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Exercise #1

Consider the RRPR robot in Fig. 1, where all relevant kinematic and dynamic parameters are also
shown. The robot moves in a vertical plane. Compute the inertia matrix M(q) and the gravity
vector g(q) in the Lagrangian dynamic model of this robot. Provide a linear factorization of each
term, M(q)q̈ = Y M (q, q̈)aM and g(q) = Y g(q)ag, introducing dynamic coefficients am ∈ Rpm

and ag ∈ Rpg . Find also all open-loop equilibrium configurations qe, i.e., such that g(qe) = 0.
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Figure 1: A 4-dof RRPR robot: DH coordinates, kinematic and dynamic parameters.

Exercise #2

Consider the situation depicted in Fig. 2. The two Cartesian robots A and B are commanded by
motors and transmissions that generate linear forces τA ∈ R2 and τB ∈ R2 along the axes of their
prismatic joints. Each control force component is bounded as

|τA,i| ≤ τA,max, i = 1, 2, |τB,i| ≤ τB,max, i = 1, 2.

The two robots hold firmly a payload mass mp and cooperate in moving the mass in minimum
time along a horizontal linear path p = p(s), from point Pin to point Pfin in a rest-to-rest mode.

In addition, it is desired that the sum H = ‖τA‖2 + ‖τB‖2 is always minimized instantaneously.
Motion occurs in the vertical plane, and we assume that motors are powerful enough to sustain the
weight of the respective robot and of the payload. Provide a dynamic model of this cooperating
task and determine the optimal time profiles of the four commands τA and τB .
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Figure 2: Two Cartesian robots that move a mass mp under gravity along a linear horizontal path.
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Exercise #3

The planar 3R robot shown in Fig. 3 is commanded by joint torques τ ∈ R3 that use feed-
back from the current state (q, q̇). The robot is initially at rest in the configuration qin =
(−π/9, 11π/18, −π/4) and should then perform a self-motion so as to guarantee that the third
joint asymptotically reaches the final value q3,fin = −π/2, while keeping the position of its end-
effector always at the same initial point Pin. Design a torque control scheme that completes this
task in a robust way, i.e., by rejecting transient position and/or velocity errors and without en-
countering any singular situation for the control law. Hint: Use an approach based on joint space
decomposition.
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Figure 3: A 3R robot that should perform a self-motion task with constant end-effector position.

Exercise #4

Figure 4 shows a simple 1-dof model of the interaction between a robot of mass mr > 0, commanded
by a force F , and a rigid environment, with a force sensor of stiffness ks > 0 measuring the contact
force Fc. The two coefficients br > 0 and bs > 0 represent, respectively, the viscous friction affecting
robot motion and the viscous damping of the force sensor. The reference position xr = 0 is when
the robot mass is in contact with Fc = 0. Provide the dynamic model of this system assuming
linearity of all effects. Based only on the measured force, design a control law for F that is able to
regulate asymptotically the contact force Fc to a desired constant value Fd > 0, despite uncertainty
in all model parameters. Provide the associated steady-state values of F = F̄ and xr = x̄r.
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Figure 4: A 1-dof model of interaction between a robot and a rigid environment.

[240 minutes (4 hours); open books]
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Solution
February 4, 2021

Exercise #1

The dynamic modeling steps and the requested linear factorizations of terms are quite standard pro-
cedures. They are sketched hereafter for the given RRPR planar robot without further comments.
We assume that the kinematic parameter a1 ([m]) and the gravity acceleration g0 = 9.81 [m/s2]
are accurately known. We finally evaluate the open-loop equilibria of the robot under gravity.

Kinetic energy

T1 =
1

2

(
I1 +m1d

2
c1

)
q̇21 T2 =

1

2
m2a

2
1q̇

2
1 +

1

2
I2 (q̇1 + q̇2)

2

T3 =
1

2
m3‖vc3‖2 +

1

2
I3 (q̇1 + q̇2)

2

pc3 =

(
a1 cos q1 + cos (q1 + q2) (q3 − dc3)

a1 sin q1 + sin (q1 + q2) (q3 − dc3)

)
⇒ vc3 = ṗc3 =

(
− (a1s1 + s12(q3 − dc3)) q̇1 − s12(q3 − dc3)q̇2 + c12q̇3

(a1c1 + c12(q3 − dc3)) q̇1 + c12(q3 − dc3)q̇2 + s12q̇3

)
T4 =

1

2
m4‖vc4‖2 +

1

2
I4 (q̇1 + q̇2 + q̇4)

2

pc4 =

(
a1 cos q1 + q3 cos (q1 + q2) + dc4 cos (q1 + q2 + q4)

a1 sin q1 + q3 sin (q1 + q2) + dc4 sin (q1 + q2 + q4)

)
⇒ vc4 = ṗc4 =

(
− (a1s1 + q3s12 + dc4s124) q̇1 − (q3s12 + dc4s124) q̇2 + c12 q̇3 − dc4s124 q̇4

(a1c1 + q3c12 + dc4c124) q̇1 + (q3c12 + dc4c124) q̇2 + s12 q̇3 + dc4c124 q̇4

)

T (q, q̇) = T1 + T2 + T3 + T4 =
1

2
q̇TM(q)q̇

Inertia matrix

M(q) =


m11 m12 m13 m14

... m22 m23 m24

...
. . . m33 m34

symm · · · · · · m44


m11 = I1 +m1d

2
c1 + I2 + I3 +m3d

2
c3 + I4 +m4d

2
c4 + (m2 +m3 +m4) a21 + (m3 +m4) q23 − 2m3d3 q3

− 2m3dc3 a1 cos q2 + 2 (m3 +m4) a1q3 cos q2 + 2m4dc4 (a1 cos(q2 + q4) + q3 cos q4)

m12 = I2 + I3 +m3d
2
c3 + I4 +m4d

2
c4 + (m3 +m4) q23 − 2m3dc3 q3

−m3dc3 a1 cos q2 + (m3 +m4) a1q3 cos q2 +m4dc4 (a1 cos(q2 + q4) + 2 q3 cos q4)

m13 = (m3 +m4) a1 sin q2 −m4dc4 sin q4

m14 = I4 +m4d
2
c4 +m4dd4 (a1 cos(q2 + q4) + q3 cos q4)

m22 = I2 + I3 +m3d
2
c3 + I4 +m4d

2
c4 + (m3 +m4) q23 − 2m3dc3 q3 + 2m4dc4 q3 cos q4

m23 = −m3dc3 sin q4

m24 = I4 +m4d
2
c4 +m4dc4 q3 cos q4

m33 = m3 +m4

m34 = −m4dc4 sin q4

m44 = I4 +m4d
2
c4
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Linear parametrization of the inertia term

M(q)q̈ = Y M (q, q̈)aM , aM ∈ R6

m11 = aM1 + aM4 q
2
3 − 2 aM3 q3 + 2 (aM4 q3 − aM3) a1 c2 + 2 aM5 (a1c24 + q3c4)

m12 = aM2 + aM4 q
2
3 − 2 aM3 q3 + (aM4 q3 − aM3) a1 c2 + aM5 (a1c24 + 2 q3 c4)

m13 = aM4 a1 s2 − aM5 s4

m14 = aM6 + aM5 (a1 c24 + q3 c4)

m22 = aM2 + aM4 q
2
3 − 2 aM3 q3 + 2 aM5 q3 c4

m23 = −aM3 s4

m24 = aM6 + aM5 q3 c4

m33 = aM4

m34 = −aM5 s4

m44 = aM6

aM =



aM1

aM2

aM3

aM4

aM5

aM6


=



I1 +m1d
2
c1 + I2 + I3 +m3d

2
c3 + I4 +m4d

2
c4 + (m2 +m3 +m4) a21

I2 + I3 +m3d
2
c3 + I4 +m4d

2
c4

m3dc3

m3 +m4

m4dc4

I4 +m4d
2
c4


Y M (q, q̈) =

q̈1 q̈2
−2 (q3 + a1s2) q̈1

− (2 q3 + a1s2) q̈2

(
q23 + 2 q3 a1c2

)
q̈1

+
(
q23 + q3 a1c2

)
q̈2

+a1s2 q̈3

2 (a1c24 + q3c4) q̈1

+ (a1c24 + 2 q3 c4) q̈2

−s4 q̈3 (a1 c24 + q3 c4) q̈4

q̈4

0 q̈1 + q̈2

(
q23 + q3 a1c2

)
q̈1

−2 q3 q̈2

(
q23 + q3 a1c2

)
q̈1

+q23 q̈2

(a1c24 + 2 q3 c4) q̈1

+q3 c4 (2 q̈2 + q̈4)
q̈4

0 0 −s3q̈2 a1s2 q̈1 + q̈3 −s4 (q̈1 + q̈4) 0

0 0 0 0
(a1 c24 + q3 c4) q̈1

+q3 c4 q̈2 − s4 q̈3
q̈1 + q̈2 + q̈4


Potential energy

U1 = m1dc1g0 sin q1 U2 = m2a1g0 sin q1

U3 = m3g0 (a1 sin q1 + (q3 − dc3) sin(q1 + q2))

U4 = m4g0 (a1 sin q1 + q3 sin(q1 + q2) + dc4 sin(q1 + q2 + q4))

U(q) = U1 + U2 + U3 + U4

Gravity vector

g(q) =

(
∂U(q)

∂q

)T

=


g1

g2

g3

g4


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g1 = (m1dc1 + (m2 +m3 +m4) a1) g0 cos q1 −m3dc3 g0 c12

+ (m3 +m4) g0 q3 c12 +m4dc4 g0 c124

g2 = −m3dc3 g0 c12 + (m3 +m4) g0 q3 c12 +m4dc4 g0 c124

g3 = (m3 +m4) g0 s12

g4 = m4dc4 g0 c124

Linear parametrization of the gravity vector

g(q) = Y g(q)ag, ag ∈ R4

ag =


ag1

ag2

ag3

ag4

 =


m1dc1 + (m2 +m3 +m4) a1

m3dc3

m3 +m4

m4dc4



Y g(q) =


g0 c1 −g0 c12 g0 q3 c12 g0 c124

0 −g0 c12 g0 q3 c12 g0 c124

0 0 g0 s12 0

0 0 0 g0 c124


Note. We kept separated the two linear parametrizations, as requested. Indeed, ag2 = aM3, ag3 = aM4

and ag4 = aM5, so that only 6 + 1 = 7 different dynamic coefficients would be needed in total.

Open-loop equilibria

g(qe) = 0 ⇐⇒



qe1 = ±π
2

(m3 +m4) qe3 = m3dc3

qe1 + qe2 = {0, π}

qe1 + qe2 + qe4 = ±π
2

⇐⇒



qe1 = ±π
2

qe2 = ±π
2

qe3 =
m3dc3
m3 +m4

< dc3

qe4 = ±π
2

One of the equilibria is shown in Fig. 5.
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Figure 5: An equilibrium configuration of the RRPR robot: qe =
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Exercise #2

We define first a path parametrization (for the payload motion) and see how the direct kinematics
of each robot is related to the common cooperative task. The problem is then addressed by
considering the dynamics of each of the two robots and of the payload separately. However, the
three subsystems will interact among each other via exchanged forces. For these, the principle of
action and reaction holds: a force applied from a robot to the payload is equal to the same force
applied by the payload to that robot.

Once we put everything together, the original optimal control problem is naturally decomposed in
i) a minimum-time motion problem for the total mass of the system moving along the path, and ii)
a minimum internal force problem along the normal to the path (while compensating for gravity).

The first problem is solved by a common bang-bang profile for the command forces acting on the
first (horizontal) prismatic joints of the two robots. The second problem is solved by equally dis-
tributing the total gravity load between the two command forces on the second (vertical) prismatic
joints of the two robots. The resulting commands provide the minimum value of the objective func-
tion H (sum of the squared norms of the robot inputs ) among all force commands that produce
the same motion in minimum time along the given path.

Path parametrization

The simplest parametrization of the desired path is a linear one. Expressing it in the world reference
frame RFw, we have

p(s) = pin +
pfin − pin

L
s =

(
pin,x + s

pin,y

)
, s ∈ [0, L], L =

∥∥pfin − pin∥∥.
The acceleration along the path is then given by

p̈ =

(
p̈x

p̈y

)
=

(
s̈

0

)
. (1)

Task kinematics

Indeed, the payload position p coincides with the end effector position of both robots. As seen from
each robot side, the direct kinematics of each robot is related to the task by p = fA(qA) = fB(qB),
with

fA(qA) =

(
qA1 + qA1,0

qA2,0

)
=

(
qB1 + qB1,0

qB2,0

)
= fB(qB),

for some constant (but irrelevant hereafter) values qA1,0, qA2,0, qB1,0, and qB2,0. Differentiating
twice w.r.t. time and using (1), yields

q̈A1 = q̈B1 = p̈x = s̈, q̈A2 = q̈B2 = p̈y = 0. (2)

Payload dynamics

With reference to the free-body diagram in Fig. 6, we shall consider the forces applied by the
two robots A and B to the payload as decomposed in those that contribute to motion (along the
path tangent) and those that may generate internal forces on the rigid payload (along the normal
to the path) —and will produce in any event no motion. In this simple cooperative task, such
decomposition occurs along two fixed directions, i.e., those of the world frame RFw. Thus, we have

mp p̈x = FA,motion + FB,motion

mp p̈y +mp g0 = FA,internal − FB,internal.
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Figure 6: Free-body diagram of the forces applied to the payload.

Using (1), these simplify to

mp s̈ = FA,motion + FB,motion (3)

mp g0 = FA,internal − FB,internal (4)

Dynamics of the cooperating robots

For the two robots A and B, one has

(mA1 +mA2) q̈A1 = τA1 − FA,motion

mA2 q̈A2 +mA2 g0 = τA2 − FA,internal,
(5)

and, respectively,
(mB1 +mB2) q̈B1 = τB1 − FB,motion

mB2 q̈B2 −mB2 g0 = τB2 − FB,internal.
(6)

As already mentioned, the force components Fi appearing on the right-hand sides of these equations
are those applied to the robots by the payload dynamics.

Minimum time motion

Putting together (3) with the first components of (5) and (6), and using (2), we obtain

mp s̈ = τA1 − (mA1 +mA2) s̈+ τB1 − (mB1 +mB2) s̈

or
mtot s̈ = τA1 + τB1 = τmotion, with mtot = mp +mA1 +mA2 +mB1 +mB2. (7)

As a result, the rest-to-rest minimum time solution for the total mass mtot moving under an
equivalent force command τmotion, bounded as

|τmotion| ≤ τA,max + τB,max = τmax,

will be given by the bang-bang profiles τ∗A1, τ∗B1, and τ∗motion, as illustrated in Fig. 7. Accordingly,
the minimum motion time is

T ∗ =

√
4L

s̈max
= 2

√
Lmtot

τmax
.

Minimum internal force

Consider now (4) together with the second components of (5) and (6). Using again (2), we obtain

mp g0 = τA2 −mA2g0 − τB2 −mB2g0,
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Figure 7: Bang-bang profiles of the individual robot force commands τ∗A1 and τB1∗ and of the
equivalent total force τ∗motion in the minimum motion time solution.

or

(mp +mA2 +mB2) g0 = τA2 − τB2 =
(

1 −1
)( τA2

τB2

)
= J internal

(
τA2

τB2

)
. (8)

The requirement of minimizing the objective function

H = ‖τA‖2 + ‖τB‖2 = τ2A1 + τ2A2 + τ2B1 + τ2B2,

in view of the (unique) minimum time solution already found for τA1 = τ∗A1 and τB1 = τ∗B1, reduces
to the minimization of the quadratic sub-function

H ′ = τ2A2 + τ2B2,

subject to the linear constraint (8). It is easy to see that the (unique) solution to this simple LQ
problem for the remaining robot commands is

τ∗A2 =
1

2
(mp +mA2 +mB2) g0, τ∗B2 = −1

2
(mp +mA2 +mB2) g0 = −τ∗A2. (9)

Indeed, any other force pair of the perturbed form

τA2 = τ∗A2 + ∆, τB2 = τ∗B2 + ∆, ∀∆ ∈ R,

will still satisfy the linear constraint (8) of the reduced problem. These force perturbations are in
fact in the null space of the Jacobian of the constraint, or

∆

(
1

1

)
∈ N {J internal} ,

and therefore produce solutions that are larger in norm (thus, with a higher H ′). Such perturba-
tions have the meaning of internal forces that may arise when the payload is rigidly held by the
two robots. Thus, the optimal solution (9) has the nice physical interpretation of minimizing the
internal forces (∆ = 0). We finally note that, if gravity were not present (e.g., for motions occurring
on a horizontal plane), the solution that minimizes the internal forces would be τ∗A2 = τ∗B2 = 0.
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Exercise #3

With the dynamics of this planar 3R robot given by

M(q)q̈ + c(q, q̇) + g(q) = τ

we apply first a feedback linearization law in the joint space, i.e.,

τ = M(q)a+ c(q, q̇) + g(q) ⇒ q̈ = a, (10)

to convert the self-motion task into a purely kinematic one. The robot should always keep the
position of its end effector

p = f(q) =

(
l1 cos q1 + l2 cos (q1 + q2) + l3 cos (q1 + q2 + q3)

l1 sin q1 + l2 sin (q1 + q2) + l3 sin (q1 + q2 + q3)

)
at

pin = f(qin) =

 l1 cos
π

9
+

√
2

2
l3

−l1 cos
π

9
+ l2 +

√
2

2
l3

 .

Indeed, the 3R robot has n − m = 3 − 2 = 1 degree of redundancy for the positioning task in
the plane. A joint acceleration command performing a robot self-motion, as driven by the target
position q3,fin for the third joint, can then be designed as

a = −J#(q)J̇(q)q̇ +
(
I − J#(q)J(q)

) 0
0

α (q3,fin − q3)

−Kvq̇

, (11)

for some α > 0. In (11), a damping velocity term −Kvq̇, with diagonal gain matrix Kv > 0, has
been added in the null space of the task Jacobian so as to stabilize the joint motion1. In order to
reject also position and/or velocity errors that may occur around the desired constant end-effector
position pin, a more robust version of the command (11) is given by

a=J#(q)
(
KP (pin − f(q))−KDJ(q)q̇ − J̇(q)q̇

)
+
(
I − J#(q)J(q)

) −kv,1 q̇1
−kv,2 q̇2

α (q3,fin − q3)− kv,3 q̇3

 ,

(12)
including thus a PD action, with (typically diagonal) gain matrices KP > 0 and KD > 0, on the
Cartesian position error, and taking into account that ṗin = 0. Plugging (12) into (10) yields the
torque control law

τ = M(q)

[
J#(q)

(
KP (pd − f(q))−KDJ(q)q̇ − J̇(q)q̇

)

+
(
I − J#(q)J(q)

) −kv,1 q̇1
−kv,2 q̇2

α (q3,fin − q3)− kv,3 q̇3

]+ c(q, q̇) + g(q).

(13)

It should be noted that the control law (13), or simply the acceleration law (11) and its robust
version (12), may or may not guarantee the reaching of the final desired value for the third joint.

1This is rather customary (and almost mandatory) when resolving redundancy at the acceleration level.
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In principle, at a steady-state with q̇ = 0, the projection operator P = I −J#J (with its columns
P i, i = 1, 2, 3) may still mask the presence of a residual configuration error. Thus, one should also
show that there exists no configuration q∗ such that f(q∗) = pin (i.e., belonging to the self-motion
manifold in the joint space associated to the initial point Pin) for which P 3(q∗) e3 = 0 while
e3 = q3,fin − q∗3 6= 0. Such statement about non-existence is in fact true, but its formal proof is
not trivial. Therefore, an alternative approach that directly guarantees also the convergence of q3
to q3,fin may be more attractive.

In the following, we will illustrate the use of a joint space decomposition approach at the acceler-
ation level (i.e., to be applied, after feedback linearization, to q̈ = a). In this case, one focuses on
the command to be given to the third joint, the one that has a special target assigned, leaving to
the other two joints the task of keeping the end effector at the desired position Pin. First, for the
third joint we choose the control law

q̈3 = a3 = kp,3 (q3,fin − q3)− kd,3 q̇3, kp,3 > 0, kd,3 > 0. (14)

As a result, the error e3 will satisfy the linear differential equation

ë3 + kd,3ė3 + kp,3e3 = 0,

which guarantees that q3 will converge exponentially from any initial state to the desired q3,fin,
with q̇3 = q̇3,fin = 0. Moreover, by a suitable choice of the gains kp,3 and kd,3, the natural motion
of q3 will always remain in the interval [q3,fin, q3,in] = [−π/2,−π/4] (i.e., without overshooting or
wandering). Next, decompose the second-order differential kinematics as follows:

p̈ = J(q)q̈ +J̇(q)q̇ = J12(q)q̈12 + J3(q) q̈3 +J̇(q)q̇

=

(
−l1s1 − l2s12 − l3s123 −l2s12 − l3s123
l1c1 + l2c12 + l3c123 l2c12 + l3c123

)(
q̈1

q̈2

)
+

(
−l3s123
l3c123

)
q̈3 +J̇(q)q̇.

(15)

The square sub-Jacobian J12 made by the first two columns of J has

detJ12(q) = l1 (l2 sin q2 + l3 sin(q2 + q3)) .

As long as this determinant is different from zero, we can set p̈ = 0 in (15) and solve for q̈12 so as
to realize our self-motion task by

q̈12 = −J−112 (q)
(
J3(q) q̈3 +J̇(q)q̇

)
, (16)

for any motion q̈3, in particular that given by (14). To introduce more robustness in the task of
keeping the end-effector position at pin, we replace

p̈ = p̈in = 0 ⇒ p̈ = KP (pin − f(q))−KD J(q)q̇, (17)

with (diagonal) 2 × 2 gain matrices KP > 0 and KD > 0 weighting, respectively, the position
error eP = pin − f(q) and the velocity error eD = ṗin − ṗ = −ṗ = −J(q)q̇. Using (14) and (17)
in eq. (15) and solving again for q̈12 yields

q̈12 = J−112 (q)
(
KP (pin − f(q))−KD J(q)q̇ − J3(q) (kP,3 (q3,fin − q3)− kd,3 q̇3)−J̇(q)q̇

)
.

(18)
We can also combine (14) and (18) in a single formula as

a =

(
q̈12
q̈3

)
=

(
J−112 (q) −J−112 (q)J3(q)

0T 1

)(
KP (pin − f(q))−

(
KD J(q)−J̇(q)

)
q̇

kP,3 (q3,fin − q3)− kd,3 q̇3

)
.

(19)

10



Finally, plugging (19) into (10) yields the torque control law

τ = M(q)

(
J−112 (q) −J−112 (q)J3(q)

0T 1

)(
KP (pin − f(q))−

(
KD J(q)−J̇(q)

)
q̇

kP,3 (q3,fin − q3)− kd,3 q̇3

)
+ c(q, q̇) + g(q).

(20)

The last thing to check is the absence of singularities for J12(q) during the self-motion under the
control law (20), or simply the acceleration law (19). It can be shown that detJ12(q) = 0 if and
only if the end-effector of the 3R robot finds itself aligned with the first link of the structure. From
the illustration in Fig. 8, it is rather evident that such condition is not encountered in this task.

x0

y0

Pin

q3,fin  =	−𝜋/2

qin

Figure 8: Configuration reached by the 3R robot at the end of the controlled self-motion task.

Exercise #4

The dynamics of the system represented in Fig. 4 is

mrẍr + (br + bs) ẋr + ksxr = F, (21)

with the contact force measured by the sensor given by

Fc = ksxr.

Since we deal with a linear dynamics, one can also transform (21) in the Laplace domain and
represent the system by its transfer function from the control input F to the controlled output Fc

as

P (s) =
Fc(s)

F (s)
=
ksxr(s)

F (s)
=

ks
mrs2 + (br + bs) s+ ks

. (22)

Since the physical parameters mr, br, bs and ks are all positive, P (s) has two poles with negative
real part, and the open-loop system is thus asymptotically stable (with a unitary steady-state
gain, P (0) = 1). The simplest feedback controller C(s) that tries to regulate the contact force to
a (constant, but arbitrary) desired value Fd is a proportional law to the force error Fe = Fd − Fc,

F = KP (Fd − Fc) = KP Fe ⇐⇒ C(s) =
F (s)

Fe(s)
= KP > 0.

The input-output transfer function of the closed-loop system would then be

W (s) =
F (s)

Fd(s)
=

P (s)C(s)

1 + P (s)C(s)
=

ksKP

mrs2 + (br + bs) s+ ks (1 +KP )
,

11



which is still asymptotically stable, but with a non-unitary gain W (0) = KP /(1 +KP ) 6= 1. This
means that the steady-state output response to a desired step input Fd would have an error (unless
KP →∞, which is impossible). The value of this force error can also be found from the input-error
transfer function,

We(s) =
Fe(s)

Fd(s)
=
Fd(s)− F (s)

Fd(s)
= 1−W (s) =

1

1 + P (s)C(s)
=

mrs
2 + (br + bs) s+ ks

mrs2 + (br + bs) s+ ks (1 +KP )
.

In fact, from the final value theorem, the steady-state error for a constant Fd is computed as

Fe,∞ = lim
t→∞

Fe(t) = lim
s→0

Fe(s) = lim
s→0

We(s)Fd(s) = We(0)Fd =
1

1 +KP
Fd 6= 0.

𝑃 𝑠𝐾$ +	
𝐾'
𝑠

𝐹𝐹)

+
⎯

𝐹+ 𝐹,

Figure 9: The closed-loop scheme of the robot-environment system under PI force control.

In order to eliminate this steady-state error in a robust way (i.e., using feedback), we need an
integral action2 (a pole in s = 0) in the controller C(s). With reference to Fig. 9, we consider then
a proportional-integral (PI) controller on the force error Fe = Fd − Fc, or

F (t) = KP Fe(t) +KI

∫ t

0

Fe(τ)dτ ⇐⇒ C(s) = KP +
KI

s
=
KP s+KI

s
(23)

Combining (23) with (22) gives the closed-loop system

W (s) =
F (s)

Fd(s)
=

P (s)C(s)

1 + P (s)C(s)
=

ks (KP s+KI)

mrs3 + (br + bs) s2 + ks (1 +KP ) s+ ksKI
, (24)

with gain W (0) = 1. To check the conditions under which the three poles of W (s) will all have
negative real part, we apply the Routh criterion. From the Routh table built for the polynomial
denominator of W (s) in (24)

3

2

1

0

∣∣∣∣∣∣∣∣∣∣∣∣

mr ks (1 +KP )

br + bs ksKI

ks (1 +KP )− mrksKI

br + bs

ksKI

we see that the elements in the first column have the same (here, positive) sign iff

KI > 0, (1 +KP )− mrKI

br + bs
> 0.

2From the elementary feedback theory, in order to guarantee zero error at steady state in the step response, the
control system in Fig. 9 should be asymptotically stable and have (at least) a pole in s = 0 in the forward path
(type I). If the process P (s) does not have already such a pole, it should be introduced in the controller.
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Therefore, choosing the two gains KP and KI in the ranges

KI ≥
br + bs
mr

> 0, KP >
mrKI − (br + bs)

br + bs
≥ 0

will ensure asymptotic stability of the closed-loop system (in a robust way with respect to un-
certainties in system parameters —there is only a need to enforce inequalities that are simple to
overbound). Moreover, the force error at steady state will be zero as expected, since the input-error
transfer function

We(s) = 1−W (s) =

(
mrs

2 + (br + bs) s+ ks
)
s

mrs3 + (br + bs) s2 + ks (1 +KP ) s+ ksKI
,

has a zero at s = 0, and thus
Fe,∞ = We(0)Fd = 0 · Fd = 0.

As a result, at steady state

F̄c = Fd = ksx̄r, x̄r =
Fd

ks
, F̄ = KI

∫ ∞
0

Fe(τ)dτ = Fd.

∗ ∗ ∗ ∗ ∗
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