
Robotics 2

Remote Midterm Test – April 14, 2021

Exercise #1

The 2R robot in Fig. 1 moves in a vertical plane. The two links have, respectively, kinematic
lengths l1 and l2, masses m1 and m2, and barycentric inertias I1 and I2 (around the axis normal
to the motion plane). The position of the center of mass (CoM) of each link with respect to the

attached link frame is given by rci =
(
rci,x rci,y 0

)T
, with rci,x 6= −li and rci,y 6= 0, for i = 1, 2.

A) Determine the robot dynamic model, M(q)q̈+c(q, q̇)+g(q) = u, neglecting dissipative effects.

B) Provide a linear parametrization of the model, Y (q, q̇, q̈)a = u, in terms of a regressor matrix
Y ∈ R2×p and a vector a ∈ Rp of dynamic coefficients.

Exercise #2

Consider the planar 3R robot with links of unitary length in Fig. 2 and use the absolute coordinates
q = (q1, q2, q3) defined therein. The robot is commanded with the joint velocity q̇ ∈ R3. Starting
from the configuration q(0) = (π/4, 0, 0), the robot should simultaneously move its end-effector
point P along a vertical line parallel to y0 with a constant speed v > 0, while keeping the second
link horizontal. Determine the first encountered configuration qs at which these two tasks run into
an algorithmic singularity. In q = qs and for v = 1 [m/s], compute the following three commands:

a) q̇PS using pseudoinversion of the extended Jacobian of the two tasks;

b) q̇DLS using damped least squares on the extended Jacobian, with damping parameter µ2 = 0.25;

c) q̇TP using the task priority method, with the end-effector task having the highest priority.

Compare in the three cases the norm of the resulting joint velocity, the norm of the end-effector
velocity error ėP ∈ R2, and the absolute value of the second joint velocity error ėq2 ∈ R.

Exercise #3

The dynamic model of a PR robot moving on a horizontal plane is given in the lecture slides1.
The end-effector point P should trace in minimum time a circular path of radius R = l2

p(s) =

(
k +R cos (s− α)

R sin (s− α)

)
, s = [0, 2α] (0 < α <

π

2
),

from rest to rest between Pi and Pf (see Fig. 3), under bounded input force/torque |ui| ≤ Ui,max,,
i = 1, 2. Assuming that the second bound U2,max is the only limiting factor, provide the expression
of the needed input ud(t) ∈ R2 and of the minimum time T . Sketch the time profiles of the inputs.

[180 minutes (3 hours); open books]

1Block 03 LagrangianDynamics 1.pdf, slide #25.
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Figure 1: A planar 2R robot having the link CoMs in generic positions.
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Figure 2: A planar 3R robot, with absolute coordinates q and equal links of length L = 1 m.
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Figure 3: The assigned motion task for a planar PR robot.
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Solution
April 14, 2021

Exercise #1

The special feature of this planar 2R arm is the generic location of the CoM of the links, not
necessarily placed on the kinematic link axis. A Lagrangian approach is followed for dynamic
modeling. We can work either with vectors in 3D or in 2D, considering the planar nature of the
problem2. In the first case, we may also use the recursive algorithm with moving frames (the result
is indeed the same).

Kinetic energy. For the first link, we have

T1 =
1

2
m1‖vc1‖2 +

1

2
ωT

1 I1 ω1 =
1

2
m1

(
(l1 + rc1,x)

2
+ r2c1,y

)
q̇21 +

1

2
I1q̇

2
1 ,

where the coefficient in parentheses multiplying m1 is the squared distance of the CoM of link 1
from the axis of joint 1. For the second link, we have

T2 =
1

2
m2‖vc2‖2 +

1

2
ωT

2 I2 ω2 =
1

2
m2‖vc2‖2 +

1

2
I2 (q̇1 + q̇2)

2
.

The velocity of the CoM of link 2 can be computed in two alternative ways. We can start from
the absolute position of the CoM in 2D,

0pc2 =

(
l1c1

l1s1

)
+ 0R̄2(q1, q2)

(
l2 + rc2,x

rc2,y

)
, 0R̄2(q1, q2) =

(
c12 −s12
s12 c12

)
,

leading to

0vc2 = 0ṗc2 =

(
−l1s1
l1c1

)
q̇1 +

(
− (l2 + rc2,x) s12 − rc2,y c12
(l2 + rc2,x) c12 − rc2,y s12

)
(q̇1 + q̇2).

Or we can work with velocities in 3D and rely on moving frames; in this case, using

1ω2 = 2ω2 =

 0

0

q̇1 + q̇2

 , 1R2(q2) =

 c2 −s2 0

s2 c2 0

0 0 1

 ,

we compute

2v2 = 1RT
2 (q2)

(
1v1 + 1ω2 × 1r12

)
= 1RT

2 (q2)

 0

l1q̇1

0

+ 1RT
2 (q2)1ω2 × 1RT

2 (q2)1r12

= 2v1 + 2ω2 × 2r12 =

 l1s2 q̇1

l1c2 q̇1

0

+

 0

0

q̇1 + q̇2

×
 l2

0

0

 =

 l1s2 q̇1

l1c2 q̇1 + l2 (q̇1 + q̇2)

0

 ,

and then

2vc2 = 2v2 + 2ω2 × 2rc2 = 2v2 +

 0

0

q̇1 + q̇2

×
 rc2,x

rc2,y

0

 =

 l1s2 q̇1 − rc2,y (q̇1 + q̇2)

l1c2 q̇1 + (l2 + rc2,x) (q̇1 + q̇2)

0

 .

2We use the compact trigonometric notation throughout this exercise, e.g., c12 = cos(q1 + q2).
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As a result∥∥2vc2

∥∥2 = l21 q̇
2
1 +

(
(l2 + rc2,x)

2
+ r2c2,y

)
(q̇1 + q̇2)

2
+ 2l1 ((l2 + rc2,x) c2 − rc2,ys2) q̇1 (q̇1 + q̇2) .

Indeed, it is
∥∥2vc2

∥∥2 =
∥∥0vc2

∥∥2. But computations (and simplifications) are easier when using the
moving frames. The total kinetic energy is thus

T = T1 + T2 =
1

2

(
I1 +m1

(
(l1 + rc1,x)

2
+ r2c1,y

)
+m2l

2
1 + I2 +m2

(
(l2 + rc2,x)

2
+ r2c2,y

)
+ 2m2l1 ((l2 + rc2,x) c2 − rc2,ys2)

)
q̇21 +

1

2

(
I2 +m2

(
(l2 + rc2,x)

2
+ r2c2,y

))
q̇22

+
(
I2 +m2

(
(l2 + rc2,x)

2
+ r2c2,y

)
+m2l1 ((l2 + rc2,x) c2 − rc2,ys2)

)
q̇1q̇2

=
1

2
q̇TM(q)q̇.

Inertia matrix. One can organize the robot inertia matrix M(q) in a compact way, by introducing
the following dynamic coefficients:

a1 = I1 +m1

(
(l1 + rc1,x)

2
+ r2c1,y

)
+m2l

2
1 + I2 +m2

(
(l2 + rc2,x)

2
+ r2c2,y

)
a2 = m2l1(l2 + rc2,x)

a3 = −m2l1rc2,y

a4 = I2 +m2

(
(l2 + rc2,x)

2
+ r2c2,y

) (1)

As a result,

M(q) =

(
a1 + 2a2c2 + 2a3s2 a4 + a2c2 + a3s2

a4 + a2c2 + a3s2 a4

)
(2)

This compact form is useful for the following derivation of the velocity terms in the dynamic model.
Note that the asymmetric location of the CoM of link 2 w.r.t. the link axis x2 (i.e., rc2,y 6= 0) has
introduced the extra dynamic coefficient a3 and modified the two coefficients a1 and a4. On the
other hand, asymmetry in the CoM of link 1 (i.e., rc1,y 6= 0) modifies only a1.

Coriolis and centrifugal terms. Denoting by M i the ith column of the inertia matrix M(q), we
compute the components of the Coriolis/centrifugal vector c(q, q̇) using the Christoffel symbols:

ci(q, q̇) = q̇TCi(q)q̇, Ci(q) =
1

2

(
∂M i

∂q
+

(
∂M i

∂q

)T

− ∂M

∂qi

)
, i = 1, 2.

We obtain

C1(q) =
1

2

((
0 −2a2s2 + 2a3c2

0 −a2s2 + a3c2

)
+

(
0 0

−2a2s2 + 2a3c2 −a2s2 + a3c2

)
−O

)

=

(
0 −a2s2 + a3c2

−a2s2 + a3c2 −a2s2 + a3c2

)
⇒

c1(q, q̇) = (a3c2 − a2s2) (2q̇1 + q̇2) q̇2

= −m2l1 (rc2,yc2 + (l2 + rc2,x)s2) (2q̇1 + q̇2) q̇2

and

C2(q) =
1

2

((
0 −a2s2 + a3c2

0 0

)
+

(
0 0

−a2s2 + a3c2 0

)
−
(

2a3c2 − 2a2s2 a3c2 − a2s2
a3c2 − a2s2 0

))

=

(
−(a3c2 − a2s2) 0

0 0

)
⇒

c2(q, q̇) = − (a3c2 − a2s2) q̇21
= m2l1 (rc2,yc2 + (l2 + rc2,x)s2) q̇21
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Thus, the final expression of the quadratic velocity terms in the model is

c(q, q̇) = (a3c2 − a2s2)

(
q̇22 + 2q̇1q̇2

−q̇21

)
. (3)

Potential energy and gravity term. From the expression of the potential energy of a generic
link i in the serial chain,

Ui = −mi g
T
0 r0,ci,

we obtain for the first link

U1 = −m1

(
0 −g0 0

) ∗
(l1 + rc1,x) s1 + rc1,yc1

∗

= m1g0
(
(l1 + rc1,x) s1 + rc1,yc1

)
,

and for the second link

U2 = −m2

(
0 −g0 0

) ∗
l1s1 + (l2 + rc2,x) s12 + rc2,yc12

∗

= m2g0
(
l1s1+(l2 + rc2,x) s12+rc2,yc12

)
.

From U = U1 + U2, we have

g(q) =

(
∂U

∂q

)T
=

(
g0 ((m1 (l1 + rc1,x) +m2l1) c1 −m1rc1,ys1 +m2 (l2 + rc2,x) c12 −m2rc2,ys12)

m2g0
(
(l2 + rc2,x) c12 − rc2,ys12

) )
.

The gravity vector in the dynamic model is rewritten more compactly as

g(q) =

(
a5c1 + a6s1 + a7c12 + a8s12

a7c12 + a8s12

)
(4)

by introducing the additional dynamic coefficients

a5 = g0
(
m1 (l1 + rc1,x) +m2l1

)
a6 = −m1g0rc1,y

a7 = m2g0 (l2 + rc2,x)

a8 = −m2g0rc2,y.

(5)

In the gravity term, the asymmetric location of the CoM of each link introduces a single extra
dynamic coefficient, namely a6 for the first link and a8 for the second. Instead, the two other
gravity coefficients of a 2R robot with symmetric CoMs are not modified.

Linear parametrization. The complete dynamic model of the considered 2R robot,

M(q)q̈ + c(q, q̇) + g(q) = u, (6)

is obtained by using (2), (3), and (4). We have already introduced the inertia-related dynamic
coefficients in (1) and the gravity-related ones in (5). The linear factorization of the model (6),

M(q)q̈ + c(q, q̇) + g(q) = Y (q, q̇, q̈)a, (7)

is immediately obtained in terms of the coefficient vector a ∈ R8. The regressor matrix in (7) is

Y (q, q̇, q̈) =

 q̈1
c2 (2q̈1 + q̈2)

− s2q̇2 (2q̇1 + q̇2)

s2 (2q̈1 + q̈2)

+ c2q̇2 (2q̇1 + q̇2)
q̈2 c1 s1 c12 s12

0 c2q̈1 + s2q̇
2
1 s2q̈1 − c2q̇21 q̈1 + q̈2 0 0 c12 s12

 . (8)
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We finally note that, assuming both the link length l1 and the gravity acceleration g0 to be known,
the number of independent dynamic coefficients reduces from p = 8 to p = 6. In facts, two pairs
of dynamic coefficients collapse:

a2 = m2 l1 (l2 + rc2,x) = l1 a
′
2

a7 = m2 g0 (l2 + rc2,x) = g0 a
′
2

}
⇐⇒ a′2 = m2 (l2 + rc2,x) ,

a3 = −m2 l1 rc2,y = l1 a
′
3

a8 = −m2 g0 rc2,y = g0 a
′
3

}
⇐⇒ a′3 = −m2 rc2,y.

The first merging is present also in the 2R robot with symmetric CoMs. The second is related to
the asymmetric case only.

Exercise #2

Taking into account the use of absolute coordinates (link angles w.r.t. the x0 axis) for this planar
robot with n = 3 and unitary link lengths, the kinematics of the first task (of dimension m1 = 2)
involving the position p of the end-effector point P is

r1 = p =

(
px

py

)
=

(
cos q1 + cos q2 + cos q3

sin q1 + sin q2 + sin q3

)
= f1(q), (9)

with associated Jacobian

J1(q) =
∂f1(q)

∂q
=

(
− sin q1 − sin q2 − sin q3

cos q1 cos q2 cos q3

)
. (10)

From (9), the end-effector position in the initial configuration q(0) = (π/4, 0, 0) is

p(0) = f1(q(0)) =

(
2 +

√
2
2

√
2
2

)
=

(
2.7071

0.7071

)
.

The desired behavior is to move the point P from p(0) along a vertical line parallel to y0 with a
constant speed v > 0. Thus

r1d(t) = p(0) +

(
0

vt

)
⇒ ṙ1d = ṗd =

(
0

1

)
v.

The second task (of dimension m2 = 1) is to keep the second link always horizontal (as in the
initial configuration q(0)). It is described by

r2 = q2 = f2(q) ⇒ J2 =
∂f2(q)

∂q
=
(

0 1 0
)
, r2d(t) = 0 ⇒ ṙ2d = q̇2d = 0. (11)

The two tasks are simultaneously executed using the extended Jacobian JE(q) (a square matrix
of size m = m1 +m2 = 3 = n) and the extended task velocity defined by

JE(q) =

(
J1(q)

J2

)
=

 − sin q1 − sin q2 − sin q3

cos q1 cos q2 cos q3

0 1 0

 , ṙE,d =

(
ṙ1d

ṙ2d

)
∈ R3. (12)
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Therefore, out of singularities, the joint velocity will be commanded in an unique way by

q̇ = J−1E (q) ṙE,d = J−1E (q)

 0
v
0

 . (13)

In the initial configuration q(0), the extended Jacobian JE(q(0)) has full rank. From (13), we
obtain q̇(0) = (0, 0, 1) [rad/s], with only the third link rotating counterclockwise. It is rather
intuitive that, when the robot moves its end effector upwards vertically and keeps its second link
horizontal (q2 = 0), the first link will rotate clockwise (decreasing its orientation from π/4) and
the third link counterclockwise (increasing its absolute orientation from 0). This motion will
continue until a singular configuration qs is first encountered for the extended Jacobian in (12).
To determine qs, we impose at the same time

detJE(qs) = sin(qs3 − qs1) = 0

and that the end effector is still on the initial vertical path (with the second link horizontal), or

px(qs)|qs2=0 = cos qs1 + cos qs2|qs2=0 + cos qs3 = cos qs1 + 1 + cos qs3 = 2 +

√
2

2
= px(q(0)).

These two equations are solved as

qs3 = qs1 ⇒ 2 cos qs1 = 1 +

√
2

2
⇒ qs1 = arccos

(
2 +
√

2

4

)
= 0.5480 [rad].

The singular configuration and the associated end-effector position are thus (see Fig. 4)

qs =

 0.5480

0

0.5480

 [rad] ⇒ ps = f(qs) =

(
2.7071

1.0420

)
[m].

x0

q(0) = (p/4, 0, 0)

y0

p(0) = 2 + #
#
, #
#

v

x0

qs = (0.548, 0, 0.548)

y0

p(qs) = 2 + #
#
, 1.0420

Figure 4: The 3R robot in its initial configuration q(0) and in the singular configuration qs.

The extended Jacobian is evaluated as

JE(qs) =

(
J1(qs)

J2

)
=

 −0.5210 0 −0.5210

0.8536 1 0.8536

0 1 0

 .

Since

rankJ1(qs) = 2 = m1, rankJ2 = 1 = m2, but rankJE(qs) = 2 < 3 = m = m1 +m2,
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the configuration qs is a true algorithmic singularity. Moreover, the extended task cannot be
realized in this configuration, since

ṙd =

 0
v
0

 6∈ R {JE(qs)} , ∀v 6= 0.

We evaluate then the three requested joint velocity commands, setting in particular v = 1 [m/s].
Using the pseudoinverse method, we have

q̇PS = J#
E (qs) ṙd =

−0.4098 0.3357 −0.3357

0.3498 0.2135 0.7865

−0.4098 0.3357 −0.3357


 0

1

0

=

 0.3357

0.2135

0.3357

. (14)

Using instead the damped least squares method, with damping parameter µ2 = 0.25, we obtain

q̇DLS = JT
E(qs)

(
µ2I + JE(qs)J

T
E(qs)

)−1
ṙd =

−0.3251 0.2959 −0.2367

0.2467 0.2199 0.6241

−0.3251 0.2959 −0.2367


 0

1

0

 =

 0.2959

0.2199

0.2959

.
(15)

Note that the two velocities q̇PS and q̇DLS are quite similar. In particular, in both commands
the first and the third joint move with the same speed (different in the two methods). Finally, to
apply the task priority method when the end-effector task is given the highest priority, we need to
compute3

q̇TP = J#
1 (qs) ṙd1 + (J2P 1(qs))

# (
ṙd2 − J2J

#
1 (qs)ṙd1

)
, (16)

where, being J1(qs) a full rank matrix, the pseudoinverse of the first task Jacobian is evaluated as

J#
1 (qs) = JT

1 (qs)
(
J1(qs)J

T
1 (qs)

)−1
=

 −0.9597 0

1.6383 1

−0.9597 0

 ,

and the associated projector in the null space N{J(qs)} becomes

P 1(qs) = I − J#
1 (qs)J1(qs) =

 0.5 0 −0.5

0 0 0

−0.5 0 0.5

 .

It is easy then to see the vanishing of the term

J2P 1(qs) =
(

0 0 0
)

⇒ (J2P 1(qs))
#

=

 0
0
0

 = 0. (17)

As a result, the task priority method (16) collapses here into the simple use of the pseudoinverse
of the first task Jacobian

q̇TP = J#
1 (qs) ṙd1 =

 0
1
0

. (18)

3Here, we set ṙd2 = 0. However, one should not care too much about the terms inside the last parenthesis in (16):
these will be premultiplied anyway by zero —see eq. (17).
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Only the second link rotates, fully violating the second task but perfectly realizing the first one.

The task executions obtained with the three methods (14), (15), and (18) are

ṙPS = JE(qs) q̇PS =

 −0.3498
0.7865
0.2135


ṙDLS = JE(qs) q̇DLS =

 −0.3084
0.7251
0.2199


ṙTP = JE(qs) q̇TP =

 0
1
1





⇐⇒ ṙE,d =

 0
1
0

.

For comparison, the norms of the joint velocity q̇method obtained with the three methods, together
with the norms of the end-effector velocity error ėP = ṗd−J1(q)q̇method (task 1), and the absolute
value of the velocity error of the second joint ėq2 = q̇2,method (task 2) are reported in Table 1.

Table 1: Comparison of results with the three methods.

method ‖q̇method‖ [rad/s] ‖ėP ‖ [m/s] |ėq2 | [rad/s]

PS 0.5205 0.4098 0.2135

DLS 0.4728 0.4131 0.2199

TP 1 0 1

Exercise #3

The dynamic model of the PR robot in Fig. 3 is

(m1 +m2) q̈1 −m2dc2 sin q2 q̈2 −m2dc2 cos q2 q̇
2
2 = u1, (19)

−m2dc2 sin q2 q̈1 +
(
Ic2,zz +m2d

2
c2

)
q̈2 = u2. (20)

The geometry of the desired Cartesian motion task is very peculiar to this robot: an arc of a circle
with center C on the joint axis 2 and radius R equal to the length l2 of the second link. This
requires simply no motion for the first joint, namely

q1d = k (this value is irrelevant), q̇1d = q̈1d = 0.

Accordingly, the inverse dynamics obtained from (19–20) yields

u1d = −m2dc2 sin q2d q̈2d −m2dc2 cos q2d q̇
2
2d, (21)

u2d = I q̈2d, (22)

where we set for compactness I = Ic2,zz + m2d
2
c2 > 0. Therefore, in order to trace the arc of the

circle from rest to rest (q̇(0) = q̇(T ) = 0) in minimum time, equation (22) implies that a bang-bang
torque ±U2,max will be applied at the second (revolute) joint, with switching at the middle time
t = T/2 of the motion. The force u1d in (21) at the prismatic joint is needed to keep the first link
at rest. The assumption that the bound U2,max is the only limiting factor when reducing as much
as possible the motion time implies that the input force |u1d(t)| will never exceed U1,max.
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The motion profile q2d(t) of the second joint is then easily defined. Setting A2,max = U2,max/I
as the maximum acceleration of the second joint, and taking into account that q2d(0) = −α and
q̇2d(0) = 0, by successive integration and boundary condition satisfaction we get

q̈2d(t) =

{
A2,max, t ∈

[
0, T2

]
−A2,max, t ∈

[
T
2 , T

]
q̇2d(t) =

{
A2,max t, t ∈

[
0, T2

]
A2,max (T − t) , t ∈

[
T
2 , T

]
q2d(t) =

{
−α+ 1

2 A2,max t
2, t ∈

[
0, T2

]
−α+A2,max

(
T
2

)2 − 1
2 A2,max (T − t)2 , t ∈

[
T
2 , T

]
.

(23)
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Figure 5: Time-optimal acceleration, velocity, and position profiles for the second joint.

The motion time T is determined by imposing that the area of the (triangular and symmetric)
velocity profile q̇2d(t) in [0, T ] is equal to the required joint displacement ∆q2 = 2α. Thus

q̇2d (T/2) · T
2

= A2,max
T

2
· T

2
= 2α ⇒ T =

√
8α

A2,max
. (24)

Figure 5 shows representative kinematic profiles of the second joint motion4. As for the first input,
we have from eqs. (21) and (23)

u1d(t) = −m2dc2 sin q2d(t) q̈2d(t)−m2dc2 cos q2d(t) q̇22d(t)

= u1d,acceleration(t) + u1d,centripetal(t)

= −m2dc2A2,max

(
sin q2d(t) + cos q2d(t)A2,max t

2
)
,

(25)

where the last identity holds for the first half of the motion, i.e., for t ∈
[
0, T2

]
. The behavior in

the second half of the motion, for t ∈
[
T
2 , T

]
, is perfectly specular.

The analysis of the two contributions to u1d(t) in (25) is simple —see also Fig. 6. The acceleration
term is always non-negative, with a sinusoidal profile that has its maximum at t = 0 and t = T ,
where

u1d,acceleration(0) = u1d,acceleration(T ) = m2dc2A2,max · sinα, (26)

while u1d,acceleration(T/2) = 0. Vice versa, the centripetal term is never positive, it is zero at t = 0
and t = T , and takes its maximum (negative) value at t = T/2, when q2d(T/2) = 0, with

u1d,centripetal(T/2) = −m2dc2A
2
2,max

(
T

2

)2

= m2dc2A2,max · 2α, (27)

4To generate these plots, the data reported in (29–30) have been used.
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where (24) has been used. It is easy to see that the maximum value in (27) always dominates (26).
Therefore,

|u1d(t)| ≤ U1,max, ∀t ∈ [0, T ] ⇐⇒ max
t∈[0,T ]

|u1d(t)| = 2αm2dc2A2,max ≤ U1,max.

For this inequality to be verified with the assumed time-optimal solution for joint 2 (i.e., for the
assumption in the text to hold true), the bounds on the two inputs should satisfy

A2,max =
U2,max

I
⇒ 2αm2dc2

I
U2,max ≤ U1,max. (28)

While it is straightforward to sketch the input profiles of u1d (approximately) and u2d (exactly,
being this a bang-bang torque), we conclude instead with a numerical evaluation using MATLAB.
Setting for the arc of the circle the value α = π/6 = 30◦ and using the robot data

m1 = m2 = 2 [kg], l2 = 0.5, dc2 = 0.25 [m], I = 0.1667 [kg m2], (29)

with bounds

U1,max = 14 [N], U2,max = 4 [Nm] ⇒ A2,max = 24 [rad/s2], (30)

the minimum motion time is found by (24) as T = 0.4178 [s]. Note that the input bounds in (30)
satisfy inequality (28), being u1d(T/2) = −12.587 [N]. The associated profile of the force input
on the prismatic joint is shown in Fig. 6, together with those of its two contributions. The two
time-optimal inputs profiles and their assigned bounds are reported in Fig. 7.
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input force on joint 1 and its two contributions

Figure 6: Input force u1d(t), with its acceleration (dotted-dashed) and centripetal (dashed) terms.

Figure 7: Time-optimal input profiles along the assigned path and their maximum bounds.
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