
Robotics 2

Remote Midterm Test – April 15, 2020

The test has the form of a Questionnaire. Please answer with texts and formulas and write clearly.
You may also use the ‘Reply Sheet’ in the Exam.net environment to type in some answers. Take
pictures of each page of your handwritten answers and upload them in the system before submitting.
Try to follow the same order of the questions. Number your replies accordingly.

Question #1

When and why is it convenient to choose a two-stage calibration procedure for the uncertain
Denavit-Hartenberg parameters in the kinematic model of a manipulator?

Question #2

The position p ∈ R3 of the origin On of the last frame of a n-dof serial manipulator is computed
in homogeneous coordinates through the direct kinematics as(

p
1

)
= 0A1

1A2 . . .
i−1Ai . . .

n−2An−1
n−1An

(
0
1

)
,

where 4×4 Denavit-Hartenberg homogeneous transformation matrices are used. Suppose that the
only uncertainty in the kinematic model is on the value of the twist angle αi of the ith homogeneous
matrix around its nominal value αnomi = π/2. Write the expression of the 3×1 regressor matrix Φ
in the basic equation ∆p = Φ ∆αi that is used for calibration at a generic configuration q ∈ Rn.

Question #3

The differential kinematics of a 3-dof robot performing a two-dimensional task x is expressed by
J(q)q̇ = ẋ. Suppose that, in a given configuration q ∈ R3, we have the following values for the
task Jacobian J and the desired task velocity ẋ:

J =

(
3 1 2

1.5 0.5 1

)
, ẋ =

(
2
1

)
.

Find the joint velocity q̇∗ of minimum norm that realizes at best the desired instantaneous task.
Does the task velocity error vanish or not? Find another q̇′ 6= q̇∗ providing the same task velocity
error and show that ‖q̇∗‖ <

∥∥q̇′∥∥.

Question #4

A 3R planar robot with links of unitary length moving in a vertical plane has to perform two
tasks: i) follow a trajectory with its end-effector position, and ii) keep its last link upwards. At

q =
(
π/4 0 π/4

)T
[rad], the desired end-effector linear velocity is vp =

(
2 −1

)T
[m/s]. Does

there exist a joint velocity q̇ ∈ R3 that executes both tasks simultaneously? If not, find a joint
velocity q̇TP with the Task Priority method, giving higher priority to the last link orientation task.

Question #5

A 3R planar robot is moving on a horizontal plane. At a given instant of time t, the robot is in

the configuration q(t) =
(

0 π/2 π/4
)T

[rad], with velocity q̇(t) =
(
π/2 −π/4 π/8

)T
[rad/s].

If the applied torque is u(t) =
(

1.5 0 −4
)T

[Nm], will the instantaneous total energy E of the
robot increase, stay the same, or decrease? And what about the Lagrangian function L?
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Question #6

Given the inertia matrix of a 2R polar robot

M(q) =

(
a1 + a2 sin2 q2 + a3 cos2 q2 0

0 a4

)
,

find two factorizations of the associated Coriolis/centrifugal terms c(q, q̇) = S′(q, q̇)q̇ = S′′(q, q̇)q̇
such that the matrix Ṁ − 2S′ is skew symmetric, while the matrix Ṁ − 2S′′ is not.

Question #7

Consider the PPR planar robot in the figure below. Using the coordinates q ∈ R3 and the dynamic
parameters defined therein, determine the expression of the robot inertia matrix M(q). Provide
then a linear parametrization only of the inertial terms in the dynamic model, i.e., such that

M(q)q̈ = YM (q, q̈)aM ,

where the 3 × p regressor matrix YM and the vector of dynamic coefficients aM ∈ Rp have the
least possible dimension p.

q2

xw

q3

q1

dc3

yw

⊕ m1

m3,I3
⊕

⊕

l3

m2

Question #8

Provide the inertia matrix Mp(p) of the robot considered in Question #7 when using for the

Lagrangian dynamic modeling the new set of coordinates p =
(
x y α

)T ∈ R3, where (x, y) are
the components of the Cartesian position of the robot end-effector in world coordinates and α is
the angle of the last link w.r.t. the xw axis of the world frame.

Question #9

A single link moving under gravity is modeled by the differential equation Iθ̈ + mg0d sin θ = u,
with m = 3 [kg], d = 0.5 [m], I = 1 [kgm2], and g0 = 9.81 [m/s2]. The motor torque is bounded
by |u| ≤ U = 25 [Nm]. The desired task is a rest-to-rest swing-up maneuver from θ(0) = 0 to
θ(T ) = π [rad] in T = 1 [s], to be done with a bang-bang acceleration profile. Is the torque bound
satisfied? If not, find the minimum uniform time scaling to execute the task in a feasible way.

Question #10

Assume that we have available the Newton-Euler routine NEα(arg1, arg2, arg3), equipped with the
kinematic and dynamic data of a n-dof serial manipulator. How can we compute the kinetic energy
T in a generic state (q, q̇) of this robot by just one call of this routine and one scalar product?

[180 minutes (3 hours); open books]
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Solution
April 15, 2020

Question #1

When and why is it convenient to choose a two-stage calibration procedure for the uncertain
Denavit-Hartenberg parameters in the kinematic model of a manipulator?

Reply #1

When it is expected that subsets of Denavit-Hartenberg parameters will have a very different
uncertainty range (some with large, some with small uncertainty), the calibration procedure is
performed in a first stage only for the set of parameters with large uncertainty, holding the others
at their nominal values. In a second stage, calibration is completed for all parameters at the same
time. In this stage, one starts with the nominal values for the original parameters with small
uncertainty and with the updated values for those that have been partially calibrated in the first
stage (and thus have now also a small residual uncertainty). This two-stage procedure improves
the accuracy of the pseudoinverse solution of the regressor equation by equalizing the numerical
conditioning of the regressor matrix. Normalizing a set of equations in this way is very common
in optimization and in engineering practice. �

Question #2

The position p ∈ R3 of the origin On of the last frame of a n-dof serial manipulator is computed
in homogeneous coordinates through the direct kinematics as(

p
1

)
= 0A1

1A2 . . .
i−1Ai . . .

n−2An−1
n−1An

(
0
1

)
,

where 4× 4 Denavit-Hartenberg homogeneous transformation matrices are used. Suppose that the
only uncertainty in the kinematic model is on the value of the twist angle αi of the ith homogeneous
matrix around its nominal value αnomi = π/2. Write the expression of the 3 × 1 regressor matrix
Φ in the basic equation ∆p = Φ ∆αi that is used for calibration at a generic configuration q ∈ Rn.

Reply #2

We need to evaluate the sensitivity of p ∈ R3 with respect to the single scalar parameter αi,
which appears only in the ith Denavit-Hartenberg (DH) homogeneous transformation matrix i−1Ai.
Therefore, by rewriting the direct kinematics in compact form, we have

∂phom
∂αi

=

 ∂p

∂αi
0

 = 0Ai−1
∂
(
i−1Ai

)
∂αi

iAn

(
0
1

)
,

where the sensitivity of the i-th DH matrix is

∂
(
i−1Ai

)
∂αi

=
∂

∂αi


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di
0 0 0 1



=


0 sin θi sinαi sin θi cosαi 0
0 − cos θi sinαi − cos θi cosαi 0
0 cosαi − sinαi 0
0 0 0 0

 .
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The first-order Taylor expansion of the direct kinematics around the nominal value of αi is

pnomhom +
∂phom
∂αi

∣∣∣∣
αi=αnom

i

(αi − αnomi )

= 0Anom
i−1

i−1Anom
i +

∂
(
i−1Ai

)
∂αi

∣∣∣∣∣
DHi=DHnom

i

(αi − αnomi )

 iAnom
n

(
0
1

)
.

Eliminating the nominal identities on the left and right side, we obtain the regressor matrix Φ
(actually, a vector here) as(

Φ

0

)
= 0Anom

i−1
∂
(
i−1Ai

)
∂αi

∣∣∣∣∣
DHi=DHnom

i

iAnom
n

(
0
1

)
,

Being αnomi = π/2, the evaluation of the sensitivity matrix
(
∂i−1Ai

)
/∂αi in nominal conditions

yields
0 sin θi sinαi sin θi cosαi 0
0 − cos θi sinαi − cos θi cosαi 0
0 cosαi − sinαi 0
0 0 0 0


∣∣∣∣∣∣∣∣
DHi=DHnom

i

=


0 sin θnomi 0 0
0 − cos θnomi 0 0
0 0 −1 0
0 0 0 0

 .

Finally, the regressor equation is
Φ ∆αi = ∆p,

with ∆αi = αi − αnomi ∈ R and ∆p ∈ R3 being the end-effector position error measured in a
generic experiment. �

Question #3

The differential kinematics of a 3-dof robot performing a two-dimensional task x is expressed by
J(q)q̇ = ẋ. Suppose that, in a given configuration q ∈ R3, we have the following values for the
task Jacobian J and the desired task velocity ẋ:

J =

(
3 1 2

1.5 0.5 1

)
, ẋ =

(
2
1

)
.

Find the joint velocity q̇∗ of minimum norm that realizes at best the desired instantaneous task.
Does the task velocity error vanish or not? Find another q̇′ 6= q̇∗ providing the same task velocity
error and show that ‖q̇∗‖ <

∥∥q̇′∥∥.

Reply #3

It is easy to see that rank(J) = 1, but also that ẋ ∈ range{J} so that we can find (∞2!) solutions
to this underdetermined system of linear equations. The minimum norm solution q̇∗ is the one
based on the pseudoinverse of J , i.e., q̇PS = J#ẋ, and will yield in this case zero task velocity
error (i.e., ẋ− Jq̇PS = 0). Since we can discard one of the two equations in Jq̇ = ẋ (because of
their linear dependence and consistency), the pseudoinverse solution is easily computed from

J1q̇ =
(

3 1 2
)
q̇ = 2 = ẋ1 ⇒ q̇PS = J#

1 ẋ1 =
1

14

 3
1
2

· 2 =

 3/7
1/7
2/7

 =

 0.4286
0.1429
0.2857

 .
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Another solution is found by simple inspection. For instance, being the third column of J equal

to ẋ, the joint velocity q̇′ =
(

0 0 1
)T

is also a solution. Indeed, ‖q̇PS‖ = 0.5345 < 1 =
∥∥q̇′∥∥. �

Question #4

A 3R planar robot with links of unitary length moving in a vertical plane has to perform two
tasks: i) follow a trajectory with its end-effector position, and ii) keep its last link upwards. At

q =
(
π/4 0 π/4

)T
[rad], the desired end-effector linear velocity is vp =

(
2 −1

)T
[m/s]. Does

there exist a joint velocity q̇ ∈ R3 that executes both tasks simultaneously? If not, find a joint
velocity q̇TP with the Task Priority method, giving higher priority to the last link orientation task.

Reply #4

Since

α = f1(q) = q1 + q2 + q3, p = f2(q) =

(
cos q1 + cos(q1 + q2) + cos(q1 + q2 + q3)
sin q1 + sin(q1 + q2) + sin(q1 + q2 + q3)

)
,

the two Jacobians of the link orientation task and, respectively, of the position task are

J1 =
(

1 1 1
)
, J2(q) =

(
− (s1 + s12 + s123) − (s12 + s123) −s123
c1 + c12 + c123 c12 + c123 c123

)
,

with the usual shorthand notation for trigonometric quantities (e.g., s12 = sin q1 + sin(q1 + q2)).

At q =
(
π/4 0 π/4

)T
, the orientation of the third link is already upwards (α = π/2), and this

would means that no task velocity is needed for keeping the correct link orientation, or vα = 0.
The complete task Jacobian matrix and the associated task velocity vector are thus

J =

(
J1

J2

)
=

 1 1 1
−2.4142 −1.7071 −1
1.4142 0.7071 0

 , v =

(
v1
v2

)
=

(
vα
vp

)
=

 0
2
−1

 .

The Jacobian J is singular (the sum of its rows is zero), while v 6∈ range{J} (in fact, the sum of the
scalar components of v is 1). This means that the two tasks are in conflict and cannot be executed
simultaneously without an error. If attempting a solution with, for instance, the pseudoinverse of
J (rather than with the forbidden inverse), we would get

q̇PS = J#v =

 −0.8873
−0.1111
0.6650

 ⇒ ev,PS = v − J#q̇PS =

 0.3333
0.3333
0.3333

 ,

spamming equally the error on all components of both velocity tasks. Instead, consider the Task
Priority (TP) method for the two tasks, each with its assigned priority. For the highest priority
task, we have

J#
1 =

1

3

 1
1
1

 ⇒ P 1 = I − J#
1 J1 =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

 =
1

3

 2 −1 −1
−1 2 −1
−1 −1 2


Considering that v1 = 0, the TP method simplifies to

q̇TP = J#
1 v1 + (J2P 1)

#
(
v2 − J2J

#
1 v1

)
= (J2P 1)

#
v2,
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yielding

q̇TP =

( −2.4142 −1.7071 1
1.4142 0.7071 0

)
· 1

3

 2 −1 −1
−1 2 −1
−1 −1 2

#( 2
−1

)

=

(
−0.7071 0 0.7071
0.7071 0 −0.7071

)#(
2
−1

)
=

 −0.3536 0.3536
0 0

0.3536 −0.3536

( 2
−1

)
=

 −1.0607
0

1.0607

 .

Thus, joints 1 and 3 will move with the same speed but in opposite directions so as to satisfy the
first task, pushing the error only to the second task. In fact, we have

ev,TP = v − J#q̇TP = −

 0
0.5
0.5

 ,

with ev1,TP = 0. Note, however, that the TP method leads to a larger norm of the error on the
linear velocity task than the PS method: ‖ev2,TP ‖ = 0.7071 > 0.4243 = ‖ev2,PS‖. �

Question #5

A 3R planar robot is moving on a horizontal plane. At a given instant of time t, the robot is in

the configuration q(t) =
(

0 π/2 π/4
)T

[rad], with velocity q̇(t) =
(
π/2 −π/4 π/8

)T
[rad/s].

If the applied torque is u(t) =
(

1.5 0 −4
)T

[Nm], will the instantaneous total energy E of the
robot increase, stay the same, or decrease? And what about the Lagrangian function L?

Reply #5

Since the robot moves with constant potential energy U , we have U̇ = 0. Then, the instantaneous
variation Ė of the total energy E = T + U and the instantaneous variation L̇ of the Lagrangian
function L = T − U will be the same. At the time instant t, we have

Ė(t) = L̇(t) (= Ṫ (t)) = q̇T(t)u(t) =
(
π/2 −π/4 π/8

)T  1.5
0
−4

 = 0.7854 > 0.

Thus, the total energy of the robot and its Lagrangian will instantaneously increase. �

Question #6

Given the inertia matrix of a 2R polar robot

M(q) =

(
a1 + a2 sin2 q2 + a3 cos2 q2 0

0 a4

)
,

find two factorizations of the associated Coriolis/centrifugal terms c(q, q̇) = S′(q, q̇)q̇ = S′′(q, q̇)q̇
such that the matrix Ṁ − 2S′ is skew symmetric, while the matrix Ṁ − 2S′′ is not.

Reply #6

We compute the velocity terms using the matrices Ci of Christoffel’s symbols. These are also
helpful for defining a factorization that satisfies the requested skew-symmetric property. For the
components of vector c(q, q̇), we have:

ci(q, q̇) = q̇TCi(q)q̇, Ci(q) =
1

2

(
∂M i(q)

∂q
+

(
∂M i(q)

∂q

)T
− ∂M(q)

∂qi

)
, for i = 1, 2,
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being M i the ith column of the inertia matrix M . We obtain

C1(q) =
1

2

(
0 2(a2 − a3) sin q2 cos q2

2(a2 − a3) sin q2 cos q2 0

)

=

(
0 1

2 (a2 − a3) sin(2q2)
1
2 (a2 − a3) sin(2q2) 0

)

C2(q) = −1

2

(
2(a2 − a3) sin q2 cos q2 0

0 0

)
=

(
− 1

2 (a2 − a3) sin(2q2) 0

0 0

)
,

leading to

c(q, q̇) =

(
c1(q, q̇)

c2(q, q̇)

)
=

(
(a2 − a3) sin(2q2)q̇1q̇2

− 1
2 (a2 − a3) sin(2q2)q̇21

)
.

We need at this point the time derivative of the inertia matrix, i.e.,

Ṁ =

(
(a2 − a3) sin(2q2)q̇2 0

0 0

)
.

A factorization S′ that satisfies the skew-symmetric property is then given by

S′(q, q̇) =

(
q̇TC1(q)

q̇TC2(q)

)
=

(
1
2 (a2 − a3) sin(2q2) q̇2

1
2 (a2 − a3) sin(2q2) q̇1

− 1
2 (a2 − a3) sin(2q2) q̇1 0

)
,

being c(q, q̇) = S′(q, q̇)q̇ and

Ṁ − 2S′ =

(
0 −(a2 − a3) sin(2q2) q̇1

(a2 − a3) sin(2q2) q̇1 0

)
.

A possible factorization S′′ that, on the contrary, fails to satisfy the skew-symmetric property is

S′′(q, q̇) =

(
(a2 − a3) sin(2q2) q̇2 0

− 1
2 (a2 − a3) sin(2q2) q̇1 0

)
.

In fact, one can verify that c(q, q̇) = S′′(q, q̇)q̇, but the matrix

Ṁ − 2S′′ =

(
−(a2 − a3) sin(2q2)q̇1 0

(a2 − a3) sin(2q2) q̇1 0

)
,

is not skew-symmetric. �

Question #7

Consider the PPR planar robot in the figure below. Using the coordinates q ∈ R3 and the dynamic
parameters defined therein, determine the expression of the robot inertia matrix M(q). Provide
then a linear parametrization only of the inertial terms in the dynamic model, i.e., such that

M(q)q̈ = YM (q, q̈)aM ,
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where the 3×p regressor matrix YM and the vector of dynamic coefficients aM ∈ Rp have the least
possible dimension p.

Reply #7

The first two simple contributions to the robot kinetic energy are

T1 =
1

2
m1q̇

2
1 and T2 =

1

2
m2

(
q̇21 + q̇22

)
.

q2

xw

q3

q1

dc3

yw

⊕ m1

m3,I3
⊕

⊕

l3

m2

For T3, we compute first (in the plane)

pc3 =

(
q2 + dc3 cos q3
q1 + dc3 sin q3

)
⇒ vc3 = ṗc3 =

(
q̇2 − dc3 sin q3 q̇3
q̇1 + dc3 cos q3 q̇3

)
⇒ ‖vc3‖2 = q̇21 + q̇22 + d2c3q̇

2
3 + 2dc3 (cos q3 q̇1 − sin q3 q̇2) q̇3

and then

T3 =
1

2
I3q̇

2
3 +

1

2
m3

(
q̇21 + q̇22 + d2c3q̇

2
3 + 2dc3 (cos q3 q̇1 − sin q3 q̇2) q̇3

)
.

The total kinetic energy of the robot is thus

T = T1 + T2 + T3 =
1

2
q̇TM(q)q̇ =

1

2
q̇T

 m1 +m2 +m3 0 m3dc3 cos q3

0 m2 +m3 −m3dc3 sin q3

m3dc3 cos q3 −m3dc3 sin q3 I3 +m3d
2
c3

 q̇.

By introducing a vector aM ∈ R4 of dynamic coefficients, the inertia matrix can be rewritten as

aM =


a1
a2
a3
a4

 =


m1 +m2 +m3

m2 +m3

I3 +m3d
2
c3

m3dc3

 ⇒ M(q) =

 a1 0 a4 cos q3

0 a2 −a4 sin q3

a4 cos q3 −a4 sin q3 a3

 .

Clearly, p = 4 is the minimum number of dynamic coefficients for this robot. The linear parametriza-
tion of the inertial terms is

M(q)q̈ =

 q̈1 0 0 cos q3 q̈3

0 q̈2 0 − sin q3 q̈3

0 0 q̈3 cos q3 q̈1 − sin q3 q̈2



a1
a2
a3
a4

 = YM (q, q̈)aM . �
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Question #8

Provide the inertia matrix Mp(p) of the robot considered in Question #7 when using for the

Lagrangian dynamic modeling the new set of coordinates p =
(
x y α

)T ∈ R3, where (x, y) are
the components of the Cartesian position of the robot end-effector in world coordinates and α is
the angle of the last link w.r.t. the xw axis of the world frame.

Reply #8

The change of coordinates

p =

 x
y
α

 =

 q2 + l3 cos q3
q1 + l3 sin q3

q3

 = f(q)

represents the desire to use Cartesian variables for describing the dynamics of a PPR robot. The
change of coordinates is here a diffeomorphism (i.e., a differentiable mapping with a unique and
differentiable inverse) in R2 × SO(1). Its inverse is

q = f−1(p) =

 p2 − l3 sin p3
p1 − l3 cos p3

p3

 ,

while the Jacobian matrix of the transformation (and its inverse) takes the form

J(q) =
∂f(q)

∂q
=

 0 1 −l3 sin q3
1 0 l3 cos q3
0 0 1

 ⇒ J−1(q) =

 0 1 −l3 cos q3
1 0 l3 sin q3
0 0 1

 .

The inertia matrix of the PPR robot in the new coordinates is obtained as

Mp(p) =
(
J−T(q)M(q)J−1(q)

)∣∣∣
q=f−1(p)

in which all quantities have been already defined. �

Additional remark: Further elaboration of the above expression is straightforward but lengthy
(and beyond the scope of the present question). Nonetheless, using the Matlab Symbolic Toolbox,
it can be shown that the explicit expression of Mp as a function of p only can be rewritten as

Mp(p) =

 ap2 0 −ap4 sin p3

0 ap1 ap5 cos p3

−ap4 sin p3 ap5 cos p3 ap3 + (ap1 − ap2) l23 cos2 p3

 ,

where a new set of dynamic coefficients ap ∈ R5 has been introduced for compactness, defined in
terms of the dynamic coefficients a ∈ R4 already present in M(q). These new dynamic coefficients
are

ap =


a1
a2

a3 + a2l
2
3 − 2a4l3

a4 − a2l3
a4 − a1l3

 .

Indeed, note that the 5 coefficients in ap are not a minimal dynamic set: they can be expressed in
fact as linear combinations of the 4 coefficients in a, provided that the length l3 of the third link
(a kinematic quantity) is known.
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Question #9

A single link moving under gravity is modeled by the differential equation Iθ̈ + mg0d sin θ = u,
with m = 3 [kg], d = 0.5 [m], I = 1 [kgm2], and g0 = 9.81 [m/s2]. The motor torque is bounded
by |u| ≤ U = 25 [Nm]. The desired task is a rest-to-rest swing-up maneuver from θ(0) = 0 to
θ(T ) = π [rad] in T = 1 [s], to be done with a bang-bang acceleration profile. Is the torque bound
satisfied? If not, find the minimum uniform time scaling to execute the task in a feasible way.

Reply #9

We start by determining the value A of the piecewise constant (bang-bang) acceleration profile
requested for executing the desired trajectory, given ∆θ = θ(T ) − θ(0) = π and T = 1. Starting
at rest, the velocity θ̇ will grow linearly up to the midtime t = T/2, reaching a value V = A · T/2,
and then returning linearly to zero at t = T . The area underlying the triangular velocity profile is
equal to the angular displacement ∆θ. Thus,

∆θ =

∫ T

0

θ̇ dτ =
V · T

2
=
A · T 2

4
⇒ A =

4∆θ

T 2
= 4π [rad/s2].

The inertial term in the dynamic model will have a constant value ui = Iθ̈(t) = IA = 4π in the
first half of the motion, t ∈ [0, T/2], until the link reaches the midpoint ∆/2 = Π/2 of the motion
trajectory; during the second half, t ∈ (T/2, T ], this inertial term will have the same amplitude but
a negative sign. On the other hand, the gravitational torque ug = mg0d sin θ(t) = 14.715 sin θ(t)
will grow from zero to its maximum at t = T/2, when θ(T/2) = ∆θ/2 = π/2 and ug,max = 14.7150,
and return then symmetrically to zero. As a result, the maximum (positive) torque requested by
the desired trajectory is attained at t = T/2 = 1 [s] and is equal to umax = ui+ug,max = 27.2814 >
25 = U [Nm], exceeding so the motor torque bound. The original trajectory is unfeasible. We need
then to uniformly slow down motion by a factor k > 1, in order to reduce the inertial acceleration
component of the inverse dynamics torque (the gravitational torque ug is unaffected by any time
scaling). Since the inertial torque scales with k2 (quadratically), the minimum scaling factor k is
computed as

k = max

{
1,

√
umax − ug,max
U − ug,max

}
= max

{
1,

√
4π

10.2850

}
= 1.1054.

The new motion time will be Ts = kT = 1.1054 [s] and the peak of the total torque will be again
assumed at t = Ts/2, where θ(Ts/2) = π/2. Without the need of a new inverse dynamics analysis,
this is computed as

umax,s =
umax − ug,max

k2
+ug,max =

ui
k2

+ug,max = (U − ug,max)+ug,max = U = 25 [Nm]. �

Additional material: Plots of the relevant quantities obtained using Matlab are reported at the
end for the original trajectory (Figure 1) and for the scaled, feasible one (Figure 2).

Question #10

Assume that we have available the Newton-Euler routine NEα(arg1, arg2, arg3), equipped with the
kinematic and dynamic data of a n-dof serial manipulator. How can we compute the kinetic energy
T in a generic state (q, q̇) of this robot by just one call of this routine and one scalar product?

Reply #10

We compute first the Newton-Euler routine output y = 1
2 M(q)q̇ = NE0

(
q,0, 12 q̇

)
and then

obtain the result with a scalar product: q̇Ty = 1
2 q̇

TM(q)q̇ = T (q, q̇). �
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Figure 1: Position, velocity and acceleration profiles [left] and total and gravitational torques [right]
for the original unfeasible trajectory with T = 1 [s].
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Figure 2: Position, velocity and acceleration profiles [left] and total and gravitational torques [right]
for the scaled feasible trajectory with Ts = 1.1054 [s].
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