
Marco Fratarcangeli
http://www.dis.uniroma1.it/~frat/

frat@dis.uniroma1.it

General-purpose computing on graphics processing units
(GPGPU)(GPGPU)

Sapienza University of Rome
Dept. of Computer and Systems Science (DIS)

Linköping University
Dept. of Electrical Engineering (ISY)

Outline

• Definitions & motivation

• GPU architecture

• GPGPU and CUDA• GPGPU and CUDA

• Mapping data structures to the GPU

• Examples

What is a graphics card

CPU RAM

Main manufacterer:

GPU VRAM

BUS

Main manufacterer:
Nvidia and ATI

Screen
Everything is local

• Graphics cards have evolved into a
flexible and powerful processor

• Programmability
» Shaders, CUDA, OpenCL

• Precision• Precision
» Float 32

• Power
» Hundreds of cores, GBs of ram

• Cheap
» From hundreds to few thousand euros

Computational Power
G

F
L
O

P
S

multiplies per second

NVIDIA NV30, 35, 40

ATI R300, 360, 420ATI

NVidia

[Ian Buck]

G
F
L
O

P
S

ATI R300, 360, 420

Intel

July 01 Jan 02 July 02 Jan 03 July 03 Jan 04

FLOPS (or flops or flop/s, for floating-point operations per second)

ATI

Example: cloth simulation

[M. Fratarcangeli]

Example: N-body simulation

- 33.5 M particles

- 32 GPUs

- O(n log(n))

[T. Hamada & K. Nitadori]

Applications

• Large matrix/vector operations (BLAS)
• Protein Folding (Molecular Dynamics)
• Finance modeling
• FFT (SETI, signal processing)
• Raytracing
• Physics Simulation [cloth, fluid, collision,…]
• Sequence Matching (Hidden Markov Models)
• Speech/Image Recognition (Hidden Markov Models, Neural nets)
• Databases
• Sort/Search
• Medical Imaging (image segmentation, processing)
• And many, many, many more…
• See GPGPU.org for more examples

Room occupied by various circuits

[nVidia]

Example: Finding the max

float32 float32 float32 float32

Used to store 4 float (or a vec4)

[GPU gems 2]

Reduction technique

Problem: not so easy to use

• Can’t simply “port” code written for the CPU!

• GPUs designed for and driven by video games
– Programming model is unusual & tied to computer

graphicsgraphics
– Programming environment is tightly constrained

• Underlying architectures are:
– Inherently parallel
– Rapidly evolving (even in basic feature set!)
– Largely secret

Decline of the CPU evolution

• Power wall: clock frequency can no longer go up

• Memory wall: the memory architecture is
insufficientinsufficient

• ILP wall: attempts to parallelize are failed

Power wall

[Patterson & Hennessy]

Power wall

• The design goal for the late 1990’s and early
2000’s was to drive the clock rate up. This was
done by adding more transistors to a smaller
chip.

• Unfortunately, this increased the power
dissipation of the CPU chip beyond the capacity
of inexpensive cooling techniques.

Power wall

• 13% higher frequency => 73% more power

• Easy solution: Lower frequency a little, win much power

• Replace one high-frequency CPU with two slightly • Replace one high-frequency CPU with two slightly
slower – for the same cost

• Works nicely for two CPUs

• Increasing the number of cores brings to the memory
wall

Memory wall

• The memory is slower than the CPU

• With more and more CPUs fighting for accessing
the same RAM and caches, efficiency degradesthe same RAM and caches, efficiency degrades

• Memory and bus bandwidth help (if available)

ILP wall

• ILP: Instruction Level Parallelism

• It takes an effort to program parallel systems.

• Programs must be rewritten to fit. The programs must be • Programs must be rewritten to fit. The programs must be
parallelized.

• Another problem: availability
• Machines were there but booking was required
• bad development tools (e.g., debugger)
• unavailable experts – nobody could help

History - CPU

• 80’s: CPU and system at the same speed.
– Zero wait states

• 1993: CPUS faster than the rest of the system. Rapid
raise of frequency.raise of frequency.

• Late 90’s to present: Multi-CPU systems, multi-core
CPUs.

• CPUs are still improving, but going for higher frequency
is not as obvious as before.

History - GPU

• 80’s: hardware sprites - push pixels with low-level code.
• 1993: Textured 3D games - Wolfenstein3D, Doom
• Early 90’s: professional 3D boards
• 1996: 3dfx Voodoo1
• 2001: programmable shaders• 2001: programmable shaders
• 2006: G80, unified architecture. CUDA
• 2009: OpenCL
• 2010: Fermi architecture

Quantitative evolution

1995 2005

CPU Frequency (GHz) .1 3.2 32x

Memory Frequency (GHz) .03 1.2 40x

Bus Bandwidth (GB/sec) .1 4 40x

Hard Disk Size (GB) .5 200 400x

Pixel Fill Rate (GPixels/sec) .0004 3.3 8250x

Vertex Rate (Gverts/sec) .0005 .35 700x

Graphics flops (Gflops/sec) .001 40 40000x

Graphics Bandwidth (GB/sec) .3 19 63x

Frame Buffer Size (MB) .2 256 128x

FLOPS (or flops or flop/s, for floating-point operations per second)

Quantitative comparison
(GFlops)

Why so fast?

• Designed to handle large amounts of data:
• Complex geometries (vertices + triangles)
• Millions of output pixels

• Graphics pipeline is parallel• Graphics pipeline is parallel
• Parallelism hides memory latency

• Multibillion game industry pushes for horse power
• Graphics card is a key component
• New games need new impressive features

Hiding memory latency

• Each core has a small amount of
local/private memory

• With many tasks per core:• With many tasks per core:
• When a task waits for a memory access, run

another

GPU capabilities

• Must process pixels fast
• Early GPUs could draw textured,

shaded triangles much faster than
the CPU

• Must do multiplication and divisions fast• Must do multiplication and divisions fast
• Must transform vertices and

normalize vectors

• Must be programmable
• E.g. Phong shading, Bump mapping

• Must work in floating point
• E.g. High Dynamic Range

The Graphics Pipeline

Application Transform Rasterizer Shade Video
Memory

(Textures)
VerticesVertices

(3D)(3D)
XformedXformed,,

LitLit
VerticesVertices

FragmentsFragments
(pre(pre--pixels)pixels)

FinalFinal
pixelspixels

(Color, Depth)(Color, Depth)

Graphics StateGraphics State

• A simplified graphics pipeline
– Note that pipe widths vary
– Many caches, FIFOs, and so on not shown

VerticesVertices
(2D)(2D)

(Color, Depth)(Color, Depth)

RenderRender--toto--texturetexture

GPU Pipeline: Transform

• Vertex Processor (multiple operate in parallel)
– Transform from “world space” to “image space”
– Compute per-vertex lighting

GPU Pipeline: Rasterizer

• Rasterizer
– Convert geometric rep. (vertex) to image rep. (fragment)

• Fragment = image fragment
– Pixel + associated data: color, depth, stencil, etc.– Pixel + associated data: color, depth, stencil, etc.

– Interpolate per-vertex quantities across pixels

GPU Pipeline: Shade

• Fragment Processors (multiple in parallel)
– Compute a color for each pixel
– Optionally read colors from textures (images)

Overview of GeForce 7800 GTX - 2005

Vertex
processors

Fragment
processors

Overview of GeForce 8800 GTX
- 2006

Unified
processors

Why unify? - Load Balance

Vertex problem
e.g. Complex
geometry

Fragment problem
e.g. Advanced
rendering

Why unify? - Load Balance

2012: current architecture for gaming platforms

• GTX 550 Ti (~120€)
• 192 cores
• 1 GB ram
• Width of the memory interface: 192 bit• Width of the memory interface: 192 bit

• GTX 570 (~300€)
• 480 cores
• 1280 MB ram
• Width of the memory interface: 320 bit

GPGPU

• General Purpose computation on Graphics Processing
Units

• Perform demanding calculations on the GPU instead of
the CPUthe CPU

• Initially a wild idea, now very serious

• High processing power in parallel

Programming model: Streaming

• Problemi con il branching

• Use branching for early exit

CUDA-based GPGPU

• Compute Unified Device Architecture

• Integration of CPU and GPU code in the same program

• Hides graphics legacy

• Only works on NVidia hardware

• Requires extra-software – not very elegant

• Cross-platform: *nix/Mac/Win, mobile (Tegra3)

• Excellent results,
– 100x speedups are common, before optimizing

high-level computing model

• 1. upload data to GPU

• 2. execute kernel

• 3 download the result to the CPU

Integrated source

• The source code of host (CPU) and kernel
(GPU) can be in the same source file,
written as one and the same program.

• Kernel code is identified by special
modifiers

CUDA

• An architecture AND a C extension

• Spawn a large number of threads, to be
run virtually in parallelrun virtually in parallel

• All computations can’t be executed in
parallel. Instead, they are executed a
bunch at a time – a warp

CUDA – hello world
#include <stdio.h>

const int N = 16;
const int blocksize = 16;

//kernel
__global__ void hello(char *a, int *b)
{

a[threadIdx.x] += b[threadIdx.x];
}

// allocate GPU memory
cudaMalloc((void**)&ad, csize);
cudaMalloc((void**)&bd, isize);

// upload to GPU memory
cudaMemcpy(ad, a, csize, cudaMemcpyHostToDevice);
cudaMemcpy(bd, b, isize, cudaMemcpyHostToDevice);

// 1 block, 16 threads
dim3 dimBlock(blocksize, 1);
dim3 dimGrid(1, 1);

int main()
{

char a[N] = "Hello \0\0\0\0\0\0";
int b[N] = {15, 10, 6, 0, -11, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0};

char *ad;
int *bd;

const int csize = N*sizeof(char);
const int isize = N*sizeof(int);
printf("%s", a);

dim3 dimGrid(1, 1);

// call kernel
hello<<<dimGrid, dimBlock>>>(ad, bd);

// download to CPU memory
cudaMemcpy(a, ad, csize, cudaMemcpyDeviceToHost);
cudaFree(ad);

printf("%s\n", a);
return EXIT_SUCCESS;
}

Example: N-Body symulation

• Typical “grid” computation
• N = 8192 bodies
• N2 gravity computations
• 64M force computations / frame
• ~25 flops per force
• 44 frames per second

• GTS 250 (80€)

• 25 * 64M * 44 = ~70.4 GFlops
[Nyland, Harris, Prins]

Scatter vs Gather

• Grid communication
• Grid cells (cores) share information

Ping-pong technique

Computing Gravitational Forces
N-body force Array

force(i,j)

NN

j

jj

Body Position Array

F(i,j) = gMiMj / r(i,j)2,

r(i,j) = |pos(i) - pos(j)|force(i,j)

NNii00

ii
r(i,j) = |pos(i) - pos(j)|

Force is proportional to the inverse square
of the distance between bodies

Computing Total Force
• Have: array of (i,j) forces
• Need: total force on each

particle i
– Sum of each column of the

force array
force(i,j)

N-body force Texture
N

force array

• Can do all N columns in
parallel

This is called a Parallel Reduction

force(i,j)

Ni0

Parallel Reductions

• 1D parallel reduction:
• sum N columns or rows in parallel

• add two halves of texture together

•• repeatedly...

• Until we’re left with a single row of texels

+
NxN

Nx(N/2)
Nx(N/4)

Nx1

Requires log2N steps

Update positions and velocities

• We obtain a 1D array of total forces
• One per body

• Update velocity
• v(i, t+dt) = v(i, t) + Ftot(i)*dttot

• A simple kernel reads previous velocity and force arrays and
creates a new velocity texture

• Update position
• x(i, t+dt) = x(i, t) + v(i, t)*dt
• Simple kernel reads previous position and velocity array,

creates new position array

links

• http://www.gpgpu.org/developer

• http://developer.nvidia.com/cuda-downloads

• http://developer.nvidia.com/gpu-computing-sdk

Example: cloth simulation

• See the paper

overview

• Programming model and language

• Memory spaces and memory access

• Shared memory

• Example

