Robotics 2

July 10, 2023

Exercise 1

A robot with n degrees of freedom and dynamics (with no gravity)

$$M(q)\ddot{q} + c(q,\dot{q}) = \tau$$

is redundant with respect to a m-dimensional task (m < n) described at the second-order differential level by

$$\ddot{\boldsymbol{y}} = \boldsymbol{J}(\boldsymbol{q})\ddot{\boldsymbol{q}} + \dot{\boldsymbol{J}}(\boldsymbol{q})\dot{\boldsymbol{q}},$$

where the $m \times n$ task Jacobian J is assumed to be full row rank. In the redundant case, the joint torque $\tau \in \mathbb{R}^n$ can always be decomposed as

$$oldsymbol{ au} = oldsymbol{J}^T(oldsymbol{q}) oldsymbol{F} + \left(oldsymbol{I} - oldsymbol{J}^T(oldsymbol{q}) oldsymbol{H}(oldsymbol{q})
ight) oldsymbol{ au}_0,$$

where $F \in \mathbb{R}^m$ is the task-space generalized force performing work on \dot{y} , matrix H is any generalized inverse of J^T (i.e., such that $J^T H J^T = J^T$), and $\tau_0 \in \mathbb{R}^n$.

With the robot in the state (q, \dot{q}) , prove the following two statements.

a) In order for an arbitrary $\tau_0 \neq 0$ not to produce any task acceleration $(\ddot{y} = 0)$, the only choice for H is

$$\boldsymbol{H}(\boldsymbol{q}) = \left(\boldsymbol{J}(\boldsymbol{q})\boldsymbol{M}^{-1}(\boldsymbol{q})\boldsymbol{J}^{T}(\boldsymbol{q})\right)^{-1}\boldsymbol{J}(\boldsymbol{q})\boldsymbol{M}^{-1}(\boldsymbol{q}),\tag{1}$$

namely the weighted pseudoinverse of J^T , with the inverse of the robot inertia as weight.

b) Based on (1), the m-dimensional dynamic model of the robot in the task space is given by

$$M_{\mathbf{u}}(\mathbf{q})\ddot{\mathbf{y}} + c_{\mathbf{u}}(\mathbf{q}, \dot{\mathbf{q}}) = F \tag{2}$$

with the $m \times m$ task-space inertia matrix M_y and the task-space Coriolis and centrifugal terms c_y given respectively by

$$oldsymbol{M}_{oldsymbol{y}}(oldsymbol{q}) = \left(oldsymbol{J}(oldsymbol{q})oldsymbol{M}^{-1}(oldsymbol{q})oldsymbol{J}^T(oldsymbol{q})
ight)^{-1}, \quad oldsymbol{c}_{oldsymbol{y}}(oldsymbol{q},\dot{oldsymbol{q}}) = oldsymbol{M}_{oldsymbol{y}}(oldsymbol{q})\left(oldsymbol{J}(oldsymbol{q})oldsymbol{M}^{-1}(oldsymbol{q})oldsymbol{c}(oldsymbol{q},\dot{oldsymbol{q}}) - \dot{oldsymbol{J}}(oldsymbol{q})\dot{oldsymbol{q}}
ight).$$

Exercise 2

Consider the 3-dof planar robot in Fig. 1, with one prismatic and two revolute joints, moving in a vertical plane. The coordinates q to be used are defined in the figure. Each link of the robot has uniformly distributed mass $m_i > 0$, i = 1, 2, 3, with center of mass on its geometric axis, and a diagonal barycentric inertia matrix. The prismatic joint has a limited range $q_2 \in [-L_2, L_2]$, while the revolute joints are unlimited. The robot is commanded by a joint force/torque $\tau \in \mathbb{R}^3$.

- a) Derive the robot inertia matrix M(q).
- b) Derive the gravity term g(q) and find all unforced equilibrium configurations (i.e., with $\tau = 0$).
- c) Assume that the gravity acceleration g_0 and the kinematic quantities L_2 and L_3 are known, while all other dynamic parameters are unknown. Provide a linear parametrization of the gravity vector $\mathbf{g}(\mathbf{q}) = \mathbf{Y}_{\mathbf{g}}(\mathbf{q}) \mathbf{a}_g$, in terms of a vector $\mathbf{a}_g \in \mathbb{R}^p$ of unknown dynamic coefficients and a $3 \times p$ regressor matrix $\mathbf{Y}_{\mathbf{g}}(\mathbf{q})$. Discuss the minimality of p.

d) Provide a symbolic expression (in terms of the robot dynamic parameters and joint limits) of a constant upper bound $\alpha > 0$ for the norm of the gradient of the gravity vector, i.e., such that $\|\partial g(q)/\partial q\| \le \alpha$ for all feasible q.

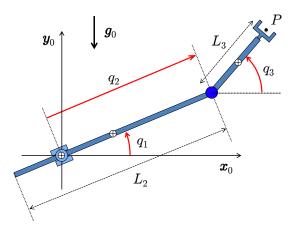


Figure 1: A planar RPR robot, with the definition of the coordinates to be used $\mathbf{q} = (q_1 \ q_2 \ q_3)^T$.

Exercise 3

Consider the robotic task of inserting a sphere in a cylindrical hole having the same size (zero clearance), as shown in Fig. 2. Assuming rigid and frictionless contacts, define a task frame, the natural constraints imposed by the geometry on the generalized velocity/force quantities expressed in this task frame, and the artificial constraints that can be taken as reference values by a hybrid force-velocity control law for the execution of this sphere-in-hole task with minimum effort.



Figure 2: Sphere-in-hole task.

Provide a basis for the space of admissible twists $V = (v^T \omega^T)^T \in \mathbb{R}^6$ and a complementary basis for the space of reaction wrenches $F = (f^T m^T)^T \in \mathbb{R}^6$. Discuss how measurements that are inconsistent with the geometric model are being handled by an hybrid force-velocity control law, and give two examples of such inconsistent measurements, one related to motion and one related to interaction.

[180 minutes; open books]