
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

Flexible On-Stack Replacement in LLVM (Artifact)

Daniele Cono D’Elia Camil Demetrescu
Dept. of Computer, Control, and Management Engineering

Sapienza University of Rome, Italy

{delia,demetres}@dis.uniroma1.it

A. Artifact Description
A.1 Abstract
OSRKit is a library that enables On-Stack Replacement
(OSR) at arbitrary places in LLVM IR code. The artifact
is designed to explore how OSRKit can instrument IR code
to support OSR transitions in the LLVM MCJIT runtime
environment. A running example is presented based on the
isord case study discussed in Section 3. We also support
repeating all the experiments presented in Section 5. The
artifact includes an interactive VM called TinyVM for load-
ing, inspecting, instrumenting, and executing IR code. The
package is a preconfigured Oracle VirtualBox VM.

A.2 Description
The main component of the artifact is an interactive VM
called TinyVM built on top of the LLVM MCJIT runtime en-
vironment and the OSRKit library. The VM provides an in-
teractive environment for IR manipulation, JIT-compilation,
and execution of functions either generated at run-time or
loaded from disk: for instance, it allows the user to insert
OSR points in loaded functions, run optimization passes on
them, display their CFGs, and repeatedly invoke a function
for a specified amount of times. TinyVM supports dynamic
library loading and linking, and includes a helper component
for MCJIT that simplifies tasks such as handling multiple IR
modules, symbol resolution in presence of multiple versions
of a function, and tracking machine-level generated code and
data objects.

TinyVM is located in /home/osrkit/Desktop/tinyvm/

and runs a case-insensitive command-line interpreter:

osrkit@osrkit-AE:~/Desktop/tinyvm$ tinyvm

Welcome! Enter ’HELP’ to show the list of commands.

TinyVM>

Use HELP to print basic documentation on how to use the
shell. Usage scenarios are discussed in A.5.

A.2.1 Check-list (artifact meta information)
• Program: shootout C benchmarks (included, Sep 2015).
• Compilation: LLVM 3.6.2 (release build).
• Run-time environment: Linux (version 3.x), no root password

required.

• Hardware: x86-64 CPU.
• Run-time state: Cache-sensitive (performance measurements

only).
• Output: Measurements are output to console.
• Experiment workflow: Invoke scripts and perform a few man-

ual steps.
• Publicly available? Yes.

A.2.2 How Delivered
The artifact ships as an Oracle VirtualBox 5 Appliance. The
latest version of the code is available at https://github.
com/dcdelia/tinyvm.

A.2.3 Hardware Dependencies
An x86-64 platform is required.

A.2.4 Software Dependencies
The artifact was tested in Oracle VirtualBox 5.0.10.

A.3 Installation
To install the artifact, just import the appliance in Oracle
VirtualBox, which installs Linux LXLE. Open the README

file on the Desktop folder for further info on the artifact and
the Linux distribution. To install TinyVM on bare hardware,
check out the cgo2016 branch from the GitHub repository
and run make to compile it (LLVM 3.6.2 is required).

A.4 Experiment Workflow
We propose three usage sessions. In the first session, we
show how to generate and instrument an LLVM IR code
based on the isord example presented in Section 3. The
second session focuses on how to run the scripts used to
generate the performance tables of Section 5 related to ques-
tions Q1, Q2, and Q3. The third session addresses question
Q4, using third-party software (the MATLAB McVM run-
time [21]) that we ported to LLVM 3.6+ and extended with
the feval optimization technique discussed in Section 4.2.

A.5 Evaluation and Expected Result
A.5.1 Session 1: OSR instrumentation in OSRKit

TinyVM implements a code generator for open OSR points
that can dynamically inline function calls to targets that

https://github.com/dcdelia/tinyvm
https://github.com/dcdelia/tinyvm

cannot be statically determined. In the example from Figure
4, a comparator function c is passed as argument to function
isord, which checks whether an array v of numbers is
ordered according to the criterion encoded in c.

To interactively run a dynamic inlining experiment (see
Section 3), we provide under the folder tinyvm/isord a C
module inline.c with an LLVM IR counterpart inline.ll
(generated with clang -S -emit-llvm -O1 inline.c).

We can load the IR module in TinyVM and show the code
generated for method isord with:

osrkit@osrkit-AE:~/Desktop/tinyvm$ tinyvm

Welcome! Enter ’HELP’ to show the list of commands.

TinyVM> LOAD_IR isord/inline.ll

[LOAD] Opening "isord/inline.ll" as IR source file...

TinyVM> DUMP isord

[...]

Displayed virtual register names and basic block labels will
often differ from those reported in Figure 5, which have been
refactored for the sake of readability. In particular, the loop
body of isord will look like:

.lr.ph: ; preds = %2, %0

%i.01 = phi i64 [%10, %2], [1, %0]

%4 = getelementptr inbounds i64* %v, i64 %i.01

%.sum = add nsw i64 %i.01, -1

%5 = getelementptr inbounds i64* %v, i64 %.sum

%6 = bitcast i64* %5 to i8*

%7 = bitcast i64* %4 to i8*

%8 = tail call i32 %c(i8* %6, i8* %7) #3

[...]

A φ-node %i.01 is used to represent the index of the for

loop from the C code, and is set to %10 when reached from
the loop header (basic block %2) after a loop iteration. In
fact, as a result of -O1 optimizations, when n>1 execution
jumps from the function entrypoint %0 directly into the loop
body, initializing the φ-node with 1. Comparator c is invoked
with a tail call, storing its return value into virtual register %8.

OSR points can be inserted with the INSERT OSR com-
mand, which allows several combinations of features (see
HELP for an exhaustive list). In this session we will mod-
ify isord so that when the loop body is entered for the first
time, an OSR is fired right away1:

TinyVM> INSERT_OSR 100 ALWAYS OPEN UPDATE IN isord

AT %4 DYN_INLINE %c

TinyVM will UPDATE the function as follows: an ALWAYS-
true OSR condition is checked before executing instruction
%4 to fire an OPEN OSR transition to the DYN INLINE code
generator, which will inline any indirect function call to the
function pointer %c. We choose %4 as location for the OSR
as it is the first non-φ instruction in the loop body; we also

1 The syntax for inserting an OSR point controlled by a profiling
counter is slightly different. For an example, please refer to the script
isord/inline-counter.tvm included in TinyVM.

hint the LLVM back-end through IR profiling metadata that
taking the branch to the %OSR fire block is 100%-likely.

The IR will now look like:

TinyVM> DUMP isord

...

.lr.ph: ; preds = %2, %0

%i.01 = phi i64 [%10, %2], [1, %0]

%alwaysOSR = fcmp true double 0.000000e+00,

0.000000e+00

br i1 %alwaysOSR, label %OSR_fire,

label %OSR_split, !prof !1

OSR_split: ; preds = %.lr.ph

%4 = getelementptr inbounds i64* %v, i64 %i.01

%.sum = add nsw i64 %i.01, -1

[...]

OSR_fire: ; preds = %.lr.ph

%OSRCast = bitcast i32 (i8*, i8*)* %c to i8*

%OSRRet = call i32 @isord_stub(i8* %OSRCast,

i64* %v, i64 %n,

i32 (i8*, i8*)* %c,

i64 %i.01)

ret i32 %OSRRet

OSRKit has split the %.lr.ph block for the OSR condition,
also adding an OSR fire block to transfer the execution
state to isord stub and eventually return the OSRRet value.

We can now let isord run on an array dynamically ini-
tialized by the driver method, which takes as argument the
array length to use. The method will also populate it with
elements ordered for the comparator in use (see inline.c).
For instance, we can ask driver to set up an array of 100000
elements and run isord on it:

TinyVM> driver(100000)

Time spent in creating continuation function:

0.000252396 seconds

Address of invoked function: 140652750196768

Function being inlined: cmp

Elapsed CPU time: 0 m 0 s 3 ms 417 us 157 ns

(that is: 0.003417157 seconds)

Evaluated to: 1

The method returns 1 as result, indicating that the vector
is sorted. Compared to Figure 7, the IR code generated for
the OSR continuation function isordto (DUMP isordto)
is slightly different, as the MCJIT compiler detects that
additional optimizations (e.g., loop strength reduction) are
possible and performs them right away2. We expect code
generated for isord stub to be identical up to renaming
to the IR reported in Figure 6.

To show native code generated by the MCJIT back-end,
we can run TinyVM in a debugger with gdb tinyvm and
leverage the debugging interface of MCJIT. For instance,

2 Notice that lowering to native code an IR function in MCJIT (which
happens in TinyVM when first executing it) may alter its IR representation.

once driver has been invoked, we can switch to the de-
bugger with CTRL-Z and display the x86-64 code for any
JIT-compiled method with:

(gdb) disas isordto

Dump of assembler code for function isordto:

[Base address: 0x00007ffff7ff2000]

<+0>: mov -0x8(%rdi,%rcx,8),%edx

<+4>: sub (%rdi,%rcx,8),%edx

<+7>: xor %eax,%eax

<+9>: test %edx,%edx

<+11>: jg 0x7ffff7ff201a <isordto+26>

<+13>: inc %rcx

<+16>: mov $0x1,%eax

<+21>: cmp %rsi,%rcx

<+24>: jl 0x7ffff7ff2000 <isordto>

<+26>: retq

To return to TinyVM, we can use the signal 0 command
in gdb (the prompt is not re-printed, but the shell is alive).

A.5.2 Session 2: Performance Figures
The experiments can be repeated by executing scripts on a
selection of the shootout benchmarks [7]. Each benchmark
was compiled to LLVM IR using clang as described in
Section 5.1. For each benchmark X, tinyvm/shootout/X/

contains the unoptimized and optimized (opt -O1) IR code,
each in two versions:

• bench and bench-O1: IR code of the benchmark;
• finalAlwaysFire and finalAlwaysFire-O1: IR code

of the benchmark preprocessed by slicing the hottest loop
into a separate function when needed (see Section 5.2).

Each experiment runs a warm-up phase followed by 10 iden-
tical trials. We manually collected the figures from the con-
sole output and analyzed them, computing confidence inter-
vals. We show how to run the code using n-body as an ex-
ample3. Times reported in this section have been measured
in VirtualBox on an Intel Core i7-4980HQ CPU @ 2.80GHz,
a different setup than the one discussed in Section 5.1.

Question Q1. The purpose of the experiment is assess-
ing the impact on code quality due to the presence of
OSR points. The first step consists in generating figures
for the baseline (uninstrumented) benchmark version. Go
to /home/osrkit/Desktop/tinyvm and type:

$ tinyvm shootout/scripts/bench/n-body

The script is as follows:

LOAD_IR shootout/n-body/bench.ll

bench(50000000)

REPEAT 10 bench(50000000)

which loads the IR code, performs a warm-up execution
of the benchmark, and then 10 repetitions. The experiment
duration was ≈ 1m, with a time per trial of ≈ 5.725s.

3 For rev-comp, first run bootstrap.sh in tinyvm/shootout/.

The benchmark with the hottest loop instrumented with a
never-firing OSR point can be run with:

$ tinyvm shootout/scripts/codeQuality/n-body

The script is as follows:

LOAD_IR shootout/n-body/bench.ll

INSERT_OSR 5 NEVER OPEN UPDATE IN bench AT %8 CLONE

bench(50000000)

REPEAT 10 bench(50000000)

Note that the second line inserts a never-firing open OSR
point at basic block %8 labeled with <label>:8 in function
bench of file shootout/n-body/bench.ll, using branch
weight of 5% as a hint for the LLVM native code generation
back-end that OSR firing is very unlikely.

The experiment duration was ≈ 1m with a time per trial
of ≈ 5.673s. The ratio 5.673/5.725 = 0.990 for n-body
is slightly smaller than the one reported in Figure 10 on the
Intel Xeon platform. The experiment for building Figure 11
uses scripts in bench-O1 and codeQuality-O1.

Question Q2. This experiment assesses the run-time over-
head of an OSR transition by measuring the duration of an
always-firing OSR execution and of a never-firing OSR exe-
cution, and reporting the difference averaged over the num-
ber of fired OSRs (Table 2). The always-firing OSR execu-
tion for n-body (unoptimized) is as follows:

$ tinyvm shootout/scripts/finalAlwaysFire/n-body

which runs:

LOAD_IR shootout/n-body/finalAlwaysFire.ll

INSERT_OSR 95 ALWAYS SLVD UPDATE IN advance AT

%entry TO advance AT %entry AS advance_OSR

bench(50000000)

REPEAT 10 bench(50000000)

The second line inserts an always-firing resolved OSR point
at the beginning of basic block %entry in function advance

of file shootout/n-body/finalAlwaysFire.ll, generating a
continuation function called advance OSR. A branch weight
of 95% is given as a hint to the LLVM native code generation
back-end that OSR firing is a high-probability event. The
time per trial was ≈ 5.876s.

The never-firing OSR execution used as baseline is as
follows:

$ tinyvm shootout/scripts/finalAlwaysFire/

baseline/n-body

with a time per trial of ≈ 5.669s. The average time per
OSR transition is therefore (5.876 − 5.669)/50000000 =
4.14 · 10−9s. Compare this with the result of Table 2.

Question Q3. The third experiment measures the overhead
of OSRKit for inserting OSR points and creating a stub or a
continuation function. To perform one trial for the open OSR
experiment of Table 3, run:

$ tinyvm shootout/scripts/instrTime/open/n-body

which yielded:

Time spent in stub generation: 0.000012835 sec

Time spent in OSR point insertion: 0.000013219 sec

One trial for the resolved OSR experiment can be run as
follows:

$ tinyvm shootout/scripts/instrTime/final/n-body

obtaining, e.g.:

Time spent in creating cont. func.: 0.000075849 sec

Time spent in OSR point insert.: 0.000009409 sec

Notice that in a virtualized environment there may be signif-
icant fluctuations in the reported times across different trials,
as we rely on a high-resolution timer for measurements4.

A.5.3 Session 3: feval optimization in McVM
McVM is a virtual machine for MATLAB developed at
McGill University. As a by-product of our project, we ported
it from the LLVM legacy JIT to MCJIT, and later extended
it with a new specialization mechanism for feval calls.
The source code for this version along with the MATLAB
benchmarks listed in Section 5.1 are publicly available at
https://github.com/dcdelia/mcvm.

Experiments reported in Table 4 (Question Q4) can be
repeated using a number of scripts provided along with a
McVM build in /home/osrkit/Desktop/mcvm/.

For each benchmark X, benchmarks/scripts/ contains
three MATLAB scripts to use as input for mcvm:

• base/X: single run of original code (i.e., feval-based);
• direct/X: single run of code optimized by hand (i.e.,

with direct calls);
• many/X: multiple runs of original code (for code caching).

We manually collected figures from the console output and
computed speedups for the different settings. We show how
to run the code using odeRK4 as an example. The platform
used to obtain reported numbers is the same as in session 2.

To determine a baseline for speedup computation, we
let mcvm perform a single run of the original code with no
feval optimization. Note that we can selectively enable or
disable feval optimization using the -jit feval opt flag:

$ cd ~/Desktop/mcvm

$./mcvm -jit_feval_opt false <

benchmarks/scripts/base/odeRK4

McVM - The McLab Virtual Machine v1.0

Visit http://www.sable.mcgill.ca for more info.

>: >: Compiling function: "testSH"

Compiling function: "odeRK4"

Compiling function: "testSHfun"

Compiling function: "rhsSteelHeat"

Compiling function: "testSHfun"

4 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503740/.

Compiling function: "rhsSteelHeat"

[TOC] Elapsed time: 20.141959 seconds

t y_RK4

0.0000 1.000000

20.0000 227.364633

To measure the performance of McVM’s code caching
mechanism, we let the benchmark run multiple times in the
same instance of the VM:

$./mcvm -jit_feval_opt false <

benchmarks/scripts/many/odeRK4

The experiment duration on our platform was ≈ 2m, with
an average time per trial of ≈ 19.836s (manually computed
by averaging the elapsed time figures from the console, after
discarding the warm-up run). The resulting speedup for the
base code caching mechanism was thus 20.142/19.836 =
1.015×, slightly different than the one reported in column
Base of Table 4 for the Intel Xeon platform, for which we
repeated each experiment 10 times.

We can now set an upper bound for speedups by measur-
ing the running time when the code has been optimized by
hand inserting direct calls in place of feval instructions:

$./mcvm < benchmarks/scripts/direct/odeRK4

[...]

>: >: Compiling function: "testSH_direct"

Compiling function: "odeRK4_testSHfun"

Compiling function: "testSHfun"

Compiling function: "rhsSteelHeat"

[TOC] Elapsed time: 7.977169 seconds

t y_RK4

0.0000 1.000000

20.0000 227.364633

In this scenario McVM can compile the whole program
ahead of time, as rhsSteelHeat is not invoked through an
feval instruction anymore. A comparison of the running
times suggests a rough 20.142/7.977 = 2.525× speedup for
by-hand optimization w.r.t. the baseline version (compare to
column Direct in Table 4).

We can now try to assess the speedup from our feval
optimization technique on odeRK4:

$ cd ~/Desktop/mcvm

$./mcvm -jit_feval_opt true <

benchmarks/scripts/base/odeRK4

[...]

>: >: Compiling function: "testSH"

Compiling function: "odeRK4"

Compiling and tracking a feval instruction...

Compiling and tracking a feval instruction...

Compiling and tracking a feval instruction...

Compiling and tracking a feval instruction...

Function contains annotated feval instructions!

Compiling function: "testSHfun"

Compiling function: "rhsSteelHeat"

Type conversion required for variable y

Type conversion required for variable $t10

https://github.com/dcdelia/mcvm
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503740/

[TOC] Elapsed time: 8.450570 seconds

t y_RK4

0.0000 1.000000

20.0000 227.364633

The execution time ratio between the base version and the
optimized code that we JIT-compile is thus 20.142/8.451 =
2.383 (compare to column Opt. JIT in Table 4). Notice that
compensation code is generated to perform unboxing of IIR
variables y and $t10 (“Type conversion required...”) so that
execution can correctly resume from the optimized code.

We can finally evaluate the speedup enabled by our code
caching mechanism (Section 4.2) for the compilation of con-
tinuation functions by running:

$./mcvm -jit_feval_opt true <

benchmarks/scripts/many/odeRK4

The experiment duration was ≈ 1m, with a time per trial
of ≈ 11.817s (discarding the warm-up run). The resulting
speedup w.r.t. is thus 20.142/8.006 = 2.516× (compare to
column Opt. cached in Table 4).

A.6 Notes
We encourage the reader to experiment with TinyVM, creat-
ing IR programs with clang -S -emit-llvm -O1, instru-
menting them with OSR points, and exploring the generated
code. Please bear in mind that TinyVM is a prototype imple-
mentation that does not support exercising all the features for
VM builders provided by OSRKit. Also, unexpected results
may arise: we will be glad to hear about your experience and
grateful to receive any bug reports.

	Artifact Description
	Abstract
	Description
	Check-list (artifact meta information)
	How Delivered
	Hardware Dependencies
	Software Dependencies

	Installation
	Experiment Workflow
	Evaluation and Expected Result
	Session 1: OSR instrumentation in OSRKit
	Session 2: Performance Figures
	Session 3: feval optimization in McVM

	Notes

