Marco Fratarcangeli
http://www.dis.uniromal.it/~frat/
frat@dis.uniromal.it

General-purpose computing on graphics processing units
(GPGPU)

Sapienza University of Rome
Dept. of Computer and Systems Science (DIS)

Linkdping University é&
Dept. of Electrical Engineering (ISY) ‘% &

Outline
Definitions & motivation
GPU architecture
GPGPU and CUDA
Mapping data structures to the GPU

Examples

What is a graphics card

Main manufacterer:
Nvidia and ATI

) -
GPU «<— VRAM ﬁ
Al

i

Screen

Everything is local

Graphics cards have evolved into a
flexible and powerful processor

* Programmability
» Shaders, CUDA, OpenCL

* Precision
» Float 32

e Power
» Hundreds of cores, GBs of ram

* Cheap
» From hundre@ds to few thotisand euros

Computational Power

multiplies per second

504
404 o= NVidia
[7p]
o
S 30- emgms ATI
ﬁ === Intel
O 204
104
O T T T T T T

July 01 Jan02 July02 Jan 03 July 03 Jan 04
[lan Buck]

FLOPS, (or flops or flop/s; for floating-point operations per.second)

Example: cloth simulation

[M.Fratarcangeli]

Example: N-body simulation

- 33.5 M particles
- 32 GPUs

- O(n log(n))

[T. Hamada & K. Nitadori]

Applications

Large matrix/vector operations (BLAS)
Protein Folding (Molecular Dynamics)
Finance modeling
FFT (SETI, signal processing)

Raytracing

Physics Simulation [cloth, fluid, collision,...]
Sequence Matching (Hidden Markov Models)
Speech/Image Recognition (Hidden Markov Models, Neural nets)

Databases
Sort/Search

Medical Imaging (image segmentation, processing)
And many, many, many more .«
See GPGPU.org for more gxamples

Room occupied by various circuits

ALU ALU
Control
ALU ALU

CPU

8
=

[nVidial

Example: Finding the max

float32 float32

2188|4197 |16
515829 |74

170| 6 _rgfaz
51328230 66

31 41|59 /26|53 |
2384|6264 (33|

92/30/78/16 40/
899862 8034 |

| 47

Used to store 4 float (or a vec4)

float32 float32
58 97|93
83|27 |95 . .
——t—— Reduction technique
9399 |37
83|94 45
62|86 20 84648397
82|53 42 88|97 |93 |99 |
14 80 |86 ‘98808286 9799
938 7os2/sz/ss] lssias| o9

WA B W

[GPU gems 2]

Problem: not so easy to use

e Can't simply “port” code written for the CPU!

* GPUs designed for and driven by video games
— Programming model is unusual & tied to computer
graphics
— Programming environment is tightly constrained

» Underlying architectures are:
— Inherently parallel
— Rapidly evolving (eveisia,

asic feature set!) s
— Largely secret &

Decline of the CPU evolution

» Power wall: clock frequency can no longer go up

* Memory wall: the memory architecture is
insufficient

 ILP wall: attempts to parallelize are failed

Power wall Power wall
10000 + oy 2600 2667 T « The design goal for the late 1990’s and early
T 100 2000’s was to drive the clock rate up. This was

Y

X 1000 T _
= Clock Rate »pp + B0 %
% 100 + + 6Q %
p g
g 12.5 +40 5
5 0
+ 20
3.3
1 T T T T = I T 0
—— — ——
88 88 8% fg 5 T2-Ezcelc
8¢ Ho Jo £3g Io ES 5383 8%
- — — o & = .355.—8 = ons
o = ik — Qr S
L A
/’{;év,‘ A

[Patterson &Flfennessy]
y: '

done by adding more transistors to a smaller
chip.

» Unfortunately, this increased the power
dissipation of the CPU chip beyond the capacity
of inexpensive cooling techniques.

Power wall

» 13% higher frequency => 73% more power
» Easy solution: Lower frequency a little, win much power

* Replace one high-frequency CPU with two slightly

slower — for the same cost
* Works nicely for two CPUs

* Increasing the number of cores brings to the memory

/«;“&m
¢ W
%ﬁ%&u‘
T — s

Memory wall

e The memory is slower than the CPU

» With more and more CPUs fighting for accessing
the same RAM and caches, efficiency degrades

* Memory and bus bandwidth help (if available)

ILP wall

e ILP: Instruction Level Parallelism
|t takes an effort to program parallel systems.

* Programs must be rewritten to fit. The programs must be
parallelized.

* Another problem: availability
» Machines were there but booking was required
* bad development tog
* unavailable expert:
e
// }(’(:6“'{6 X

AL

History - CPU

» 80’s: CPU and system at the same speed.
— Zero wait states

» 1993: CPUS faster than the rest of the system. Rapid
raise of frequency.

» Late 90’s to present: Multi-CPU systems, multi-core
CPUs.

History - GPU

80’s: hardware sprites - push pixels with low-level code.
1993: Textured 3D games - Wolfenstein3D, Doom
Early 90’s: professional 3D boards

1996: 3dfx Voodool

2001: programmable shaders

2006: G80, unified architecture. CUDA

2009: OpenCL

2010: Fermi architecture

Quantitative evolution

1995 2005
CPU Frequency (GHz) A 3.2 32x
Memory Frequency (GHz) .03 1.2 40x
Bus Bandwidth (GB/sec) A 4 40x
Hard Disk Size (GB) 5 200 400x
Pixel Fill Rate (GPixels/sec) .0004 3.3 8250x
Vertex Rate (Gverts/sec) .0005 .35 700x
Graphics flops (Gflops/sec) .001 40 40000x
Graphics Bandwidth (GB/sec) 3 19 63x

Frame Buffer Size (MB) 2 256 128x

_FLOPS (or flops or flopls;’fof fl'détihg;pbint operations pergfégond)

Peak GFLOP/s

Quantitative comparison
(GFlops)

GT200
1000 -

—4—MVIDIA GPU
=tp=ntel CPU G80 Go2
750 -
00
GT70
250 3.2 GH=z
Nvas NV40 3.0 GHz Hurpartown
o w
Jan Jun Apr Jun Mar Nov May Jun

2003 2004 2005 2006 2007 2008

Why so fast?

» Designed to handle large amounts of data:
» Complex geometries (vertices + triangles)
* Millions of output pixels

» Graphics pipeline is parallel
* Parallelism hides memory latency

» Multibillion game industry pushes for horse power
» Graphics card is a key component
* New games needw impressive features

y
p

Hiding memory latency

e Each core has a small amount of
local/private memory

« With many tasks per core:

* When a task waits for a memory access, run
another

GPU capabilities

e Must process pixels fast

» Early GPUs could draw textured,
shaded triangles much faster than
the CPU

e Must do multiplication and divisions fast

» Must transform vertices and
normalize vectors

Must be programmable
» E.g. Phong shading, Bump mapping

e Must work in floating point
* E.g. High Dynamic Rangg:

The Graphics Pipeline

Graphics State

! ! ! ! ’
Application mess=p Transform Rasterizer - Shade » Video
PP Verti ﬁ Fi Final Mermons
ertices ormed, ragments inal
(3D) Lit (pre-pixels) pixels (TEXtUres)
Vertices (Color, Depth)

(2D)
« A simplified graphics pipeline
— Note that pipe widths vary
— Many caches, FIFOs,and so on not shown

GPU Pipeline: Transform

» Vertex Processor (multiple operate in parallel)
— Transform from “world space” to “image space”
— Compute per-vertex lighting

GPU Pipeline: Rasterizer

» Rasterizer
— Convert geometric rep. (vertex) to image rep. (fragment)
* Fragment = image fragment
— Pixel + associated data: color, depth, stencil, etc.
— Interpolate per-vertex quantities across pixels

\‘ i—

GPU Pipeline: Shade

* Fragment Processors (multiple in parallel)
— Compute a color for each pixel
— Optionally read colors from textures (images)

Overview of GeForce 7800 GTX - 2005

GeForce 7800

Parallelism Host JFyy 7 VTF

o JIJ|J ,IJ|J JIJ|J .J|J JIJ|_ 0| e e Vertex
T processors

Cull £ Clip / Setup

Fragment
processors

DRA&M(=) DRAM(E) DRAM(E)

IDIA Confidential

Overview of GeForce 8800 GTX
- 2006

NVIDIA GeForce 8800 GT

Input Assembler Setup | Retr | ZCull

Geom Thread Issue Fixel Thread Issue

1 1 r
o] 0 o] o] T o] e O e ol T 1
(o o | o B B
] |

(o | Unified
(o] o o
LI (L FEEE CETE CEET) EETTT FETT 1 e

g Thread Processor

| 1 v W v L M o) L (L
[t 1 it | _'.‘ Gl

[T T N ST O

Why unify? - Load Balance

Why unify?
T — Vertex problem
LT 1] geomery
geometry
Pixel Shader
- e
Heavy Geometry
Workload Perf =4
Vertex Shader
Fragment problem
rendering
Pixel Shader

Why unify? - Load Balance

Why unify?

Unified Shader

Vertex Workload

Heavy Geometry i
Waorkload Perf =12

Unified Shader
Pixel Woskinad

Heavy Pixel
orkload Perf = 412

2012: current architecture for gaming platforms

e GTX 550 Ti (~120€)
* 192 cores
* 1 GBram
» Width of the memory interface: 192 bit

« GTX 570 (~300€)
* 480 cores
* 1280 MB ram
+ Width of the memory interface: 320 bit

GPGPU

General Purpose computation on Graphics Processing
Units

Perform demanding calculations on the GPU instead of
the CPU

Initially a wild idea, now very serious

High processing power in parallel

Programming model: Streaming

» Problemi con il branching

» Use branching for early exit

y ’f
P CAvAVA)
Y2 AVAVA
§ % é J«’A"&nun

CUDA-based GPGPU

e Compute Unified Device Architecture

* Integration of CPU and GPU code in the same program
» Hides graphics legacy

e Only works on NVidia hardware

* Requires extra-software — not very elegant

e Cross-platform: *nix/Mac/Win, mobile (Tegra3)

» Excellent results,

,40‘7»’4
< At ANt i L RLF
00x speedups ar c s ;i%

high-level computing model

e 1. upload data to GPU
» 2. execute kernel

» 3 download the result to the CPU

KL

% AL
KT
2
:f‘:?’%l’x'
KL

Integrated source
* The source code of host (CPU) and kernel

(GPU) can be in the same source file,
written as one and the same program.

» Kernel code is identified by special

modifiers

CUDA

An architecture AND a C extension

Spawn a large number of threads, to be
run virtually in parallel

All computations can’t be executed in
parallel. Instead, they are executed a
bunch at a time — a \wakp

CUDA - hello world

#include <stdio. h> /1 allocate GPU nenory
cudaMal | oc((voi d**) &d, csize);
const int N = 16; cudaMal | oc((voi d**) &d, isize);
const int blocksize = 16;
/'l upload to GPU nenory
/'1'kernel cudaMenctpy(ad, a, csize, cudaMencpyHost ToDevice);

__global __ void hello(char *a, int *b) cudaMencpy(bd, b, isize, cudaMencpyHost ToDevice);
a[threadl dx. x] += b[threadldx.Xx]; /1 1 block, 16 threads
} di nB8 di nBl ock(bl ocksi ze, 1);

ding dinaid(1l, 1);

int main() /'l call kernel
hel | o<<<di n&id, dinBl ock>>>(ad, bd);
char a[N] = "Hello \0\0\0\0\0\0";
int b[NN = {15, 10, 6, O, -11, 1, 0, O, /1 downl oad to CPU nenory

o, o,b 0,0 O, O, O, O, O}; cudaMentpy(a, ad, csize, cudaMencpyDeviceToHost);
cudaFr ee(ad);
char *ad;
int *bd; printf("%\n", a);

return EXI T_SUCCESS;
const int csize = N¥‘sizeof(char);
const int isize = N‘sizeof(int);
printf(%", a);

Example: N-Body symulation

Typical “grid” computation

N = 8192 bodies

N2 gravity computations

64M force computations / frame
~25 flops per force

44 frames per second

GTS 250 (80€)

[Nyland, Harris, Prins]

25* 64M * 44 = ~70.4 GFlops

Scatter vs Gather

e Grid communication
* Grid cells (cores) share information

2 Q
BLE] S
0 8

Scatter Gather

1. Odd simulation steps (ping...) Ping-pong technique

Input Output
Buffer 0 GPU Buffer 1

x(¢) computation M x(t+ A1)
Vertex
Buffer HD Draw
GPU Object

2. Even simulation steps (...pong)

Y

Output Input
Buffer 0 " GPU » Buffer 1
x(t+Ar) [computation| - x(7)
Vertex
Draw U[I Buffer
Object GPU

Computing Gravitational Forces

N-body force Array Body Position Array

T,

t(i.j) = |pos(i) - pos()|

Force is proportional to thefinverse square
of the distance between bodies

Computing Total Force

Have: array of (i,j) forces N N-body force Texture

Need: total force on each
particle i

— Sum of each column of the
force array

Can do all N columns in
parallel

This is called a Parallel Reduction

Parallel Reductions

1D parallel reduction:

sum N columns or rows in parallel
add two h ther

repeatedl
untll we'r w of texels

Nx(N/2)
Nx(N/4) +
Nx1

| Requires log,N steps | !

Update positions and velocities

* We obtain a 1D array of total forces
* One per body

* Update velocity
o v(i, t+dt) = v(i, t) + F,(i)*dt
» A simple kernel reads previous velocity and force arrays and
creates a new velocity texture

» Update position
o (i, t+dt) = x(i, t) + v(i, t)*dt

» Simple kernel reads previous position and velocity array,

creates new position arra

G,
O
AL
A CAVAVAVAY
f (;‘"ﬁuv‘A
T avAvAav s

links

* http://www.gpgpu.org/developer

» http://developer.nvidia.com/cuda-downloads

« http://developer.nvidia.com/gpu-computing-sdk

% 7
7 : 75
o : LR
é’,'v‘;'u" LT
XTI X &5 7
i maranara st BRI %

Example: cloth simulation

» See the paper

Z S

G
e
Z ;I'-‘»"’a;::‘e';'
s araravas
s aTATA v

overview

Programming model and language

Memory spaces and memory access

Shared memory

« Example

72z, v

s vavasn
I s AT AV A,
7 ’f““"v‘ AV
S avAvAvAYy

4/ /

