
Robotics 2

July 12, 2021

Exercise #1

Consider the planar 3R robot in Fig. 1. The three links have all equal length L. The robot
is controlled by a joint acceleration command u = q̈ ∈ R3. The input commands are bounded
componentwise as |ui| ≤ Umax,i, for i = 1, 2, 3. Moreover, let p = f(q) ∈ R2 be the end-effector
position. At a given instant t = t0, the robot is in a generic state (q(t0), q̇(t0)) = (q0, q̇0) ∈ R6.
Assume in the following that it is always q̇0 6= 0. For this robot, provide (if it exists) a feasible
solution u0 = u(t0) to each of the following problems. If there are multiple feasible solutions,
provide the one having minimum norm.

x0

q1

q2

q3
y0

P
L

L

L

Figure 1: A planar 3R robot.

a) Is it possible to define u0 so that the end-effector acceleration instantaneously vanishes, i.e.,
p̈0 = p̈(t0) = 0? If so, under which conditions on the current robot state (q0, q̇0)? Provide a
specific example (or counterexample) illustrating the situation, giving the numerical values of
q0, q̇0, and u0 (and of the resulting p̈0, if different from zero).

b) Which command u0 should be applied to stop as fast as possible the motion of the robot joints?
Provide an example with numerical values of q0, q̇0, u0, and of the obtained p̈0.

Exercise #2

The dynamics of a robot arm with n joints that may be subject to actuator faults can be written
in a standard form as

M(q)q̈ + c(q, q̇) + g(q) = τ − τ f , (1)

where τ f ∈ Rn is an additional torque that models a generic actuator fault when present. Con-
sider now as fault an incipient block of the joint/motor i, with i ∈ {1, . . . , n}. This situation
is represented by an acceleration of the faulted joint that behaves as q̈i = −λiq̇i, with λi � 1,
until the joint eventually stops. Show that this fault can be described as in (1), by providing the
model-based expression of the fault τf,i (with τf,j ≡ 0, for j 6= i). Find also the expression of the
accelerations of the other joints, j 6= i, at the instant when this type of fault occurs.

1

Exercise #3

The 3-dof RPR robot in Fig. 2 moves on a horizontal plane. The robot should asymptotically
track a smooth joint trajectory qd(t) in the presence of a partly unknown dynamic model. In fact,
only the dynamic parameters m3, dc3, and I3 are assumed to be known. Derive first the dynamic
model of this robot, neglecting any dissipative frictional effect.

q3dc3

dc2

dc1

q2

q1
xw

yw

m1,I1

m2,I2

m3,I3
⊕

⊕

⊕

Figure 2: A planar RPR robot with its generalized coordinates and dynamic parameters.

Consider next the following adaptive trajectory tracking control law that takes advantage of the
partly known dynamics

τ = YU (q, q̇, q̇r, q̈r) âU + YK (q, q̇, q̇r, q̈r)aK +KP (qd − q) +KD (q̇d − q̇)

˙̂aU = ΓY T
U (q, q̇, q̇r, q̈r) (q̇r − q̇),

(2)

where q̇r = q̇d + Λ (qd − q) = q̇d +K−1D KP (qd − q), KP > 0, KD > 0, and Γ > 0 are diagonal
gain matrices, aU ∈ Rpu and aK ∈ Rpk are vectors containing, respectively, the unknown and the
known dynamic coefficients of the robot model. The 3× pu matrix YU and 3× pk matrix YK are
the associated regressors in the linear parametrization of the dynamic model. Provide the explicit
expressions of all terms in the adaptive control law (2). If time remains, sketch a proof of the
asymptotic stability of the trajectory tracking error with this modified adaptive law.

[180 minutes (3 hours); open books]

2

Solution
July 12, 2021

Exercise #1

The second-order differential kinematics of a robot with n joints performing a m-dimensional task
(with m ≤ n) is

p̈ = J(q)q̈ +J̇(q)q̇ = J(q)u+ h(q, q̇), (3)

with vector h ∈ Rm being quadratic in q̇. The joint acceleration q̈ ∈ Rn is taken here as input
command u. For the planar 3R robot of Fig. 1, we have n = 3, m = 2, and the terms in (3) are
the 2× 3 task Jacobian

J(q) =
∂f(q)

∂q
= L

(
− (s1 + s12 + s123) − (s12 + s123) −s123
c1 + c12 + c123 c12 + c123 c123

)
,

its time derivative

J̇(q) = −L ·(
c1q̇1 + c12 (q̇1 + q̇2) + c123 (q̇1 + q̇2 + q̇3) c12 (q̇1 + q̇2) + c123 (q̇1 + q̇2 + q̇3) c123 (q̇1 + q̇2 + q̇3)

s1q̇1 + s12 (q̇1 + q̇2) + s123 (q̇1 + q̇2 + q̇3) s12 (q̇1 + q̇2) + s123 (q̇1 + q̇2 + q̇3) s123 (q̇1 + q̇2 + q̇3)

)
,

and the product of matrix J̇ by the joint velocity q̇

h(q, q̇)=−L
(

(c1 + c12 + c123) q̇
2
1 + 2 (c12 + c123) q̇1q̇2 + 2 c123 q̇1q̇3 + (c12 + c123) q̇

2
2 + 2 c123 q̇2q̇3 + c123 q̇

2
3

(s1 + s12 + s123) q̇
2
1 + 2 (s12 + s123) q̇1q̇2 + 2 s123 q̇1q̇3 + (s12 + s123) q̇

2
2 + 2 s123 q̇2q̇3 + s123 q̇

2
3

)
,

having used the shorthand notation for trigonometric functions (e.g., c123 = cos(q1 + q2 + q3)).

Problem #1a

The minimum norm solution of (3) for p̈ = 0 at a generic state (q0, q̇0) is

u0 = −J#(q0)h(q0, q̇0). (4)

In the absence of bounds on the command u0, this acceleration would return p̈0 = 0 if and only
if h(q0, q̇0) ∈ R{J(q0)}. In particular, when rank {J(q0)} = 2 (regular case), this condition is
always satisfied and we only need to check whether u0 is feasible, i.e., if |u0,i| ≤ Umax,i, for all
i = 1, 2, 3. If so, then we stop. The same would happen in the singular case (rank {J(q0)} < 2).

If instead the acceleration command (4) is unfeasible, we should attempt the use of the general
solution to (3) for p̈ = 0, namely

u0 = −J#(q0)h(q0, q̇0) +
(
I − J#(q0)J(q0)

)
q̈0, (5)

with an extra joint acceleration q̈0 projected in the null space of J . This term may possibly help in
recovering feasibility when the preferred minimum norm solution (4) is unfeasible. The definition
of the actual command (5) is obtained by a simple variant of the SNS (Saturation in the Null
Space) method for redundant robots.

Consider for simplicity only the regular case for the Jacobian, rank {J(q0)} = 2. Taking into
account that there is only n−m = 1 degree of redundancy in the problem, if two (or all) of the scalar
components of (4) are out of bounds, then no feasible solution will exist in any case. Otherwise,
Algorithm 1 (written in pseudo-code) will provide a feasible solution, if one exists. The bounds on

the commands are organized in vector form as Umax =
(
Umax,1 Umax,2 Umax,3

)T ∈ R3. We set

also J0 = J(q0), J̇0 = J̇(q0), and h0 = h(q0, q̇0) = J̇0q̇0.

3

Algorithm 1 SNS method for finding a feasible solution, if it exists (case n = 3, m = 2)

1: if the command u0 in (4) satisfies |u0| ≤ Umax (componentwise) then
2: STOP % the minimum norm solution (4) is feasible and returns already p̈0 = 0
3: else
4: j∗ = arg maxi=1,2,3

∣∣(J#
0 h0

)
i

∣∣ % it is then |u0,j∗ | > Umax,j∗ ; by assumption,

5: % u0,j∗ will be the only command out of bounds

6: set u0,j∗ = sign
(
−J#

0 h0

)
j∗
Umax,j∗ % the overdriven command is now saturated

7: define the 2× 2 matrix J̄{−j∗} by deleting the j∗-th column J j∗ from J0,
8: u{−j∗} ∈ R2 by deleting uj∗ from u, and Umax,{−j∗} ∈ R2 deleting Umax,j∗ from Umax

9: set a = J j∗ u0,j∗ + h0 % . . . one needs to solve J̄{−j∗}u{−j∗} + a = 0

10: compute u0,{−j∗} = −J̄#
{−j∗} a % . . . a unique solution if rank

{
J̄{−j∗}

}
= 2 !!

11: if
∣∣u0,{−j∗}

∣∣ ≤ Umax,{−j∗} (componentwise) then

12: recompose u0,SNS from u0,j∗ and u0,{−j∗}

13: STOP % a new feasible solution u0,SNS has been found, returning p̈0 = 0

14: else

15: EXIT % there is no feasible solution providing p̈0 = 0
16: end if
17: end if

We provide next several numerical examples illustrating different situations1. In all cases, we have
set L = 1 [m] for the link lengths and chosen

Umax =

 15π

10π

10π

 =

 47.1239

31.4159

31.4159

 [rad/s2]

as bounds for the acceleration commands. The same data will be used also for Problem #1b of
this Exercise. Computations are performed in MATLAB.

1. Regular configuration q0 = (0, π/2, π/2) [rad], joint velocity q̇0 = (π, π, 0) [rad/s]

We evaluate the terms in (3)

J0 =

(
−1 −1 0

0 −1 −1

)
, J̇0 =

(
π 2π 2π

−2π −2π 0

)
, h0 =

(
3π2

−4π2

)
=

(
29.6088

−39.4784

)
,

and compute the pseudoinverse as

J#
0 = JT

0

(
J0 J

T
0

)−1
=

 −2/3 1/3

−1/3 −1/3

1/3 −2/3

 .

Note that the end-effector velocity ṗ0 = J0q̇0 =
(
−2π −π

)T
[m/s] is different from zero.

Applying the minimum norm solution (4), we obtain the feasible command

u0 = −J#
0 h0 =

 10π2/3

−π2/3

−11π2/3

 =

 32.8987

−3.2899

−36.1885

 [rad/s2],

which returns p̈0 = 0.

1Indeed, only one example was requested in the text.

4

2. Same regular configuration q0 = (0, π/2, π/2) [rad], new velocity q̇0 = (π, π,−π/4) [rad/s]

The Jacobian J0 and its pseudoinverse J#
0 are the same as before. The different terms to be

computed are

J̇0 =

(
3π/4 7π/4 7π/4

−2π −2π 0

)
=

(
2.3562 5.4978 5.4978

−6.2832 −6.2832 0

)
and

h0 =

(
33π2/16

−4π2

)
=

(
20.3561

−39.4784

)
.

The end-effector velocity is ṗ0 =
(
−2π −3π/4

)T 6= 0. The minimum norm solution (4) is now

u0 = −J#
0 h0 =

 65π2/24

−31π2/48

−161π2/48

 =

 26.7302

−6.3741

−33.1043

 [rad/s2],

which is unfeasible, being the third joint acceleration u0,3 = −33.1043 larger (in module) than
its bound Umax,3 = 31.4159. The other two acceleration commands remain instead within their
bounds, so that we can apply Algorithm 1 to check if a feasible solution can be found by the
SNS method. Being j∗ = 3, we set u0,3 = −Umax,3 = −10π = −31.4159 (saturation to the
closest limit, the negative one) and compute

J̄{−3} =

(
−1 −1

0 −1

)
, a = −J3 Umax,3 +h0 = −

(
0

−1

)
10π+

(
33π2/16

−4π2

)
=

(
20.3561

−8.0625

)
.

Thus

u0,{−3} = −J̄#
{−3} a = −J̄−1{−3} a =

(
28.4186

−8.0625

)
⇒ u0,SNS =

 28.4186

−8.0625

−31.4159

 .

The SNS result u0,SNS is now a feasible solution and returns again p̈0 = 0.

3. Singular configuration q0 = (0, 0, π) [rad], joint velocity q̇0 = (π/2,−π, π/2) [rad/s]

The robot has the second link stretched and the third folded. This is a singular configuration
since

J0 =

(
0 0 0

1 0 −1

)
⇒ rank {J0} = 1, R{J0} =

{(
0

1

)}
.

The end-effector is placed at p0 = f(q0) = (1, 0). Note also that the end-effector velocity is
now

ṗ0 = J0q̇0 = 0 ⇐⇒ q̇0 =

 π/2

−π
π/2

 ∈ N{J0}.

We evaluate the other terms in (3):

J̇0 =

(
0 π/2 0

0 0 0

)
, h0 =

(
−π2/2

0

)
=

(
−4.9348

0

)
⇒ h0 6∈ R{J0}.

5

Computing the pseudoinverse of the singular task Jacobian,

J#
0 =

 0 0.5

0 0

0 −0.5

 ,

we obtain that the minimum norm solution (4) is simply u0 = −J#
0 h0 = 0. Therefore, the

end-effector acceleration cannot be modified in any case, remaining equal to

p̈0 = h0 =

(
−4.9348

0

)
6= 0.

4. Another singular case q0 = (0, π,−π) [rad], same joint velocity q̇0 = (π/2,−π, π/2) [rad/s]

In this last example, the robot has the second and third links both folded. We are again in a
singularity, being

J0 =

(
0 0 0

1 0 1

)
⇒ rank {J0} = 1, R{J0} =

{(
0

1

)}
.

The end-effector position p0 is the same as in the previous example. On the other hand, the
end-effector velocity is now

ṗ0 = J0q̇0 =

(
0

π

)
6= 0 ⇐⇒ ṗ0 ∈ R{J0}.

Moreover, being

J̇0 =

(
−π −π/2 0

0 0 0

)
, h0 = J̇0q̇0 = 0 (!!),

the minimum norm solution (4) will be u0 = −J#
0 h0 = 0 as in the previous example. However,

the (feasible) solution u0 will produce now p̈0 = h0 = 0, keeping thus the end-effector at the
same instantaneous velocity ṗ0.

Problem #1b

There is a unique command u0 that should be applied to stop as fast as possible the motion of the
robot joints. This is given componentwise by

u0,i = −Umax,i sign (q̇0,i) , i = 1, 2, 3, (6)

where the sign function takes the value 0 when its argument is 0. The logic is that each positive
(negative) component of the initial velocity q̇0 is counterbalanced by the maximum negative (pos-
itive) value of its associated acceleration. Keeping the same strategy (6) also after t = t0 will let
the robot eventually stop in the minimum (and finite!) possible time.

Taking as example the same initial state as in case 3 of Problem #1a, with q̇0 = (π/2,−π, π/2) [rad/s],
we have

u0 =

−Umax,1

Umax,2

−Umax,3

 =

−15π

10π

−10π

 ⇒ p̈0 = J0u0+h0 =

(
0 0 0

1 0 −1

)
u0 +

(
−π2/2

0

)
=

(
−π2/2

−5π

)
.

Note that it is ṗ0 = 0 in this case. Thus, in order to stop the overall joint motion of the robot as
fast as possible, the end-effector should be brought in motion at time t = t0 by such p̈0 6= 0.

6

Exercise #2

Denote the inverse of the (symmetric) robot inertia matrix as

H(q) = M−1(q) =


hT
1 (q)

hT
2 (q)

...

hT
n (q)

 ,

with hi(q) being the i-th column of H(q), for i = 1, 2, . . . , n. Also, denote by hii(q) the i-th
element on the diagonal of H(q), for i = 1, 2, . . . , n.

With reference to the dynamic model (1), the incipient blocking fault of the motor at the joint i
is modeled by a vector τ f ∈ Rn with the single nonzero i-th component having the expression

τf,i =
1

hii(q)

(
hT
i (q) (τ − c(q, q̇)− g(q)) + λiq̇i

)
, λi � 1, (7)

whereas τf,j = 0, for all j 6= i.

In fact, since the acceleration vector q̈ ∈ Rn is given by

q̈ = H(q) (τ − c(q, q̇)− g(q)− τ f) ,

using (7), the scalar component of the acceleration at joint i will be

q̈i = hT
i (q)


τ − c(q, q̇)− g(q)−



0
...

1
...

0


τf,i


= hT

i (q) (τ − c(q, q̇)− g(q))− hii(q) · 1

hii(q)

(
hT
i (q) (τ − c(q, q̇)− g(q)) + λiq̇i

)
= −λiq̇i,

as requested. Moreover, the acceleration at any other joint j 6= i is

q̈j = hT
j (q) (τ − c(q, q̇)− g(q))− hji(q) τf,i,

showing that the fault of motor i will affect also the acceleration of the other joints, because of the
inertial couplings of the inverse of the robot inertia matrix (the off-diagonal terms hji(q), j 6= i).

Exercise #3

The robot in Fig. 2 has n = 3 joints and moves on the horizontal plane. Neglecting friction effects,
its dynamic model is

M(q)q̈ + c(q, q̇) = τ .

In computing the kinetic energy T of the robot, we take into account that the motion is planar;
thus, linear velocities will be 2D vectors in the plane (xw,yw), while angular velocities will be just
scalars (in the zw-direction). For the first link, it is

T1 =
1

2

(
I1 +m1d

2
c1

)
q̇21 .

7

For the second link, since

pc2 = (q2 − dc2)

(
cos q1

sin q1

)
⇒

vc2 = ṗc2 = q̇2

(
cos q1

sin q1

)
+ (q2 − dc2) q̇1

(
− sin q1

cos q1

)
=

(
cos q1 − sin q1

sin q1 cos q1

)(
q̇2

(q2 − dc2) q̇1

)
= R(q1)

(
− sin q1

cos q1

)
,

it follows

T2 =
1

2
I2 ω

2
2 +

1

2
m2 v

T
c2vc2 =

1

2

(
I2 q̇

2
1 +m2

(
(q2 − dc2)2 q̇21 + q̇22

))
.

For the third link, from

pc3 =

(
q2 cos q1 + dc3 cos(q1 + q3)

q2 sin q1 + dc3 sin(q1 + q3)

)

⇒ vc3 =

(
cos q1q̇2 − q2 sin q1q̇1 − dc3 sin(q1 + q3)(q̇1 + q̇3)

sin q1q̇2 + q2 cos q1q̇1 + dc3 cos(q1 + q3)(q̇1 + q̇3)

)
,

we obtain

T3 =
1

2
I3 ω

2
3 +

1

2
m3 v

T
c3vc3

=
1

2
I3 (q̇1 + q̇3)

2
+

1

2
m3

(
q22 q̇

2
1 + q̇22 + d2c3 (q̇1 + q̇3)

2
+ 2 dc3 (q2 cos q3 q̇1 − sin q3 q̇2) (q̇1 + q̇3)

)
.

Thus, being

T =

3∑
i=1

Ti =
1

2
q̇TM(q)q̇, with M(q) =

 m11 m12 m13

m12 m22 m23

m13 m23 m33

 ,

we can write the single elements of the symmetric inertia matrix M(q) as follows:

m11 = I1 +m1d
2
c1 + I2 +m2d

2
c2 + I3 +m3d

2
c3

− 2m2dc2 q2 + (m2 +m3) q22 + 2m3dc3 q2 cos q3

m12 = −m3dc3 sin q3

m13 = I3 +m3d
2
c3 +m3dc3 q2 cos q3

m22 = m2 +m3

m23 = −m3dc3 sin q3

m33 = I3 +m3d
2
c3.

(8)

The inertial term in the dynamic model can be rewritten in terms of p = 5 coefficients that collect
the dynamic parameters of the robot,

M(q)q̈ =

 a1 + 2a2q2 + a3q
2
2 + 2a4q2 cos q3 −a4 sin q3 a5 + a4q2 cos q3

−a4 sin q3 a3 −a4 sin q3

a5 + a4q2 cos q3 −a4 sin q3 a5


 q̈1

q̈2

q̈3

 = YM (q, q̈)a,

8

with the vector of dynamic coefficients a ∈ R5 defined by

a1 = I1 +m1d
2
c1 + I2 +m2d

2
c2 + I3 +m3d

2
c3

a2 = −m2dc2

a3 = m2 +m3

a4 = m3dc3

a5 = I3 +m3d
2
c3.

(9)

Similarly, the entire dynamic model (because of the absence of gravity) is linearly parametrized
in terms of the same dynamic coefficients a, with a suitable n × p = 3 × 5 regressor matrix
Y (q, q̇, q̈). However, the parametrization (9) does not separate the unknown from the known
dynamic coefficients in the inertia matrix (and thus in the dynamic model). On the other hand,
the proposed adaptive law (2) does not need updating coefficients that involve only known dynamic
parameters, i.e., m3, dc3, and I3.

Therefore, looking at the expressions of the elements mij in (8) and at the definitions of the
coefficients ai in (9), we can organize and separate terms in the inertia matrix as

m11 =
(
I1 +m1d

2
c1 + I2 +m2d

2
c2

)
+ I3 +m3d

2
c3 − 2m2dc2 q2 + (m2 +m3) q22 + 2m3dc3 q2 cos q3

= aU1 + aK1 + 2 aU2 q2 + (aU3 + aK2) q22 + 2 aK3 q2 cos q3

m12 = −m3dc3 sin q3 = −aK3 sin q3

m13 = I3 +m3d
2
c3 +m3dc3 q2 cos q3 = aK1 + aK3 q2 cos q3

m22 = m2 +m3 = aU3 + aK2

m23 = −m3dc3 sin q3 = −aK3 sin q3

m33 = I3 +m3d
2
c3 = aK1,

with pu = 3 unknown dynamic coefficients

aU1 = I1 +m1d
2
c1 + I2 +m2d

2
c2

aU2 = −m2dc2

aU3 = m2,

(10)

organized as components of a vector aU ∈ R3, and, respectively, pk = 3 known dynamic coefficients

aK1 = I3 +m3d
2
c3

aK2 = m3

aK3 = m3dc3,

(11)

organized as components of a vector aK ∈ R3. Despite the total number of dynamic coefficients is
now higher than before (pu + pk = 6 > 5 = p), the number of those to be updated in the adaptive
law is actually lower (pu = 3).

To complete the dynamic modeling, we have to derive also the Coriolis and centrifugal terms. This
will be done by referring directly to the double parametrization by aU and aK , in view of their

9

final use in the adaptive control law (2). Rewrite the robot inertia matrix as

M(q) =
(
m1(q) m2(q) m3(q)

)
= aU1 + aK1 + 2 aU2 q2 + (aU3 + aK2) q22 + 2 aK3 q2 cos q3 −aK3 sin q3 aK1 + aK3 q2 cos q3

−aK3 sin q3 aU3 + aK2 −aK3 sin q3

aK1 + aK3 q2 cos q3 −aK3 sin q3 aK1

.
(12)

Using the Christoffel’s symbols for computing the components ci(q, q̇) of the Coriolis and centrifu-
gal vector c(q, q̇),

Ci(q) =
1

2

(
∂mi(q)

∂q
+

(
∂mi(q)

∂q

)T

− ∂M(q)

∂qi

)
, ci(q, q̇) = q̇TCi(q)q̇, i = 1, 2, 3,

we obtain

C1(q) =
1

2


 0 2 aU2 + 2 (aU3 + aK2) q2 + 2 aK3 cos q3 −2 aK3 q2 sin q3

0 0 −aK3 cos q3

0 aK3 cos q3 −aK3 q2 sin q3

+

(
. . .

)T

−O



=

 0 aU2 + (aU3 + aK2) q2 + aK3 cos q3 −aK3 q2 sin q3

aU2 + (aU3 + aK2) q2 + aK3 cos q3 0 0

−aK3 q2 sin q3 0 −aK3 q2 sin q3


⇒ c1(q, q̇) = 2 (aU2 + (aU3 + aK2) q2 + aK3 cos q3) q̇1q̇2 − aK3 q2 sin q3 (2 q̇1 + q̇3) q̇3,

C2(q) =
1

2

 0 0 −aK3 cos q3

0 0 0

0 0 −aK3 cos q3

+

(
. . .

)T

−

 2 aU2 + 2 (aU3 + aK2) q2 + 2 aK3 cos q3 0 aK3 cos q3

0 0 0

aK3 cos q3 0 0



=

− (aU2 + (aU3 + aK2) q2 + aK3 cos q3) 0 −aK3 cos q3

0 0 0

−aK3 cos q3 0 −aK3 cos q3


⇒ c2(q, q̇) = − (aU2 + (aU3 + aK2) q2 + aK3 cos q3) q̇21 − aK3 cos q3 (2 q̇1 + q̇3) q̇3,

C3(q) =
1

2

 0 aK3 cos q3 −aK3 q2 sin q3

0 0 −aK3 cos q3

0 0 0

+

(
. . .

)T

−

−2aK3 q2 sin q3 −aK3 cos q3 −aK3 q2 sin q3

−aK3 cos q3 0 −aK3 cos q3

−aK3 q2 sin q3 −aK3 cos q3 0



=

 aK3 q2 sin q3 aK3 cos q3 0

aK3 cos q3 0 0

0 0 0


⇒ c3(q, q̇) = aK3 q2 sin q3 q̇

2
1 + 2 aK3 cos q3 q̇1q̇2,

10

yielding

c(q, q̇) =


2 (aU2 + (aU3 + aK2) q2 + aK3 cos q3) q̇1q̇2 − aK3 q2 sin q3 (2 q̇1 + q̇3) q̇3

− (aU2 + (aU3 + aK2) q2 + aK3 cos q3) q̇21 − aK3 cos q3 (2 q̇1 + q̇3) q̇3

aK3 q2 sin q3 q̇
2
1 + 2 aK3 cos q3 q̇1q̇2

 = S(q, q̇) q̇,

with the factorizing matrix

S(q, q̇) = col
{
q̇TCi(q, q̇)

}
= (13)

(aU2 + (aU3 + aK2) q2 + aK3 cos q3) q̇2
−aK3 q2 sin q3 q̇3

(aU2 + (aU3 + aK2) q2 + aK3 cos q3) q̇1 −aK3 q2 sin q3 (q̇1 + q̇3)

− (aU2 + (aU3 + aK2) q2 + aK3 cos q3) q̇1
−aK3 cos q3 q̇3

0 −aK3 cos q3 (q̇1 + q̇3)

aK3 q2 sin q3 q̇1 + aK3 cos q3 q̇2 aK3 cos q3 q̇1 0


being such that Ṁ − 2S is skew-symmetric (check this!).

As a result, the complete dynamic model can be linearly parametrized as

M(q)q̈ + S(q, q̇)q̇ = YU (q, q̇, q̈)aU + YK (q, q̇, q̈)aK (14)

with the n× pu = 3× 3 regressor matrix YU for the unknown coefficients (conveniently separating
the contributions by the inertial and by the velocity terms)

YU (q, q̇, q̈) = YU,M (q, q̈) + YU,c(q, q̇)

=

 q̈1 2 q2 q̈1 q22 q̈1

0 0 q̈2

0 0 0

+

 0 2 q̇1q̇2 q2 q̇1q̇2

0 −q̇21 −q2 q̇21
0 0 0

 (15)

and, similarly, with the n× pk = 3× 3 regressor matrix YK for the known coefficients

YK (q, q̇, q̈) = YK,M (q, q̈) + YK,c(q, q̇)

=

 q̈1 + q̈3 q22 q̈1 q2 cos q3 (2 q̈1 + q̈3)− sin q3 q̈2

0 q̈2 − sin q3 (q̈1 + q̈3)

q̈1 + q̈3 0 q2 cos q3 q̈1 − sin q3 q̈2



+

 0 2 q2 q̇1q̇2 2 cos q3 q̇1q̇2 − q2 sin q3 (2 q̇1 + q̇3) q̇3

0 −q2 q̇21 − cos q3 (q̇1 + q̇3)
2

0 0 q2 sin q3 q̇
2
1 + 2 cos q3 q̇1q̇2

.
(16)

To complete the design of the (partly) adaptive control law (2), we need to evaluate the two above
regressors using suitable arguments. In particular, for the regressor YU we have

YU (q, q̇, q̇r, q̈r) = YU,M (q, q̈r) + YU,c(q, q̇, q̇r) . (17)

Inside the second (velocity-dependent) addend, we have to split the quadratic velocity terms by
exploiting the factorization given by matrix S in (13). For this, let

M(q) = MU (q) +MK(q)

11

be a decomposition of the inertia matrix in elements that depends (linearly) only on aU and,
respectively, only on aK . Accordingly, one can decompose also

S(q, q̇) = SU (q, q̇) + SK(q, q̇).

It can be easily shown that the three matrices

Ṁ − 2S, ṀU − 2SU , ṀK − 2SK ,

satisfy all the skew-symmetry property (as requested by the adaptive control law —see below). In
particular, for this robot we have

MU (q) =

 aU1 + 2 aU2 q2 + aU3 q
2
2 0 0

0 aU3 0

0 0 0


and

SU (q, q̇) =

 (aU2 + aU3 q2) q̇2 (aU2 + aU3 q2) q̇1 0

− (aU2 + aU3 q2) q̇1 0 0

0 0 0

 .

It is easy to verify the skew-symmetry of ṀU − 2SU . As a result, the second term YU,c in (17) is
obtained by using the identity

SU (q, q̇) q̇r = YU,c(q, q̇, q̇r)aU =

 0 q̇1q̇2r + q̇2q̇1r q2 (q̇1q̇2r + q̇2q̇1r)

0 −q̇1q̇1r −q2 q̇1q̇1r
0 0 0


 aU1

aU2

aU3

 . (18)

Summarizing, the regressor matrix YU needed in control (2), together with its transpose for the
adaptation law, is computed by (17) using YU,M (q, q̈r) from (15) and YU,c(q, q̇, q̇r) from (18):

YU (q, q̇, q̇r, q̈r) =

 q̈1r 2 q2 q̈1r + q̇1q̇2r + q̇2q̇1r q22 q̈2r + q2 (q̇1q̇2r + q̇2q̇1r)

0 −q̇1q̇1r q̈2r − q2 q̇1q̇1r
0 0 0

.
The same considerations can be repeated for MK , SK , and YK,c , leading to YK (q, q̇, q̇r, q̈r)
(these computations are left to the reader).

The modified adaptive control law (2) provides (global) asymptotic stability of the trajectory
tracking error. The proof follows the same argument as in the complete adaptive case (simpler in
the absence of friction terms), once the above partitioned notation for unknown and known terms
has been introduced. Consider in fact the same positive definite Lyapunov candidate

V =
1

2
sTM(q)s+ eTKP e+

1

2
ãT

U Γ−1ãU ≥ 0, (19)

where e = qd−q, s = q̇r− q̇ = ė+ Λe, Λ = K−1D KP > 0, ãU = aU − âU , and the gain matrices
KP > 0, KD > 0 and Γ > 0 have been chosen as diagonal. Note that only the unknown dynamic
coefficients, those that need to be updated online, and their estimates appear in the Lyapunov
candidate. The time derivative of (19) is

V̇ =
1

2
sTṀ(q)s+ sTM(q)ṡ+ 2 eTKP ė− ãT

U Γ−1 ˙̂aU (20)

12

The closed-loop dynamics, i.e., eq. (14) with the control (2), is

M(q)q̈ + S(q, q̇)q̇ = YU (q, q̇, q̇r, q̈r) âU + YK (q, q̇, q̇r, q̈r)aK +KPe+KDė

= M̂U (q)q̈r + ŜU (q, q̇)q̇r +MK(q)q̈r + SK(q, q̇)q̇r +KPe+KDė.
(21)

Subtracting both sides of eq. (21) from the identity

M(q)q̈r + S(q, q̇)q̇r = YU (q, q̇, q̇r, q̈r)aU + YK (q, q̇, q̇r, q̈r)aK

yields
M(q)ṡ+ S(q, q̇)s = YU (q, q̇, q̇r, q̈r) (aU − âU)−KPe−KDė

= YU (q, q̇, q̇r, q̈r) ãU − (KPe+KDė)
(22)

where the known term YKaK has been cancelled. Substituting M(q)ṡ from (22) into (20) and
using the update law ˙̂aU = ΓY T

U (q, q̇, q̇r, q̈r) s gives

V̇ =
1

2
sT
(
Ṁ(q)− 2S(q, q̇)

)
s+ sTYU (q, q̇, q̇r, q̈r) ãU − sT (KPe+KDė)

+ 2 eTKP ė− ãT
U Γ−1 · ΓY T

U (q, q̇, q̇r, q̈r) s

= −
(
ė+K−1D KP e

)T
(KPe+KDė) + 2 eTKP ė

= −ėTKD ė− eTKPK
−1
D KP e ≤ 0,

where we used the skew-symmetry of Ṁ −2S and the diagonality of the gain matrices. The proof
is completed by Barbalat lemma and LaSalle theorem.

∗ ∗ ∗ ∗ ∗

13

