
Camil Demetrescu

Algorithm Engineering

Course Notes

Sapienza University of Rome

(Version: July 9, 2013)

A designer knows he has achieved perfection not when there
is nothing left to add, but when there is nothing left to take away.

(Antoine de Saint-Exupéry, “Wind, Sand and Stars”, Trans. Lewis Galantiere)

Contents

1 Program Optimization 1
1.1 x86-64 Programming Basics . 1

1.1.1 Address Space and Relevant Sections . 1
1.1.2 General-purpose Registers . 2
1.1.3 Instruction Operands and Addressing Modes 2
1.1.4 Instruction Suffixes and Operand Sizes . 3
1.1.5 Generating Assembly Code with gcc . 3
1.1.6 Stack Frames . 8
1.1.7 Procedure Calls . 8
1.1.8 Register Saving Conventions . 12

1.2 Optimization Techniques . 12
1.2.1 Register Allocation . 12
1.2.2 Function Inlining . 14
1.2.3 Constant Folding . 16
1.2.4 Constant Propagation . 17
1.2.5 Common Subexpression Elimination . 18
1.2.6 Expression Simplification . 20
1.2.7 Dead Code Elimination . 20
1.2.8 Strength Reduction . 21

vi

1
Program Optimization

More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason

- including blind stupidity.

(William Allan Wulf)

In this chapter, we addess some fundamental program optimization techniques, discussing capabilities
and limitations of modern optimizing compilers. We provide examples of optimizations performed au-
tomatically by compilers, and examples of optimizations that must be done manually by programmers
in their source code. In our discussion, we use the C language and the gcc compiler, starting with an
overview of programming basics in x86-64 platforms.

1.1 x86-64 Programming Basics

In this section, we review some key features of machine-level programming in x86-64 platforms based
on the System V AMD64 Application Binary Interface (ABI), such as Mac OS X and Linux. Although
an exhaustive discussion is beyond the scope of this section, we provide a minimal set of notions that
will be needed throughout this book. Our discussion assumes that C programs are written in ISO C90
and compiled with gcc 4.2.1. By default, we assume that programs are executed in 64-bit mode.

1.1.1 Address Space and Relevant Sections

Programs can access a linear 64-bit logical address space with addresses ranging in the interval [0, 264 −
1]. The address space is partitioned into 4KB pages, some of which are mapped onto physical frames by
the operating system, and includes the following relevant sections:

• TEXT: machine code of all user functions linked statically;
• DATA: string literals and variables with internal and external linkage, explicitly initialized by the pro-

gram;
• BSS: variables with internal and external linkage, not explicitly initialized by the program (set by

default to zero);
• HEAP: blocks allocated dynamically with malloc, calloc, etc.;
• STACK: call frames for activated functions, containing actual parameters, local variables, etc. The

stack grows downward from high addresses to low addresses.

2 Chapter 1

access level size (bits) reg 0 reg 1 reg 2 reg 3 reg 4 reg 5 reg 6 reg 7

quadword 64 rax rbx rcx rdx rdi rsi rbp rsp

doubleword 32 eax ebx ecx edx edi esi esp ebp

word 16 ax bx cx dx di si bp sp

byte 8 al bl cl dl dil sil bpl spl

access level size (bits) reg 8 reg 9 reg 10 reg 11 reg 12 reg 13 reg 14 reg 15

quadword 64 r8 r9 r10 r11 r12 r13 r14 r15

doubleword 32 r8d r9d r10d r11d r12d r13d r14d r15d

word 16 r8w r9w r10w r11w r12w r13w r14w r15w

byte 8 r8l r9l r10l r11l r12l r13l r14l r15l

Table 1.1: x86-64 general-purpose registers (GPR).

Some sections may read-only, such as the TEXT section, and the pages containing string literals. At-
tempting to access an unmapped page, or writing to a read-only page of the address space results in an
access violation exception (segmentation fault).

1.1.2 General-purpose Registers

x86-64 CPUs are equipped with the 16 general-purpose 64-bit integer registers (GPR) shown in Table 1.1.
All of these registers can be accessed at byte, word, doubleword, and quadword level:

• byte level: access to the 8 least significant bits of the register, using names al, bpl, r8l, etc. Writing
a register at byte level leaves the upper 56 bits of the register unchanged.
• word level: access to the 16 least significant bits of the register, using names ax, bp, r8w, etc. Writing

a register at word level leaves the upper 48 bits of the register unchanged.
• doubleword level: access to the 32 least significant bits of the register, using names eax, ebp, r8d,

etc. Writing a register at doubleword level sets to zero the upper 32 bits of the register.
• quadword level: access to all 64 bits of the register, using names rax, rbp, r8, etc.

1.1.3 Instruction Operands and Addressing Modes

Most x86-64 instructions are binary operations that take two operands: a source operand and a destina-
tion operand. In our discussion, we use the AT&T syntax, where the source operand is followed by the
destination operand. The source operand specifies the first argument. The destination operand specifies
the second argument (if any) and the location of the result. For instance, the instruction addq source
destination computes the sum source+ destination and writes the result to a 64-bit destination.

Instructions operands can be of three main types listed below:

1. Immediate. A constant value (for source operands only).

Syntax: $value, where value is a literal (e.g., in decimal or hexadecimal notation).

Examples:

• $0xF: the integer constant 15
• $7: the integer constant 7
• $-7: the integer constant -7

Program Optimization 3

2. Register. A register.

Syntax: %reg, where reg is the name of a register.

Examples:

• %rax: 64-bit register rax
• %eax: 32-bit register eax
• %r8: 64-bit register r8
• %r8d: 32-bit register r8d
• addl $7,%eax: instruction that computes the operation eax← eax+ 7

3. Memory. An object located within the logical address space.

Syntax: there are various forms of memory operands, listed below.

• (%reg): object at address reg, where reg is a register.

Example: (%rax): object at address rax.

• d(%reg): object at address reg+d, where reg is a register and d is a constant displacement (posi-
tive or negative).

Example: -6(%rax): object at address rax− 6

• d(%base,%index,scale): object at address base+ index · scale+ d, where base and index

are registers, d is a constant displacement (positive or negative), and scale is a constant
in {1, 2, 4, 8}.

Example: 4(%rax, %rbx, 8): object at address rax+ rbx · 8 + 4.

There are further mixed forms, listed below:

• (%base,%index): object at address base+ index, where base and index are a registers.

Example: (%rax,%rbx): object at address rax+ rbx.

• d(%base,%index): object at address base + index + d, where d is a constant displacement
(positive or negative) and base and index are a registers.

Example: -24(%rax,%rbx): object at address rax+ rbx− 24.

• (%base,%index,scale): object at address base + index · scale, where base and index are
registers, and scale is a constant in {1, 2, 4, 8}.

Example: (%rax, %rbx, 8): object at address rax+ rbx · 8.

1.1.4 Instruction Suffixes and Operand Sizes

Some instruction names include a single-letter suffix that specifies the size of the operands. Table 1.2
lists suffixes and their meaning. For instance, instruction movb $7,(%rax) writes the value 7 into the
1-byte (char) object at the address contained in register %rax. Similarly, instruction movl $7,(%rax)

writes 7 into the 4-bytes (int) object at address %rax.

1.1.5 Generating Assembly Code with gcc

A C translation unit can be compiled into x86-64 code in AT&T syntax using option -S of gcc, as shown
in the following examples. Table 1.3 lists some of the most common x86-64 instructions encountered in
C programs compiled with gcc.

4 Chapter 1

suffix size (bits) meaning C analog example

b 8 byte char movb

w 16 word short movw

l 32 doubleword int movl

q 64 quadword long, void* movq

Table 1.2: x86-64 instruction suffixes and the corresponding operand sizes.

Example 1. Consider the following C source code in a file first.c:

Listing 1.1: first.c

1 int main() {

2 int a, b;

3 a = 7;

4 b = 5;

5 a++;

6 a = b - 5;

7 return 0;

8 }

The program can be assembled using the following command line:

$ gcc -S first.c

The command generates a text file first.s containing the following lines:

Listing 1.2: first.s

.text

.globl _main

_main:

LFB2:

pushq %rbp

LCFI0:

movq %rsp, %rbp

LCFI1:

movl $7, -4(%rbp)

movl $5, -8(%rbp)

incl -4(%rbp)

movl -8(%rbp), %eax

subl $5, %eax

movl %eax, -4(%rbp)

movl $0, %eax

leave

ret

LFE2:

.section __TEXT,__eh_frame,coalesced,no_toc+strip_static_syms+live_support

EH_frame1:

.set Lset0,LECIE1-LSCIE1

.long Lset0

LSCIE1:

.long 0x0

.byte 0x1

.ascii "zR\0"

Program Optimization 5

prefix description example C analog

add add source to destination addl $5,%ecx ecx += 5

call procedure call call foo foo()

cltq sign-extend eax to rax – –

dec decrement destination decq %rcx rcx--

imul multiply destination with
source

imull %esi,%eax eax *= esi

inc increment destination incl %ecx ecx++

ja jump if above
(unsigned comparison)

cmpl %eax,%ebx

ja L2

if ((unsigned)ebx >

(unsigned)eax) goto L2

jae jump if above or equal
(unsigned comparison)

cmpl %eax,%ebx

jae L2

if ((unsigned)ebx >=

(unsigned)eax) goto L2

jb jump if below
(unsigned comparison)

cmpl %eax,%ebx

jb L2

if ((unsigned)ebx <

(unsigned)eax) goto L2

jbe jump if below or equal
(unsigned comparison)

cmpl %eax,%ebx

jbe L2

if ((unsigned)ebx <=

(unsigned)eax) goto L2

je jump if equal cmpq %rax,%rbx

je L2

if (rbx == rax)

goto L2

jg jump if greater
(signed comparison)

cmpq %rax,%rbx

jg L2

if (rbx > rax)

goto L2

jge jump if greater or equal
(signed comparison)

cmpq %rax,%rbx

jge L2

if (rbx >= rax)

goto L2

jl jump if less
(signed comparison)

cmpq %rax,%rbx

jl L2

if (rbx < rax)

goto L2

jle jump if less or equal
(signed comparison)

cmpq %rax,%rbx

jle L2

if (rbx <= rax)

goto L2

jmp unconditional jump jmp L2 goto L2

jne jump if not equal cmpq %rax,%rbx

jne L2

if (rbx != rax)

goto L2

jnz identical to jne – –
jz identical to je – –

lea copy address to destination
(load effective address)

leaq -12(%rax),%rcx rcx=rax-12

leave pop the current stack frame,
and restore the caller’s frame

– –

mov copy data from source to
destination

movq $7,(%rax) *(long*)rax=7

movabs copy 64-bit immediate to
destination register

movabsq $-7,%rax rax=-7

movsl copy sign-extended word to
destination register

movslq %bx,%rax rax=bx

movzl copy zero-extended word to
destination register

movzlw %bx,%eax eax=(unsigned)bx

movsb copy sign-extended byte to
destination register

movsbq %bl,%rax rax=bl

movzb copy zero-extended byte to
destination register

movzbq %bl,%rax rax=(unsigned)bl

pop pop value from stack and
write it to destination

popq %rbx –

push push value on stack pushq %rbx –
ret return from procedure call ret return

sub subtract source from desti-
nation

subl $5,%ecx ecx -= 5

Table 1.3: Common x86-64 instructions.

6 Chapter 1

.byte 0x1

.byte 0x78

.byte 0x10

.byte 0x1

.byte 0x10

.byte 0xc

.byte 0x7

.byte 0x8

.byte 0x90

.byte 0x1

.align 3

LECIE1:

.globl _main.eh

_main.eh:

LSFDE1:

.set Lset1,LEFDE1-LASFDE1

.long Lset1

LASFDE1:

.long LASFDE1-EH_frame1

.quad LFB2-.

.set Lset2,LFE2-LFB2

.quad Lset2

.byte 0x0

.byte 0x4

.set Lset3,LCFI0-LFB2

.long Lset3

.byte 0xe

.byte 0x10

.byte 0x86

.byte 0x2

.byte 0x4

.set Lset4,LCFI1-LCFI0

.long Lset4

.byte 0xd

.byte 0x6

.align 3

LEFDE1:

.subsections_via_symbols

Although file first.s contains several sections, most of them can be ignored. The only portion of
interest for our discussion, excerpted from first.s, is shown below. The fragment contains the x86-64
assembly instructions corresponding to the main function of Listing 1.1:

Listing 1.3: x86-64 code for the main function of the program in Listing 1.1

1 _main:

2 LFB2:

3 pushq %rbp

4 LCFI0:

5 movq %rsp, %rbp

6 LCFI1:

7 movl $7, -4(%rbp)

8 movl $5, -8(%rbp)

9 incl -4(%rbp)

10 movl -8(%rbp), %eax

11 subl $5, %eax

12 movl %eax, -4(%rbp)

13 movl $0, %eax

Program Optimization 7

14 leave

15 ret

The following instructions correspond to the lines 3–6 of the program in Listing 1.1:

movl $7, -4(%rbp) // a = 7;

movl $5, -8(%rbp) // b = 5;

incl -4(%rbp) // a++;

movl -8(%rbp), %eax // int temp = b;

subl $5, %eax // temp = temp - 5;

movl %eax, -4(%rbp) // a = temp;

We notice that:

• the local int variable a of main is referred to by memory operand -4(%rbp) (see Section 1.1.6)
• the local int variable b of main is referred to by memory operand -8(%rbp) (see Section 1.1.6)
• the incl -4(%rbp) instruction increments by 1 local variable a
• the assignment a=b-5 is done in three steps:

– movl -8(%rbp),%eax: loads the value of int variable b in a temporary register %eax;
– subl $5,%eax: subtracts 5 from register %eax;
– movl %eax,-4(%rbp): writes %eax to variable a.

We will discuss the remaining instructions of Listing 1.3 (lines 2–6 and 13–15) in Section 1.1.7.

Example 2. In this second example, we show the effect of changing from int to char the type of
variables a and b of Listing 1.1 on the x86-64 code generated by gcc:

Listing 1.4: first2.c

1 int main() {

2 char a, b; // now variables are char rather than int

3 a = 7;

4 b = 5;

5 a++;

6 a = b - 5;

7 return 0;

8 }

The code generated by gcc -S first2.c for lines 3–6 of Listing 1.4 is:

movb $7, -1(%rbp) // a = 7;

movb $5, -2(%rbp) // b = 5;

incb -1(%rbp) // a++;

movzbl -2(%rbp), %eax // int temp = b;

subl $5, %eax // temp = temp - 5;

movb %al, -1(%rbp) // a = temp;

Observe that:

• instructions that modify char variables end with b (movb and incb) as dicussed in Section 1.1.4;
• movzbl is used to read data from variable b.

8 Chapter 1

arguments to pass/retrieve where to pass/retrieve them

return value in rax

1st argument in rdi

2nd argument in rsi

3rd argument in rdx

4th argument in rcx

5th argument in r8

6th argument in r9

7th argument at address rbp+ 16
8th argument at address rbp+ 24

...
...

ith argument at address rbp+ 16 + 8 · (i − 7)

Table 1.4: System V AMD64 calling conventions: parameter passing.

1.1.6 Stack Frames

Each executing function has a stack frame, which is allocated on the runtime stack. The stack frame is a
local storage that includes room for local variables, parameters to be passed to called functions, and other
information. Stack frames must be of size multiple of 16 and must be aligned on 16-bytes boundaries.

Local objects on the current stack frame are accessed using the base pointer register rbp or the stack
pointer register rsp.

Base pointer register rbp. By convention, the rbp register always points 16 bytes below the top of the
current frame (see Figure 1.1). We will discuss the 16-bytes area above address rbp in Section 1.1.7.
The area below address rbp typically contains local variables, parameters passed to functions, and more.
For instance, a local int variable may be stored at address rbp− 4.

Stack pointer register rsp. In general, the rsp register points to the lowest address in use on the
stack (the “stack top”, since the stack grows upside down). However, programs are allowed to store and
retrieve data even below the current value of rsp, but no lower than 128 bytes away.

Stack frame chain. To allow debuggers reconstruct the trace of pending calls, stack frames are linked
by keeping in each frame a pointer to the previous frame. This chain may be omitted for performance
reasons by compiling with gcc -fomit-frame-pointer, but this would make debugging impossible
on some machines.

1.1.7 Procedure Calls

In this section we describe how procedure calls are implemented in System V AMD64 platforms. If a
currently executing function y is called by a function x, we refer to x as the caller and to y as the callee.
The invocation of a callee by a caller involves the following steps:

1. Parameter passing: the caller sets up the arguments to be passed to the callee;
2. Procedure call: the caller invokes the callee using the call instruction;
3. Callee prologue: the callee creates a new stack frame for the computation;
4. Callee execution: the callee executes the instructions in its body;
5. Callee epilogue: the callee destroys the current stack frame and restores the caller’s stack frame using

the leave instruction;

Program Optimization 9

local vars, actual params, etc.

return address (8 bytes)

rbp
m

a
in saved rbp (8 bytes)

rbp+16

return address (8 bytes)

saved rbp (8 bytes)

f1

local vars, actual params, etc.

return address (8 bytes)

saved rbp (8 bytes)
f2

local vars, actual params, etc.

rsp

current
stack
frame

Figure 1.1: System V AMD64 calling conventions: stack frame layout.

6. Return from procedure: the ret instruction terminates the execution of the callee, returning the control
back to the caller.

We now address each step in detail using the example given in Listing 1.5:

Listing 1.5: call.c

1 long f(long p1, long p2, long p3, long p4, long p5, long p6, long p7, long p8) {

2 return p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8;

3 }

4

5 int main() {

6 long x = f(1, 2, 3, 4, 5, 6, 7, 8);

7 return x;

8 }

1. Parameter passing. Parameters are passed by the caller to the callee in accordance with the con-
ventions listed in Table 1.4 (left). Up to 6 arguments (each of size up to 8 bytes) can be passed using
registers rdi, rsi, rdx, rcx, r8, and r9. Further parameters are pushed on stack in reverse order so
that the 7th argument is pointed to by register rsp prior to the procedure call.

For instance, the eight parameters of the call f(1, 2, 3, 4, 5, 6, 7, 8) at line 6 of Listing 1.5
can be passed as follows:

movq $8, 8(%rsp) // passing 8th argument on stack

movq $7, (%rsp) // passing 7th argument on stack

movl $6, %r9d // passing 6th argument in r9

movl $5, %r8d // passing 5th argument in r8

movl $4, %ecx // passing 4th argument in rcx

movl $3, %edx // passing 3rd argument in rdx

movl $2, %esi // passing 2nd argument in rsi

movl $1, %edi // passing 1st argument in rdi

Notice that the non-negative constant actual parameters 1, 2, 3, etc. are written in the lowest 32 bits
of 64-bit destination registers, while the upper 32 bits are automatically filled with zero (see word-level
register write access in Section 1.1.2).

10 Chapter 1

2. Procedure call. The callee is invoked by the caller using the call instruction, which pushes on stack
the return address, i.e., the address of the instruction that follows immediately the call instruction in
the caller’s code.

In our example, the call of function f at line 6 of Listing 1.5 is done as follows:

call _f

3. Callee prologue. If the callee needs local storage, e.g, for local variables or parameter passing, it
has to allocate a new frame on stack. Also, if callee’s body needs to modify any of the registers rbx or
r12–r15, they must be saved on stack during the setup (see Section 1.1.8).

In our example, the callee setup of function main of Listing 1.5 is done as follows:

pushq %rbp // save caller’s base pointer

movq %rsp, %rbp // set callee’s base pointer

subq $16, %rsp // make room for parameters to be passed

The setup consists of saving the current value of rbp on stack, letting rbp point to the new stack frame,
and making room for parameters to be passed to f (see Figure 1.2 on the left). The callee setup of
function f of Listing 1.5 is:

pushq %rbp // save caller’s base pointer

movq %rsp, %rbp // set callee’s base pointer

The setup is the same as in the case of the main function, except that no room below rbp is allocated
(see Figure 1.2 on the right).

return address

rsp

m
a
in saved rbp

rbp+16

rbp

return address

rbp = rsp

m
a
in saved rbp

rbp+16
return address

saved rbp

f

rbp+24
7th parameter

8th parameter

Figure 1.2: Stack frame of function main before calling f (left) and stack frame of function f called by
main (right), as specified in Listing 1.5.

4. Callee execution. The callee executes the instructions in its body. In our example, the body returns
in rax the sum of the arguments:

addq %rdi, %rsi

addq %rdx, %rsi

addq %rcx, %rsi

addq %r8, %rsi

leaq (%rsi,%r9), %rax

addq 16(%rbp), %rax

addq 24(%rbp), %rax

5. Callee epilogue. The epilogue contains cleanup operations that deallocate the current stack frame.
This is done by the leave instruction, which is equivalent to performing the following steps:

Program Optimization 11

registers to be saved by callee

rbx

rbp

r12

r13

r14

r15

Table 1.5: System V AMD64 calling conventions: callee save registers.

• movq %rbp,%rsp: shrink the stack to the current value of rbp;
• popq %rbp: restore caller’s base pointer.

6. Return from procedure. The call is terminated by the ret instruction, which pops the return value
from stack, completing the current stack frame deallocation, and resumes the caller’s execution.

Listing 1.6 summarizes the full x86-64 code generated by gcc -S -O21 for functions f and main of
Listing 1.5.

Listing 1.6: x86-64 code for functions f and main of Listing 1.5

1 _f:

2 pushq %rbp

3 movq %rsp, %rbp

4 addq %rdi, %rsi

5 addq %rdx, %rsi

6 addq %rcx, %rsi

7 addq %r8, %rsi

8 leaq (%rsi,%r9), %rax

9 addq 16(%rbp), %rax

10 addq 24(%rbp), %rax

11 leave

12 ret

13

14 _main:

15 pushq %rbp

16 movq %rsp, %rbp

17 subq $16, %rsp

18 movq $8, 8(%rsp)

19 movq $7, (%rsp)

20 movl $6, %r9d

21 movl $5, %r8d

22 movl $4, %ecx

23 movl $3, %edx

24 movl $2, %esi

25 movl $1, %edi

26 call _f

27 leave

28 ret

1-O2 means optimization level 2 and will be discussed later in this chapter.

12 Chapter 1

1.1.8 Register Saving Conventions

The System V AMD64 ABI prescribes that registers rbx and r12–r15 (see Table 1.5) be saved by the
callee in the function’s prologue. Callee-save registers are guaranteed to be preserved across a call. All
other registers are caller-save and, if their content has to be maintained across the call, they have to be
saved on stack prior to the call as they may be clobbered by the callee.

1.2 Optimization Techniques

In this section we survey some basic optimization techniques commonly supported by compilers, dis-
cussing limitations that must be taken into account explicitly by the programmers to write efficient code.
Experiments in this section have been performed on a MacBook Pro Intel Core 2 Duo @ 2.8 GHz with
4 GB RAM running Mac OS X 10.6.6 and gcc 4.2.1.

1.2.1 Register Allocation

Registers provide the fastest access to data objects, much faster than accessing cache or memory. Keep-
ing frequently used objects of a program cached in registers is one of the most effective optimization
techniques, called register allocation. This allows programs to reduce accesses to memory, resulting in
substantial speedups. Compilers use fast algorithms for register allocation: even if they do not always
produce an optimal usage of registers, in general they work very well, relieving programmers from the
burden of getting into low-level assembly programming to allocate registers manually.

We show an example of register allocation done by gcc discussing the following function that swaps
the content of two int objects:

Listing 1.7: swap.c

1 void swap(int* a, int* b) {

2 int temp = *a;

3 *a = *b;

4 *b = temp;

5 }

By default, gcc does not do any optimization (optimization level 0). The command gcc -S swap.c

-o swap-O0.s (which is equivalent to gcc -S -O0 swap.c -o swap-O0.s) yields:

Listing 1.8: swap-O0.s without register allocation (gcc -O0)

1 _swap:

2 pushq %rbp

3 movq %rsp, %rbp

4 movq %rdi, -24(%rbp)

5 movq %rsi, -32(%rbp)

6 movq -24(%rbp), %rax

7 movl (%rax), %eax

8 movl %eax, -4(%rbp)

9 movq -32(%rbp), %rax

10 movl (%rax), %edx

11 movq -24(%rbp), %rax

12 movl %edx, (%rax)

13 movq -32(%rbp), %rdx

14 movl -4(%rbp), %eax

15 movl %eax, (%rdx)

Program Optimization 13

16 leave

17 ret

The function keeps parameter a at address rbp−24, parameter b at address rbp−32, and local variable
temp at address rbp− 4 in the stack frame2. Notice that each read or write operation on a, b and temp

causes a memory access.

Compiling with gcc with optimization level 1 turns on register allocation. The following code is pro-
duced by command gcc -S -O1 swap.c -o swap-O1.s:

Listing 1.9: swap-O1.s with register allocation (gcc -O1)

1 _swap:

2 pushq %rbp

3 movq %rsp, %rbp

4 movl (%rdi), %edx

5 movl (%rsi), %eax

6 movl %eax, (%rdi)

7 movl %edx, (%rsi)

8 leave

9 ret

The code makes the minimum number of memory accesses required to swap the objects, without placing
any temporary value on stack.

Experimental Analysis

To assess the performance boost given by register allocation on the swap function, we measured the time
required to execute 1 billion swaps of two int variables:

Listing 1.10: Test program for the swap function

1 void swap(int* a, int* b);

2

3 int main() {

4 int i, x = 7, y = 5;

5 for (i=0; i<1000000000; i++) swap(&x, &y);

6 return 0;

7 }

The main function was compiled with -O1 and linked separately with the two versions of swap to pro-
duce two executable files swap-O0 and swap-O1. We measured performance with time ./swap-O0

and time ./swap-O1. The total times required by the two versions of the program to perform 1 billion
swaps were:

swap-O0 (no register allocation) swap-O1 (register allocation)

4.2 seconds 2.5 seconds

Notice that the reported figures include both the time spent in the swap function and the time spent in
main for function calls and for the loop. Even considering total times, register allocation in the swap

function yielded a 40% time reduction for the whole program compared to using the unoptimized swap.
Analyzing swap alone would yield a much higher performance boost.

2Notice that the code accesses portions of the stack below rsp, and therefore not explicitly allocated. We recall that this is
allowed by the ABI conventions up to 128 bytes below rsp (see Section 1.1.6).

14 Chapter 1

1.2.2 Function Inlining

Calling a function incurs some overhead due to stack, registers, and control flow operations. If a function
is frequently called and its body is reasonably short, it may be convenient to expand each call with the
instructions in the body itself, saving the time required for function activations at the price of increasing
the code size. This technique is called function inlining and can be done by programmers at source code
level using C macros. Code inlining has the additional benefits of allowing further local optimizations
that would not be applied by the compiler across function calls, such as register allocation. As we will
see, under some circumstances, compilers can do inlining of regular functions automatically.

We illustrate these ideas by considering again the example of Section 1.2.1 and replacing the swap
function with a C macro that performs the same task:

Listing 1.11: Test program for swap defined as a macro

1 #define swap(a, b) do { \

2 int temp = *a; \

3 *a = *b; \

4 *b = temp; \

5 } while(0)

6

7 int main() {

8 int i, x = 0, y = 5;

9 for (i=0; i<1000000000; i++)

10 swap(&x, &y);

11 return x;

12 }

Preprocessing the program with gcc -E yields the following code in which the occurrence of the macro
name is replaced by the token sequence of the macro definition, which is inlined in the code of main:

Listing 1.12: Preprocessed test program generated by gcc -E

1 int main() {

2 int i, x = 0, y = 5;

3 for (i=0; i<1000000000; i++)

4 do { int temp = *&x; *&x = *&y; *&y = temp; } while(0);

5 return x;

6 }

The x86-64 code generated by gcc -S -O1 for this version is:

Listing 1.13: Assembly code for the program of Listing 1.11 generated by gcc -S -O1

1 _main:

2 pushq %rbp

3 movq %rsp, %rbp

4 movl $0, %ecx

5 movl $0, %esi

6 movl $5, %eax

7 L2:

8 incl %ecx

9 movl %esi, %edx

10 movl %eax, %esi

11 cmpl $1000000000, %ecx

12 je L3

Program Optimization 15

13 movl %edx, %eax

14 jmp L2

15 L3:

16 leave

17 ret

Notice that code inlining done by macro expansion allows the compiler to perform register allocation so
that the loop of lines 7–14 causes no memory accesses!

When optimization level is -O3 (or the -finline-functions option is specified) gcc performs
automatic code inlining of simple enough functions defined in the same translation unit. Consider for
instance the following program where swap is defined as a function within the same translation unit as
the main:

Listing 1.14: Test program for swap defined as a function

1 void swap(int* a, int* b) {

2 int temp = *a;

3 *a = *b;

4 *b = temp;

5 }

6

7 int main() {

8 int i, x = 0, y = 5;

9 for (i=0; i<1000000000; i++) swap(&x, &y);

10 return x;

11 }

Compiling the program with gcc -S -O1 yields the following assembly code for the main function:

Listing 1.15: Assembly code for the program of Listing 1.14 generated by gcc -S -O1

1 _main:

2 pushq %rbp

3 movq %rsp, %rbp

4 pushq %r13

5 pushq %r12

6 pushq %rbx

7 subq $24, %rsp

8 movl $0, -36(%rbp)

9 movl $5, -40(%rbp)

10 movl $0, %ebx

11 leaq -40(%rbp), %r13

12 leaq -36(%rbp), %r12

13 L4:

14 movq %r13, %rsi

15 movq %r12, %rdi

16 call _swap

17 incl %ebx

18 cmpl $1000000000, %ebx

19 jne L4

20 movl -36(%rbp), %eax

21 addq $24, %rsp

22 popq %rbx

23 popq %r12

24 popq %r13

25 leave

16 Chapter 1

26 ret

Notice that each iteration of the loop of lines 13–19 makes a call of the swap function of Listing 1.9.
Conversely, compiling the program with gcc -S -O1 -finline-functions performs automatic in-
lining of function swap, yielding exactly the same result of Listing 1.13, as if swap were defined as a
macro.

Experimental Analysis

To assess the benefits of code inlining, we compared the performance of the swap operation by measuring
the execution times of three test programs with the time command:

• Listing 1.11 compiled with gcc -O1 (macro)
• Listing 1.14 compiled with gcc -O1 (no function inlining)
• Listing 1.14 compiled with gcc -O1 -finline-functions (function inlining)

The result was:

macro no function inlining function inlining

1.0 seconds 2.5 seconds 1.0 seconds

We notice that the macro and the inlined function versions of the test program (whose assembly codes
are identical) run more than twice as fast as the non-inlined version. This is due to the combination
of eliminating the overhead of function calls and a more aggressive register allocation enabled by the
fact that the swap operation becomes local to the body of the for loop. Compared to the initial version
without register allocation of Section 1.2.1 (compiled with -O0), inlining plus register allocation (options
-O1 -finline-functions) provided a speedup of over a factor of 4 for the swap test program.

1.2.3 Constant Folding

The constant folding technique consists of replacing expressions on constant operands with the result
of the expression. This reduces code size and, since the expression evaluation is performed at compile
time and not at run time, it produces a faster code. For instance, in the code below, the expression
8+(14/2)*3 can be replaced with the constant 29:

Listing 1.16: Code example for illustrating constant folding

1 int f() {

2 return 8+(14/2)*3;

3 }

We can apply constant folding manually to the source code and write the following equivalent fragment:

Listing 1.17: Code of Listing 1.16 after constant folding

1 int f() {

2 return 29;

3 }

Program Optimization 17

We remark that gcc performs constant folding automatically even with optimization level -O0, without
the need for programmers to apply it manually in the source code:

Listing 1.18: Assembly code for Listing 1.16 generated by gcc -S -O0

1 _f:

2 pushq %rbp

3 movq %rsp, %rbp

4 movl $29, %eax

5 leave

6 ret

Althouth programmers naturally tend to perform constant folding in their programs, the role of the com-
piler optimization becomes important when expressions are the result of macro expansions that involve
constants.

1.2.4 Constant Propagation

If a variable is assigned a constant value, later occurrences of the variable may be replaced by that
value, getting a smaller and faster code. This optimization technique, known as constant propagation, is
illustrated in the example below:

Listing 1.19: Code example for illustrating costant propagation

1 int x;

2

3 int f() {

4 x = 8;

5 return x - 2;

6 }

We can apply constant propagation manually to the source code and write the following equivalent frag-
ment:

Listing 1.20: Code of Listing 1.19 after constant propagation

1 int x;

2

3 int f() {

4 x = 8;

5 return 8 - 2;

6 }

Notice that in the code above we could also apply constant folding, replacing 8 - 2 with 6. Constant
propagation is not done by default by gcc:

Listing 1.21: Assembly code of Listing 1.19 generated by gcc -S -O0

1 _f:

2 pushq %rbp

3 movq %rsp, %rbp

4 movq _x@GOTPCREL(%rip), %rax // rax = &x

18 Chapter 1

5 movl $8, (%rax) // *(int*)rax = 8 (x = 8)

6 movq _x@GOTPCREL(%rip), %rax // rax = &x

7 movl (%rax), %eax // eax = *(int*)rax (eax = x)

8 subl $2, %eax // eax = eax - 2 (return eax - 2)

9 leave

10 ret

Notice that the address of global variable x is denoted by x@GOTPCREL(%rip). Compiling at optimiza-
tion level 1 (-O1) enables constant propagation and constant folding in gcc:

Listing 1.22: Assembly code of Listing 1.19 generated by gcc -S -O1

1 _f:

2 pushq %rbp

3 movq %rsp, %rbp

4 movq _x@GOTPCREL(%rip), %rax // rax = &x

5 movl $8, (%rax) // *(int*)rax = 8 (x = 8)

6 movl $6, %eax // eax = 6 (return 6)

7 leave

8 ret

Experimental Analysis

To assess the performance boost given by constant propagation and constant folding on the f function,
we measured the time required to execute 1 billion calls of f:

Listing 1.23: Test program for the f function of Listing 1.19

1 int f();

2

3 int main() {

4 int i, j;

5 for (i=0; i<1000000000; i++) j = f();

6 return j;

7 }

The main function was compiled with -O1 and linked separately with the two versions of f to pro-
duce two executable files f-O0 and f-O1. We measured performance with time ./f-O0 and time

./f-O1. The total times required by the two versions of the program to perform 1 billion calls to f

were:

f-O0 (no optimization) f-O1 (constant propagation + folding)

2.9 seconds 2.5 seconds

Notice that the reported figures include both the time spent in the f function and the time spent in main

for function calls and for the loop. Analyzing f alone would yield a much higher performance boost.

1.2.5 Common Subexpression Elimination

Complex expressions that contain repeated subexpressions can be simplified by computing the common
subexpressions separately and reusing them. This optimization technique, called common subexpression
elimination, is illustrated in the example below:

Program Optimization 19

Listing 1.24: Code example for illustrating common subexpression elimination

1 int expr(int x, int y) {

2 return (x + y)*(x + y);

3 }

We can apply common subexpression elimination manually to the source code and write the following
equivalent fragment where the common subexpression x + y is only computed once:

Listing 1.25: Code of Listing 1.24 after common subexpression elimination

1 int expr(int x, int y) {

2 int z = x + y;

3 return z * z;

4 }

Common subexpression elimination is not performed by default by gcc:

Listing 1.26: Assembly code of Listing 1.24 generated by gcc -S -O0

1 _expr:

2 pushq %rbp

3 movq %rsp, %rbp

4 movl %edi, -4(%rbp)

5 movl %esi, -8(%rbp)

6 movl -8(%rbp), %eax

7 movl -4(%rbp), %edx

8 addl %eax, %edx

9 movl -8(%rbp), %eax

10 addl -4(%rbp), %eax

11 imull %edx, %eax

12 leave

13 ret

Notice that the code computes the expression (x + y) twice at lines 6–8 and 9–10. Compiling at
optimization level 1 (-O1) enables register allocation and common subexpression elimination in gcc:

Listing 1.27: Assembly code of Listing 1.24 generated by gcc -S -O1

1 _expr:

2 pushq %rbp

3 movq %rsp, %rbp

4 addl %edi, %esi

5 movl %esi, %eax

6 imull %esi, %eax

7 leave

8 ret

In this second version, the expression (x + y) is only computed once at line 4.

20 Chapter 1

1.2.6 Expression Simplification

A more advanced form of expression optimization consists of analyzing an expression and performing
symbolic simplifications based on knowledge of the algebraic domains of the involved terms. Consider
for instance the following code fragment:

Listing 1.28: Code example for illustrating expression simplification

1 int expr2(int x, int y, int z) {

2 return 2*x - y + y + 1*(z*2 - 0*x) - 3*x + y;

3 }

We can apply expression simplification manually to the source code and write the following equivalent
fragment:

Listing 1.29: Code of Listing 1.28 after expression simplification

1 int expr2(int x, int y, int z) {

2 return 2*z - x + y;

3 }

Expression simplification is performed automatically by gcc already at optimization level -O1, leading
to the following assembly code for the C code in Listing 1.28:

Listing 1.30: Assembly code of Listing 1.28 generated by gcc -S -O1

1 _expr2:

2 pushq %rbp

3 movq %rsp, %rbp

4 subl %edi, %esi // compute y=y-x

5 leal (%rsi,%rdx,2), %eax // compute 2*z+y

6 leave

7 ret

Notice the efficient use of the lea istruction to perform one sum and one product by 2.

1.2.7 Dead Code Elimination

Dead code elimination consists of removing portions of code that is either unnecessary, or unreachable.
Consider for instance the following code fragment:

Listing 1.31: Code example for illustrating dead code elimination

1 int main() {

2 int x, y;

3 x = 0;

4 y = 971; // dead store operation

5 return x;

6 x = 10; // unreachable instruction

7 }

Program Optimization 21

Notice that assignment y = 971 is unnecessary and its removal does not change the semantics of the
program. Operations of this kind are called dead stores. Similarly, instruction x = 10 is never executed
as it follows a return instruction, so it can be removed as well. Dead code elimination is performed by
gcc already at optimization level -O1, yielding a smaller and possibly faster code:

Listing 1.32: Assembly code of Listing 1.31 generated by gcc -S -O1

1 _main:

2 pushq %rbp

3 movq %rsp, %rbp

4 movl $0, %eax

5 leave

6 ret

In the assembly code above, what other optimization has been performed by gcc in addition to dead
code elimination?

1.2.8 Strength Reduction

Strength reduction consists of replacing a costly operation with an equivalent cheaper one. Some relevant
examples include the following:

• A multiplication by a power of two can be replaced by a left shift operation:

Example:

imulq $2,%rax → shlq %rax (1-bit left shift)

imulq $32,%rax → shlq $5,%rax (5-bit left shift)

• An unsigned division by a power of two can be replaced by a logical right shift operation:

Example:

movl $0,%edx; movl $2,%ecx; divq %ecx 3→ shrq %rax (1-bit right shift)

movl $0,%edx; movl $32,%ecx; divq %ecx → shrq $5, %rax (5-bit right shift)

• Setting a register to zero can be done by computing the exclusive or (xor) of the register with itself

Example:

movq $0,%rax → xorq %rax,%rax

• Simple expressions may be computed with just one “load effective address” instruction instead of a
sequence of sums and products:

Example:

movq %rbx,%rcx; imulq $8,%rcx; addq %rax,%rcx; subq $12,%rcx →

leaq -12(%rax,%rbx,8),%rcx

3Notice divq S divides by S the 128-bit operand formed by the concatenation of registers rdx (most significant bits)
and rax (least significant bits), storing the quotient of the division in rax and the remainder of the division in rdx.

22 Chapter 1

operation instruction latency (nanoseconds) speedup

multiply by power of 2
imul $2,%edx 1.00

2.7x
shll %edx 0.36

divide by power of 2
divq %rcx (with rcx==4) 9.30

25.8x
shrq $4,%rax 0.36

Table 1.6: Performance assessment of strength reduction for some relevant operations.

Experimental Analysis

Examples of speedups achievable by strength reduction on our reference platform are shown Table 1.6.
Figures were obtained by measuring the time required for 108 iterations of a loop body containing 100
consecutive repetitions of the target instruction to be analyzed (imul, divq, etc.). Notice that shift op-
erations have a latency of 0.36 nanoseconds on a 2.8 GHz CPU, and thus require 1 cycle of clock. In our
experiments, we took special care to avoid speedups given by instruction-level parallelism, letting each
target instruction in the execution stream depend upon the result of the previous one. The experiments
show that replacing multiplications and divisions with shift operations on the considered platform can
deliver speedups up to 2.7x and 25.8x, respectively.

