redundancy

- avoid collision with obstacles (in Cartesian space) ...
- ... or kinematic singularities (in joint space)
- stay within the admissible joint ranges
- increase manipulability in specified directions
- uniformly distribute/limit joint velocities and/or accelerations
- minimize energy consumption or needed motion torques
- optimize execution time
- increase dependability with respect to faults
- ...

all objectives should be quantitatively “measurable”
DLR robots: LWR-III and Justin

7R LWR-III lightweight manipulator:
- elastic joints (HD), joint torque sensing,
- 13.5 kg weight = payload

Justin two-arm upper-body humanoid:
- 43R actuated =
 - two arms (2×7) + torso (3^*)
 - + head (2) + two hands (2×12),
 - 45 kg weight

* = one joint is dependent on the motion of the other two
motion planning for DLR Justin robot in the configuration space, avoiding Cartesian obstacles and using robot redundancy
Dual-arm redundancy

DIS, Uni Napoli

two 6R Comau robots, one mounted on a linear track (+1P) coordinated 6D motion using the null-space of the right-side robot \((N - M = 1)\)
Motion cueing from redundancy

Max Planck Institute for Biological Cybernetics, Tübingen

a 6R KUKA KR500 mounted on a linear track (+1P) with a sliding cabin (+1R), used as a dynamic emulation platform for human perception ($N - M = 2$)
Self-motion

8R Dexter: self-motion with constant 6D pose of E-E ($N - M = 2$)

6R robot with spherical shoulder in compliant tasks for the Cartesian E-E position ($N - M = 3$)

Nakamura’s Lab, Uni Tokyo
Obstacle avoidance

6R planar arm moving on a given geometric path for the E-E \((N - M = 4)\)

Robotics 2
Disadvantages of redundancy

- potential benefits should be traded off against
 - a greater structural complexity of construction
 - mechanical (more links, transmissions, ...)
 - more actuators, sensors, ...
 - costs
 - more complicated algorithms for inverse kinematics and motion control
Inverse kinematics problem

- find \(q(t) \) that realizes the task: \(f(q(t)) = r(t) \) (at all times \(t \))

- infinite solutions exist when the robot is redundant (even for \(r(t) = r = \text{constant} \))

- the robot arm may have “internal displacements” that are unobservable at the task level (e.g., not contributing to E-E motion)
 - these joint displacements can be chosen so as to improve/optimize in some way the behavior of the robotic system

- self-motion: an arm reconfiguration in the joint space that does not change/affect the value of the task variables \(r \)

- solutions are mainly sought at differential level (e.g., velocity)
Redundancy resolution via optimization of an objective function

Local methods

given $\dot{r}(t)$ and $q(t)$, $t = kT_s$

- optimization of $H(q, \dot{q})$
- $q((k+1)T_s) = q(kT_s) + T_s \dot{q}(kT_s)$

Global methods

given $r(t)$, $t \in [t_0, t_0 + T]$, $q(t_0)$

- optimization of $\int_{t_0}^{t_0+T} H(q, \dot{q}) dt$

- $q(t), t \in [t_0, t_0 + T]$

relatively EASY (a LQ problem) ↔ quite DIFFICULT (nonlinear TPBV problems arise)

ON-LINE ↔ OFF-LINE

discrete-time form
Local resolution methods

three classes of methods for solving $\dot{r} = J(q)\dot{q}$

1. **Jacobian-based methods** (here, analytic Jacobian in general!)
 among the infinite solutions, one is chosen, e.g., that minimizes a suitable (possibly weighted) norm

2. **null-space methods**
 a term is added to the previous solution so as not to affect execution of the task trajectory, i.e., belonging to the null-space $\mathcal{N}(J(q))$

3. **task augmentation methods**
 redundancy is reduced/eliminated by adding $S \leq N - M$ further auxiliary tasks (when $S = N - M$, the problem has been “squared”)

\[r = f(q) \quad \Rightarrow \quad \dot{r} = J(q)\dot{q} \]
we look for a solution to \(\dot{r} = J(q)\dot{q} \) in the form

\[
\begin{align*}
J &= \begin{bmatrix} J_1 & \cdots & J_N \end{bmatrix} \\
\dot{q} &= K(q) \dot{r} \\
K &= \begin{bmatrix} K_1 & \cdots & K_N \end{bmatrix}
\end{align*}
\]

minimum requirement for \(K \):

\[
J(q)K(q)J(q) = J(q)
\]

(\(K = \) generalized inverse of \(J \))

\[
\forall \dot{r} \in \mathcal{R}(J(q)) \Rightarrow J(q)[K(q)\dot{r}] = J(q)K(q)J(q)\dot{q} = J(q)\dot{q} = \dot{r}
\]

example:

if \(J = [J_a \ J_b] \), \(\det(J_a) \neq 0 \), one such generalized inverse of \(J \) is

\[
K_r = \begin{pmatrix} J_a^{-1} \\ 0 \end{pmatrix}
\]

(actually, this is a stronger right-inverse)
Pseudoinverse

\[\dot{q} = J^\#(q) \dot{r} \]

... a very common choice: \(K = J^\# \)

- \(J^\# \) always exists, and is the unique matrix satisfying

 \[
 JJ^\#J = J \\
 J^\#JJ^\# = J^\#
 \]

 \[
 (JJ^\#)^T = JJ^\# \\
 (J^\#J)^T = J^\#J
 \]

- if \(J \) is full (row) rank, \(J^\# = J^T (JJ^T)^{-1} \); else, it is computed numerically using the SVD (Singular Value Decomposition) of \(J \) (\texttt{pinv} of Matlab)

- the pseudo-inverse joint velocity is the only that minimizes the norm \(\| \dot{q} \|^2 = \dot{q}^T \dot{q} \) among all joint velocities that minimize the task error norm \(\| \dot{r} - J(q) \dot{q} \|^2 \)

- if the task is feasible (\(\dot{r} \in \mathcal{R}(J(q)) \)), there will be no task error
Weighted pseudoinverse

\[
\dot{q} = J_W^{\#}(q)\dot{r}
\]

if \(J\) is full (row) rank,

\[
J_W^{\#} = W^{-1}J^T(JW^{-1}J^T)^{-1}
\]

the solution \(\dot{q}\) minimizes the weighted norm

\[
\|\dot{q}\|_W^2 = \dot{q}^T W \dot{q}
\]

\(W > 0\), symmetric (often diagonal)

large weight \(W_i \Rightarrow\) small \(\dot{q}_i\) (e.g., weights can be chosen proportionally to the inverse of the joint ranges)

it is NOT a “pseudoinverse” (4th relation does not hold ...) but shares similar properties
Singular Value Decomposition (SVD)

- the SVD routine of Matlab applied to J provides two orthonormal matrices $U_{M\times M}$ and $V_{N\times N}$, and a matrix $\Sigma_{M\times N}$ of the form

$$\Sigma = \begin{pmatrix}
\sigma_1 \\
\sigma_2 \\
\vdots \\
\sigma_M
\end{pmatrix}
\begin{pmatrix}
\sigma_1 & \sigma_2 & \cdots & \sigma_M \\
0_{M\times(N-M)}
\end{pmatrix}
$$

where $\rho = \text{rank}(J) \leq M$, so that their product is

$$J = U\Sigma V^T$$

- the columns of U are eigenvectors of JJ^T (associated to its non-negative eigenvalues σ_i^2), the columns of V are eigenvectors of J^TJ

- the last $N - \rho$ columns of V are a basis for the null space of J

$$Jv_i = \sigma_i u_i \quad (i = 1, \cdots, \rho)$$

$$Jv_i = 0 \quad (i = \rho + 1, \cdots, N)$$
Computation of pseudoinverses

- show that the pseudoinverse of J is equal to
 \[
 J = U \Sigma V^T \quad \Rightarrow \quad J^\# = V \Sigma^# U^T \quad \Sigma^# = \begin{pmatrix}
 \frac{1}{\sigma_1} \\
 \vdots \\
 \frac{1}{\sigma_\rho} \\
 0_{(M-\rho) \times (M-\rho)} \\
 0_{(N-M) \times M}
\end{pmatrix}
 \]
 for any rank ρ of J

- show that matrix $J_W^\#$ appears when solving the constrained linear-quadratic (LQ) optimization problem (with $W > 0$, symmetric, and assuming J of full rank)
 \[
 \min_{q} \frac{1}{2} \| \dot{q} \|_W^2 \quad \text{s.t.} \quad J(q) \dot{q} - \dot{r} = 0
 \]
 and that the pseudoinverse is a particular case for $W = I$

- show that a weighted pseudoinverse of J can be computed by SVD/pinv as
 \[
 J_{aux} = J W^{-1/2} \quad \quad J_W^\# = W^{-1/2} \text{pinv}(J_{aux})
 \]
Singularity robustness
Damped Least Squares (DLS)

unconstrained minimization of a suitable objective function

\[
\min_{\dot{q}} H(\dot{q}) = \frac{\mu^2}{2} \|\dot{q}\|^2 + \frac{1}{2} \|\dot{r} - J\dot{q}\|^2
\]

SOLUTION \[\dot{q} = J_{DLS}(q) \dot{r} = J^T (J J^T + \mu^2 I_M)^{-1} \dot{r}\]

- induces a robust behavior when crossing singularities, but in its basic version gives always a task error \[\dot{e} = \mu^2 (J J^T + \mu^2 I_M)^{-1} \dot{r}\] (as in the N=M case)
 - \(J_{DLS}\) is not a generalized inverse \(K\)
 - using SVD: \(J = U \Sigma V^T \Rightarrow J_{DLS} = V \Sigma_{DLS} U^T, \Sigma_{DLS} = \frac{\text{diag} \{\sigma_i / (\sigma_i^2 + \mu_i^2)\}}{\rho \times \rho} \begin{pmatrix} 0_{(M-\rho)\times(M-\rho)} & \sigma_i \rho \times \rho \\end{pmatrix}\)
 - choice of a variable damping factor \(\mu^2(q) \geq 0\), as a function of the minimum singular \(\sigma_m(q)\) value of \(J \cong \) measure of distance to singularity
 - numerical filtering: introduces damping only/mostly in non-feasible directions for the task (see Maciejewski and Klein, *J of Rob Syst*, 1988)

applies equally to square and non-square matrices

compromise between large joint velocity and task accuracy

Robotics 2
Behavior of DLS solution

- a. comparison of joint velocity norm with PINV (pseudoinverse) or DLS solutions
 - in a direction of a singular vector u, when the associated singular value $\sigma \to 0$
 - PINV goes to infinity (and then is 0 at $\sigma = 0$)
 - DLS peaks a value of $1/2\mu$ at $\sigma = \mu$ (and then smoothly goes to 0...)

- b. graphical interpretation of “damping” effect (here $M = N = 2$, for simplicity)
Numerical example of DLS solution

planar 2R arm, unit links, close to (stretched) singular configuration \(q_1 = 45^\circ, q_2 = 1.5^\circ \)

\[
q_1 = 45^\circ, \quad q_2 = 1.5^\circ
\]

\[
H = \frac{\mu^2}{2} \| \dot{q} \|^2 + \frac{1}{2} \| \dot{r} - J \dot{q} \|^2
\]

<table>
<thead>
<tr>
<th>(\mu^2)</th>
<th>0</th>
<th>(10^{-4})</th>
<th>(10^{-3})</th>
<th>(10^{-2})</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(| \dot{q} |)</td>
<td>(\sqrt{2})</td>
<td>.8954</td>
<td>.4755</td>
<td>.4467</td>
<td>.1490</td>
</tr>
<tr>
<td>(| \dot{e} |)</td>
<td>0</td>
<td>6.6 (\cdot 10^{-3})</td>
<td>1.4 (\cdot 10^{-2})</td>
<td>1.6 (\cdot 10^{-2})</td>
<td>.6668</td>
</tr>
<tr>
<td>(H_{\text{min}})</td>
<td>0</td>
<td>7.7 (\cdot 10^{-5})</td>
<td>2.2 (\cdot 10^{-4})</td>
<td>1.2 (\cdot 10^{-3})</td>
<td>3.4 (\cdot 10^{-1})</td>
</tr>
</tbody>
</table>
Limits of Jacobian-based methods

- no guarantee that singularities are globally avoided during task execution
 - despite joint velocities are kept to a minimum, this is only a local property and “avalanche” phenomena may occur
- typically lead to non-repeateable motion in the joint space
 - cyclic motions in task space do not map to cyclic motions in joint space

\[q(t) = q(0) + \int_0^t K(q(\tau)) \dot{q}(\tau) \, d\tau \]
Drift with Jacobian pseudoinverse

- a 7R KUKA LWR4 robot moves in the vicinity of a human operator.
- we command a cyclic Cartesian path (only in position, \(M = 3 \)), to be repeated several times using the pseudoinverse solution.
- (unexpected) collision of a link occurs during the third cycle ...

Robotics 2 25 video
Null-space methods

general solution of $J\dot{q} = \dot{r}$

\[\dot{q} = J^# \dot{r} + (I - J^#J) \dot{q}_0 \]

a particular solution (here, the pseudoinverse) in $\mathcal{R}(J^T)$

“orthogonal” projection of \dot{q}_0 in $\mathcal{N}(J)$

all solutions of the associated homogeneous equation $J\dot{q} = 0$ (self-motions)

- symmetric
- idempotent: $[I - J^#J]^2 = [I - J^#J]
- $[I - J^#J]^# = [I - J^#J]
- $J^# \dot{r}$ is orthogonal to $[I - J^#J] \dot{q}_0$

properties of projector $[I - J^#J]$

even more in general...

\[\dot{q} = K_1 \dot{r} + (I - K_2J) \dot{q}_0 \]

... but with less nice properties!

K_1, K_2 generalized inverses of J

$(JK_iJ = J)$

how do we choose \dot{q}_0?
Geometric view on Jacobian null space

in the space of velocity commands

A correction is added to the original pseudoinverse (minimum norm) solution

i) which is in the null space of the Jacobian

ii) and possibly satisfies additional criteria or objectives
Linear-Quadratic Optimization

generalities

\[
\min_x H(x) = \frac{1}{2} (x - x_0)^T W (x - x_0)
\]

\[
\text{s.t. } J x = y
\]

\[
W > 0 \text{ (symmetric)}
\]

\[
x \in \mathbb{R}^N
\]

\[
y \in \mathbb{R}^M
\]

\[
\text{rank}(J) = \rho(J) = M
\]

\[
L(x, \lambda) = H(x) + \lambda^T (J x - y)
\]

\[
\nabla_x L = \left(\frac{\partial L}{\partial x} \right)^T = W (x - x_0) + J^T \lambda = 0
\]

\[
\nabla_\lambda L = \left(\frac{\partial L}{\partial \lambda} \right)^T = Jx - y = 0
\]

\[
\nabla^2_x L = W > 0
\]

\[
\lambda = (JW^{-1}J^T)^{-1} (Jx_0 - y)
\]

\[
x = x_0 - W^{-1}J^T \lambda
\]

\[
Jx_0 - JW^{-1}J^T \lambda - y = 0
\]

\[
x = x_0 + W^{-1}J^T (JW^{-1}J^T)^{-1} (y - Jx_0)
\]

\[
M \times M \text{ invertible}
\]
Linear-Quadratic Optimization
application to robot redundancy resolution

PROBLEM

\[
\min_{\dot{q}} \, H(\dot{q}) = \frac{1}{2} (\dot{q} - \dot{q}_0)^T W (\dot{q} - \dot{q}_0)
\]
\[\text{s.t. } J\dot{q} = \dot{r}\]

SOLUTION

\[
\dot{q} = \dot{q}_0 + W^{-1} J^T (JW^{-1} J^T)^{-1} (\dot{r} - J\dot{q}_0)
\]

\[
\dot{q} = J_W^\# \dot{r} + (I - J_W^\# J) \dot{q}_0
\]

\(\dot{q}_0\) is a “privileged” joint velocity

minimum weighted norm solution (for \(\dot{q}_0 = 0\))

“projection” matrix in the null-space \(\mathcal{N}(J)\)
Projected Gradient (PG)

\[\dot{\mathbf{q}} = J^\# \dot{\mathbf{r}} + (I - J^\# J) \dot{\mathbf{q}}_0 \]

- The choice \(\dot{\mathbf{q}}_0 = \nabla_\mathbf{q} H(\mathbf{q}) \) realizes a one step of a constrained optimization algorithm.
- While executing the time-varying task \(r(t) \), the robot tries to increase the value of \(H(q) \).

For a fixed \(\bar{r} \): \(S_q = \{ \mathbf{q} \in \mathbb{R}^N : f(\mathbf{q}) = \bar{r} \} \)

\[\Rightarrow \dot{\mathbf{q}} = (I - J^\# J) \nabla_\mathbf{q} H \]

\((I - J^\# J) \nabla_\mathbf{q} H = 0 \) is a necessary condition of constrained optimality.
Typical objective functions $H(q)$

- **manipulability** (maximize the “distance” from singularities)
 \[
 H_{\text{man}}(q) = \sqrt{\det[J(q)J^T(q)]}
 \]

- **joint range** (minimize the “distance” from the mid points of the joint ranges)
 \[
 \begin{align*}
 & q_i \in [q_{m,i}, q_{M,i}] \\
 & \bar{q}_i = \frac{q_{M,i} + q_{m,i}}{2} \\
 \end{align*}
 \]
 \[
 H_{\text{range}}(q) = \frac{1}{2N} \sum_{i=1}^{N} \left(\frac{q_i - \bar{q}_i}{q_{M,i} - q_{m,i}} \right)^2
 \]
 \[
 \dot{q}_0 = -\nabla_q H(q)
 \]

- **obstacle avoidance** (maximize the minimum distance to Cartesian obstacles)
 also known as “clearance”
 \[
 H_{\text{obs}}(q) = \min_{a \in \text{robot}} \|a(q) - b\|^2
 \]
 potential difficulties due to non-differentiability (this is a max-min problem)
Singularities of planar 3R arm

the robot is redundant for a positioning task in the plane ($M = 2$)

$$H(q) = \sin^2 q_2 + \sin^2 q_3$$

this H is not H_{man} but has the same minima

iso-level curves of $H(q)$

links of equal (unit) length

unconstrained maxima of $H(q)$

independent from q_1!
Minimum distance computation in human-robot interaction

LWR4 robot with a finite number of control points $a(q)$ (8, including the E-E) and a Kinect sensor monitors the workspace giving the 3D position of points b on obstacles that are fixed or moving (like humans). Distances in 3D (and then the clearance) are computed in this case as

$$\min_{a \in \{\text{control points}\}, \ b \in \text{human body}} \|a(q) - b\|^2$$
Comments on null-space methods

- the projection matrix \((I - J^#J)\) has dimension \(N \times N\), but only rank \(N - M\) (if \(J\) is full rank \(M\)), with some waste of information.

- actual (efficient) evaluation of the solution

\[
\dot{q} = J^#\dot{r} + (I - J^#J)\dot{q}_0 = \dot{q}_0 + J^#(\dot{r} - J\dot{q}_0)
\]

but the pseudoinverse is needed anyway, and this is computationally intensive (SVD in the general case).

- in principle, the additional complexity of a redundancy resolution method should depend only on the redundancy degree \(N - M\).

- a constrained optimization method is available, which is known to be more efficient than the projected gradient (PG) — at least when the Jacobian has full rank ...
Decomposition of joint space

- If \(\rho(J(q)) = M \), there exists a decomposition of the set of joints (possibly, after a reordering)

\[
q = \begin{pmatrix} q_a \\ q_b \end{pmatrix}\}
\begin{array}{c} M \\ N - M \end{array}
\]

such that \(J_a(q) = \frac{\partial f}{\partial q_a} \) is nonsingular

- From the implicit function theorem, there exists an inverse function \(g \)

\[
f(q_a, q_b) = r \quad \implies \quad q_a = g(r, q_b)
\]

with \(\frac{\partial g}{\partial q_b} = - \left(\frac{\partial f}{\partial q_a} \right)^{-1} \frac{\partial f}{\partial q_b} = -J_a^{-1}(q)J_b(q) \)

- The \(N - M \) variables \(q_b \) can be selected independently (e.g., they are used for optimizing an objective function \(H(q) \), "reduced" via the use of \(g \) to a function of \(q_b \) only)

- \(q_a = g(r, q_b) \) is then chosen so as to correctly execute the task
Reduced Gradient (RG)

- \(H(q) = H(q_a, q_b) = H(g(r, q_b), q_b) = H'(q_b), \) with \(r \) at current value
- the Reduced Gradient (w.r.t. \(q_b \) only, but still keeping the effects of this choice into account) is
 \[
 \nabla_{q_b} H' = [-(J_a^{-1}J_b)^T \quad I_{N-M}] \nabla q H
 \]
 \((\neq \nabla_{q_b} H \text{ only!!}) \)
- algorithm

\[
\dot{q}_b = \nabla_{q_b} H' \\
J_a \dot{q}_a + J_b \dot{q}_b = \dot{r} \\
\dot{q}_a = J_a^{-1}(\dot{r} - J_b \dot{q}_b)
\]

\(\nabla_{q_b} H' = 0 \)

is a “compact” (i.e., \(N - M \) dimensional)
necessary condition of constrained optimality

Robotics 2
Comparison between PG and RG

- **Projected Gradient (PG)**
 \[
 \dot{q} = J^# \dot{r} + (I - J^# J) \nabla_q H
 \]

- **Reduced Gradient (RG)**
 \[
 \dot{q} = \begin{pmatrix} \dot{q}_a \\ \dot{q}_b \end{pmatrix} = \begin{pmatrix} J_a^{-1} \\ 0 \end{pmatrix} \dot{r} + \begin{pmatrix} -J_a^{-1} J_b \\ I \end{pmatrix} \left(- (J_a^{-1} J_b)^T I \right) \nabla_q H
 \]

- RG is **analytically** simpler and **numerically** faster than PG, but requires the search for a non-singular minor \(J_a \) of the robot Jacobian.

- if \(r = \text{cost} \) & \(N - M = 1 \) ⇒ same (unique) direction for \(\dot{q} \), but RG has automatically a larger optimization step size.

- else ⇒ RG and PG methods provide always different evolutions.
Analytic comparison

PPR robot

\[J = \begin{pmatrix} 1 & 0 & -l s_3 \\ 0 & 1 & l c_3 \end{pmatrix} = (J_a \mid J_b) \]

\[q_a = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} \quad q_b = q_3 \]

RG:

\[\dot{q} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \dot{r} + \begin{pmatrix} l s_3 \\ -l c_3 \end{pmatrix} \begin{pmatrix} l s_3 \\ -l c_3 \end{pmatrix} \nabla_q H \]

PG:

\[\dot{q} = J^\# \dot{r} + (I - J^\# J) \nabla_q H \]

\[J^\# = \frac{1}{1 + l^2} \begin{pmatrix} 1 + l^2 c_3^2 & l^2 s_3 c_3 \\ l^2 s_3 c_3 & 1 + l^2 s_3^2 \end{pmatrix} \]

\[I - J^\# J = \frac{1}{1 + l^2} \begin{pmatrix} l^2 s_3^2 & l^2 s_3 c_3 & l s_3 \\ l^2 s_3 c_3 & l^2 c_3^2 & -l c_3 \\ l s_3 & -l c_3 & 1 \end{pmatrix} \]

always < 1!!
Joint range limits

\[q = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \theta = T\theta \]

\[\theta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix} q = T^{-1}q \]

\[-90^\circ \leq \theta_i \leq 90^\circ \]

\[-90^\circ \leq q_i - q_{i-1} \leq 90^\circ \]

absolutely ↔ **relative coordinates**

task: E-E linear path from S to G

initial configuration

numerical comparison among pseudoinverse (PS), projected gradient (PG), and reduced gradient (RG) methods

Robotics 2

39
Numerical results
minimizing distance from mid joint range

Joint 1

Joint 2

Joint 3

Joint 4

Steps of numerical simulation

Upper limit
Numerical results
self-motion for escaping singularities

\[
\max H(q) = \sum_{i=1}^{3} \sin^2(q_{i+1} - q_i)
\]

this function is NOT the manipulability index, but has the same minima (\(= 0\))

RG is faster than PG (keeping the same accuracy on \(r\))
3 Task augmentation methods

- an auxiliary task is added (task augmentation)

\[f_y(q) = y \quad S \leq N - M \]

corresponding to some desirable feature for the solution

\[r_A = (r_y) = (f(q)) = (f_y(q)) \quad \dot{r}_A = (J(q))\dot{q} = J_A(q)\dot{q} \]

- a solution is chosen still in the form of a generalized inverse

\[\dot{q} = K_A(q)\dot{r}_A \]

or by adding a term in the null space of the augmented Jacobian matrix \(J_A \)
Augmenting the task ...

- **advantage**: better shaping of the inverse kinematic solution

- **disadvantage**: algorithmic singularities are introduced when

\[\rho(J) = M \quad \rho(J_y) = S \quad \text{but} \quad \rho(J_A) < M + S \]

To avoid this, it should be always \(\mathcal{R}(J^T) \cap \mathcal{R}(J_y^T) = \emptyset \)

difficult to be obtained globally!

- rows of \(J \) AND rows of \(J_y \)
 are all together linearly independent
Augmented task
example

\[r(t) \]

\[N = 4, M = 2 \]

\[f_y(q) = q_4 = \pi/2 \quad (S = 1) \]

last link is to be held vertical...
Extended Jacobian \((S = N - M)\)

- square \(J_A\): in the absence of algorithmic singularities, we can choose

\[\dot{q} = J_A^{-1}(q)\dot{r}_A \]

- the scheme is then repeatable
 - provided no singularities are encountered during a complete task cycle*

- when the \(N - M\) conditions \(f_y(q) = 0\) correspond to necessary (and sufficient) conditions for constrained optimality of a given objective function \(H(q)\) (see RG method, slide #36), this scheme guarantees that constrained optimality is locally preserved during task execution

- in the vicinity of algorithmic singularities, the execution of both the original task as well as the auxiliary task(s) are affected by errors (when using DLS inversion)

* there exists an unexpected phenomenon in some 3R manipulators having “generic” kinematics: the robot may sometimes perform a pose change after a full cycle, even if no singularity has been encountered during motion (see J. Burdick, *Mech. Mach. Theory*, 30(1), 1995)
Extended Jacobian example

MACRO-MICRO manipulator

\[N = 4, M = 2 \]

\[\dot{r} = J(q_1, \ldots, q_4) \dot{q} \]

\[\dot{y} = J_y(q_1, q_2) \dot{q} \]

\[J_A = \begin{pmatrix} * & * \\ * & 0 \end{pmatrix} \quad 4 \times 4 \]
Task Priority

we first address the task with highest priority

\[\dot{q} = J_1^# \dot{r}_1 + (I - J_1^#J_1)v_1 \]

and then choose \(v_1 \) so as to satisfy, if possible, also the secondary (lower priority) task

\[\dot{r}_2 = J_2 \dot{q} = J_2 J_1^# \dot{r}_1 + J_2 (I - J_1^#J_1)v_1 = J_2 J_1^# \dot{r}_1 + J_2 P_1 v_1 \]

the general solution for \(v_1 \) takes the usual form

\[v_1 = (J_2 P_1)^#(\dot{r}_2 - J_2 J_1^# \dot{r}_1) + (I - (J_2 P_1)^#(J_2 P_1)) \dot{r}_2 \]

\(v_2 \) is available for the execution of further tasks of lower (ordered) priorities

if the original (primary) task \(\dot{r}_1 = J_1(q)\dot{q} \) has higher priority than the auxiliary (secondary) task \(\dot{r}_2 = J_2(q)\dot{q} \)
Task Priority (continue)

- substituting the expression of \(v_1 \) in \(\dot{q} \)

\[
\dot{q} = J_1^\# \dot{r}_1 + P_1 (J_2 P_1)^\# (\dot{r}_2 - J_2 J_1^\# \dot{r}_1) + P_1 \left(I - (J_2 P_1)^\# (J_2 P_1) \right) v_2
\]

\[
P(BP)^\# = (BP)^\#
\]
when matrix \(P \) is idempotent and symmetric

- main advantage: highest priority task is ideally no longer affected by algorithmic singularities (error is restricted only to secondary task)

WITH

task priority

task 1: follow

task 2: vertical third link

WITHOUT

task priority

possibly = 0