MapReduce

What it is, and why it is so popular

Luigi Laura

Dipartimento di Informatica e Sistemistica
“Sapienza” Universita di Roma

Rome, May 17", 2012

Motivations: sorting one Petabyte

Google'" Official Blog

Insights from Googlers into our products,
technology and the Google culture

Sorting 1PB with MapReduce

November 22, 2008 at 1:55 AM

g+ 16

At Google we are fanatical about organizing the world's information. As a result, we
spend a lot of time finding better ways to sort information using MapReduce, a key
component of our software infrastructure that allows us to run multiple processes
simultaneously. MapReduce is a perfect solution for many of the computations we
run daily, due in large part to its simplicity, applicability to a wide range of real-world

computing tasks, and natural translation to highly scalable distributed

imnlamantatinne that harnace tha nnuwar nf thniieande nf ramniitare

Sear

ch

Connect with us

Subscribe to this blog:

& FeedBurner

N\ RSSFeed

Browse all of Google’s
blogs for specific interests

& topics:

Motivations: sorting...

v

Nov. 2008: 1TB, 1000 computers, 68 seconds.
Previous record was 910 computers, 209 seconds.

Nov. 2008: 1PB, 4000 computers, 6 hours; 48k harddisks...
Sept. 2011: 1PB, 8000 computers, 33 minutes.
Sept. 2011: 10PB, 8000 computers, 6 hours and 27 minutes.

v

v

v

The last slide of this talk...

“The beauty of MapReduce is that any programmer can understand
it, and its power comes from being able to harness thousands of
computers behind that simple interface”

David Patterson

Outline of this talk

What is MapReduce?

MapReduce is a distributed computing paradigm that's here now
» Designed for 10,000+ node clusters
» Very popular for processing large datasets

» Processing over 20 petabytes per day [Google, Jan 2008]

v

But virtually NO analysis of MapReduce algorithms

The origins...

“Our abstraction is inspired by the map and reduce
primitives present in Lisp and many other functional
languages. We realized that most of our computa-
tions involved applying a map operation to each log-
ical “record” in our input in order to compute a set
of intermediate key/value pairs, and then applying a
reduce operation to all the values that shared the
same key, in order to combine the derived data ap-
propriately.”

Jeffrey Dean and Sanjay Ghemawat [OSDI 2004]

Map in Lisp

The map(car) is a function that calls its first argument with each
element of its second argument, in turn.

Listener 5

O)=)E %E@ &EME @EE @00 ()@)(>)=)0

[-
Listener Output |

CL-USER 1 > (mapcar 'zerop '(0 1 2 3))
(T NIL NIL NIL)

CL-USER 2 > (mapcar 'ceiling '(1.2 2.7 3.2))
(2 3 4)

CL-USER 3 > (mapcar 'floor '(1.2 2.7 3.2))
(1 2 3)

CL-USER 4 > []

Ready.

Reduce in Lisp

The reduce is a function that returns a single value constructed by

calling the first argument (a fu

nction) function on the first two

items of the second argument (a sequence), then on the result and

the next item, and so on .

D@ =

Listener 6

3@ &EME @EE @O0 ()@ v)=) 0]

Listener Output

CL-USER 1 > (reduce '
6

CL-USER 2 > (reduce '
-4

CL-USER 3 > (reduce
6

CL-USER 4 > (reduce '
0

CL-USER 5 >

Ready.

+ '"(1 2 3))
- '(1 2 3))
'+ '(3 2 1))
- '(321))

MapReduce in Lisp

Our first MapReduce program

REE

= JJO\=/0 DO U

5B (@ &m0 E @EE (@)= -

)

Listener 8

(] () (D)2)= J[1=) () 2 8

Listener Output

CL-USER 1 >
9

CL-USER 2 >

Ready.

(reduce '+ (mapcar 'ceiling '(1.2 2.7 3.4)))

THE example in MapReduce: Word Count

def mapper(line):
foreach word in line.split():

output(word, 1)

def reducer(key, values):

output(key, sum(values))

Word Count Execution

Input Map Shuffle & Sort Reduce Output
A 4]
the, 1
. brown, 1
the quick fox, 1 brown, 2
brown fox fox, 2
how, 1
n now, 1
the, 3
the fox ate ||
the mouse
— :s:ll: ate, 1 ate, 1
brow;l, 1 mouse, 1 cow, 1
how how mouse, 1
brown cow quick, 1

MapReduce Execution Details

» Single master controls job execution on multiple slaves

» Mappers preferentially placed on same node or same rack as
their input block

» Minimizes network usage

» Mappers save outputs to local disk before serving them to
reducers

» Allows recovery if a reducer crashes
» Allows having more reducers than nodes

MapReduce Execution Details

/ User \\
Pro grany

(1) Fo-rk o fo'rk “-]_ fork
/Masler\\\
(2 assign
_assj,gn reduce .
ot map
worer$
rorker
w\h\'r orl __/(-
split 0 T __ /,_1__ @ wite [“ouom
Split ! - (5) remote read -"3_“ orka?:r/ I file 0
lit2 | (3) read - 4) local wri [T —
spli d worke-r%\\ (4) local write | //_ —.
split 3 — L1 | worker D
NS file 1
split 4
Q orke_;\\
,/ L1 |
Input Map Intermediate files Reduce Output
files phase {on local disks) phase files

MapReduce Execution Details

/User\\\

Single Master node

Google

Pro grany

(1) fork 1) fork
: Many worker bees
Many worker bees () Masle:\\
Y \» - ®
(2 ass_ign
assign reduce
W map -
worke 1:5 _
split 0 B o - .
pl' ; {/“r . (6}wm:i.- output
spht - ~ (5)remote read‘:_l_d__-fkl‘_or e_r/ file O
lit2 |3} rea - 4 wri o —
spli id worke:\\ (4) local write - l/_,__ . — e
split 3 S— LI \:vor e_rF/J e
. ile 1
split 4
Q’orke-r\\‘-
— d_-‘/ L1 |

Input Map Intermediate files Reduce Output
files phase {on local disks) phase files

MapReduce Execution Details

Initial data split User
intfo 64MB blocks Q"g’a"‘
(1) Fo-rlk..'. “];; --'El_]_fo
Computed, results | —"
locally stored - \TSD o
2 "assign

reduce |

Master informed of |
result locations

M sends data
location to R workers

worker &
\\q_“ Or _//i
split 0 T o -

- output
split 1 o ——W file O
split 2 _(3) read worker : (4) local write

. . output

—
split 3 - — file 1
split 4+
Q':' orker
— — Final output written
Input Map Intermediate files Reduce Output
files phase {on local disks) phase files

MapReduce Execution Details

Process

User Program [MapReduce() ... wait ...

Worker 4

Master Assign tasks to worker machines...
Worker 1 Map l| Map 3 |

Worker 2

Worker 3 . .

Reduce 1

Exercise!

Word Count is trivial...
how do we compute SSSP in MapReduce?

Hint: we do not need our algorithm to be feasible...
just a proof of concept!

Programming Model

» MapReduce library is extremely easy to use

» Involves setting up only a few parameters, and defining the
map() and reduce() functions

Define map() and reduce()

Define and set parameters for MapReducelnput object
Define and set parameters for MapReduceOutput object
Main program

vV v.v .y

Most important/unknown /hidden feature: if a single key combined
mappers output is too large for a single reducer, then it is handled
“as a tournament” between several reducers!

What is MapReduce/Hadoop used for?

» At Google:
» Index construction for Google Search
» Article clustering for Google News
» Statistical machine translation

» At Yahoo!:
» “Web map” powering Yahoo! Search
» Spam detection for Yahoo! Mail

» At Facebook:

» Data mining
» Ad optimization
» Spam detection

Large Scale PDF generation - The Problem

» The New York Times needed to generate PDF files for
11,000,000 articles (every article from 1851-1980) in the form
of images scanned from the original paper

» Each article is composed of numerous TIFF images which are
scaled and glued together

» Code for generating a PDF is relatively straightforward

Large Scale PDF generation - Technologies Used

» Amazon Simple Storage Service (S3) [0.15$/GB/month]

» Scalable, inexpensive internet storage which can store and
retrieve any amount of data at any time from anywhere on the
web

» Asynchronous, decentralized system which aims to reduce
scaling bottlenecks and single points of failure

» Hadoop running on Amazon Elastic Compute Cloud (EC2)
[0.10%/hour]
» Virtualized computing environment designed for use with other
Amazon services (especially S3)

Large Scale PDF generation - Results

» 4TB of scanned articles were sent to S3

» A cluster of EC2 machines was configured to distribute the
PDF generation via Hadoop

» Using 100 EC2 instances and 24 hours, the New York Times
was able to convert 4TB of scanned articles to 1.5TB of PDF
documents

Hadoop

» MapReduce is a working framework used inside Google.

» Apache Hadoop is a top-level Apache project being built and
used by a global community of contributors, using the Java
programming language.

» Yahoo! has been the largest contributor

Typical Hadoop Cluster

Aggregation switch

<—» 8 gigabit
<—» 1 gigabit
Rack switch A

Node Node Node Node Node Node

= = = = =) =

» 40 nodes/rack, 1000-4000 nodes in cluster
» 1 Gbps bandwidth within rack, 8 Gbps out of rack

» Node specs (Yahoo terasort): 8 x 2GHz cores, 8 GB RAM, 4
disks (= 4 TB?)

Typical Hadoop Cluster

Hadoop Demo

» Now we see Hadoop in action...
> ...as an example, we consider the Fantacalcio computation...

> ... code and details available from:
https://github.com/bernarpa/FantaHadoop

Microsoft Dryad

v

A Dryad programmer writes several sequential programs and
connects them using one-way channels.

» The computation is structured as a directed graph: programs
are graph vertices, while the channels are graph edges.

» A Dryad job is a graph generator which can synthesize any
directed acyclic graph.

» These graphs can even change during execution, in response
to important events in the computation.

Microsoft Dryad - A job

___ Vertices

M M -
{processes)
Output files k {

Channels

Yahoo! S4: Distributed Streaming Computing Platform

S4 is a general-purpose, distributed, scalable, partially
fault-tolerant, pluggable platform that allows programmers to
easily develop applications for processing

continuous unbounded streams of data.

Keyed data events are routed with affinity to Processing Elements

(PEs), which consume the events and do one or both of the
following:

emit one or more events which may be consumed by other
PEs,

publish results.

Yahoo! S4 - Word Count example

A keyless event (EV) arrives at PE1 with quote:

EV. Quote “I meant what | said and | said what | meant.”, Dr. Seuss
KEY L4 QuoteSplitterPE (PE1) counts unique
VAL JM words in Quote and emits events for

each word.

EV WordEvent
KEY _ word="i"
VAL _ count=4

WordCountPE (PE2-4)
keeps total counts for
each word across all
quotes. Emits an event
any time a count is
updated.

EV WordEvent
KEY _ word="said" .. __
VAL _ count=2

EV UpdatedCountEv
KEY sortiID=2
VAL word=said count=9

BV UpdatedCountEv
~ KEY sortiD=9
VAL word="{" count=35

SortPE (PE5-7)
continuously sorts partial
lists. Emits lists at periodic
intervals

EV PartialTopKEv.___ / MergePE (PE8) combines partial

KEY topk=1234 @ TopK lists and outputs final
VAL words={w:cnt} TopK list.
PEID PE Name Key Tuple
PEL QuoteSplitterPE null
PE2 WordCountPE word="said"
PE4 WordCountPE word="i"
PE5 SortPE sortID=2
\PE7 __SortPE sortID=9
PE8 MergePE topK=1234 %

Google Pregel: a System for Large-Scale Graph Processing

» Vertex-centric approach
» Message passing to neighbours

» Think like a vertex mode of programming

PageRank example!

Google Pregel

Pregel computations consist of a sequence of iterations, called
supersteps. During a superstep the framework invokes a
user-defined function for each vertex, conceptually in parallel. The
function specifies behavior at a single vertex V' and a single
superstep S. It can:

» read messages sent to V in superstep S — 1,

» send messages to other vertices that will be received at
superstep S + 1, and

» modify the state of V and its outgoing edges.

Messages are typically sent along outgoing edges, but a message
may be sent to any vertex whose identifier is known.

Google Pregel

Superstep 0
Superstep 1

Superstep 2

Superstep 8

Maximum Value Example

Twitter Storm

“Storm makes it easy to write and scale complex
realtime computations on a cluster of computers,
doing for realtime processing what Hadoop did for
batch processing. Storm guarantees that every
message will be processed. And it's fast — you can
process millions of messages per second with a small
cluster. Best of all, you can write Storm topologies
using any programming language.”

Nathan Marz

Twitter Storm: features

| 2

Simple programming model. Similar to how MapReduce
lowers the complexity of doing parallel batch processing,
Storm lowers the complexity for doing real-time processing.
Runs any programming language. You can use any
programming language on top of Storm. Clojure, Java, Ruby,
Python are supported by default. Support for other languages
can be added by implementing a simple Storm communication
protocol.

Fault-tolerant. Storm manages worker processes and node
failures. Horizontally scalable. Computations are done in
parallel using multiple threads, processes and servers.
Guaranteed message processing. Storm guarantees that each
message will be fully processed at least once. It takes care of
replaying messages from the source when a task fails.

Local mode. Storm has a "local mode” where it simulates a
Storm cluster completely in-process. This lets you develop and
unit test topologies quickly.

Theoretical Models

So far, two models:

» Massive Unordered Distributed (MUD) Computation, by
Feldman, Muthukrishnan, Sidiropoulos, Stein, and Svitkina
[SODA 2008|

» A Model of Computation for MapReduce (MRC), by Karloff,
Suri, and Vassilvitskii [SODA 2010]

Massive Unordered Distributed (MUD)

An algorithm for this platform consist of three functions:

» a local function to take a single input data item and output a
message,

» an aggregation function to combine pairs of messages, and in
some cases

» a final postprocessing step

More formally, a MUD algorithm is a triple m = (¥, &, n):
» & : > — @ maps an input item X to a message Q.
> P Q x Q — @ maps two messages to a single one.

» 1 : Q — X produces the final output.

Massive Unordered Distributed (MUD) - The results

» Any deterministic streaming algorithm that computes a
symmetric function X" — X can be simulated by a mud
algorithm with the same communication complexity, and the
square of its space complexity.

» This result generalizes to certain approximation algorithms,
and randomized algorithms with public randomness (i.e., when
all machines have access to the same random tape).

Massive Unordered Distributed (MUD) - The results

» The previous claim does not extend to richer symmetric
function classes, such as when the function comes with a
promise that the domain is guaranteed to satisfy some
property (e.g., finding the diameter of a graph known to be
connected), or the function is indeterminate, that is, one of
many possible outputs is allowed for “successful computation”
(e.g., finding a number in the highest 10% of a set of
numbers). Likewise, with private randomness, the preceding
claim is no longer true.

Massive Unordered Distributed (MUD) - The results

» The simulation takes time Q(2°P°¥8(")) from the use of
Savitch's theorem.

» Therefore the simulation is not a practical solution for
executing streaming algorithms on distributed systems.

Map Reduce Class (MRC)

Three Guiding Principles
The input size is n

Space Bounded memory per machine

» Cannot fit all of input onto one machine
» Memory per machine n'—¢

Time Small number of rounds

» Strive for constant, but OK with Iogo(l) n
» Polynomial time per machine (No streaming constraints)

Machines Bounded number of machines

» Substantially sublinear number of machines
» Total n'—¢

MRC & NC

Theorem: Any NC algorithm using at most n°~¢ processors and
at most n>~¢ memory can be simulated in MRC.
Instant computational results for MRC:

» Matrix inversion [Csanky's Algorithm]

» Matrix Multiplication & APSP

» Topologically sorting a (dense) graph

> ...

But the simulation does not exploit full power of MR

» Each reducer can do sequential computation

Open Problems

» Both the models seen are not a model, in the sense that we
cannot compare algorithms.
» We need such a model!

» Both the reductions seen are useful only from a theoretical
point of view, i.e. we cannot use them to convert
streaming/NC algorithms into MUD/MRC ones.

» We need to keep on designing algorithms the old
fashioned way!!

Things | (almost!) did not mention

In this overview several details! are not covered:
» Google File System (GFS), used by MapReduce
» Hadoop Distributed File System, used by Hadoop
» The Fault-tolerance of these and the other frameworks...

> ... algorithms in MapReduce (very few, so far...)

Outline: Graph Algorithms in MR?

Is there any memory efficient constant round algorithm for
connected components in sparse graphs?

» Let us start from computation of MST of Large-Scale graphs

» Map Reduce programming paradigm

» Semi-External and External Approaches

» Work in Progress and Open Problems . ..

Notation Detalils

Given a weighted undirected graph G = (V/, E)

» n is the number of vertices

» N is the number of edges
(size of the input in many MapReduce works)

v

all of the edge weights are unique

» G is connected

Sparse Graphs, Dense Graphs and Machine Memory |

(1) SEMI-EXTERNAL MAPREDUCE GRAPH ALGORITHM.
Working memory requirement of any map or reduce computation
O(N*~<), for some € > 0

(2) EXTERNAL MAPREDUCE GRAPH ALGORITHM.
Working memory requirement of any map or reduce computation
O(n'~¢), for some € > 0

Similar definitions for streaming and external memory graph
algorithms

O(N) not allowed!

Sparse Graphs, Dense Graphs and Machine Memory |l

(1) G is dense, i.e., N = n'*¢

The design of a semi-external algorithm:

» makes sense for some H—Lc >e>0
(otherwise it is an external algorithm, O(N1=¢) = O(n'~¢))

» allows to store G vertices

(2) G is sparse, i.e., N = O(n)

» no difference between semi-external and external algorithms

» storing G vertices is never allowed

Karloff et al. algorithm (SODA '10) |

mrmodelSODA10

(1) MAP STEP 1.
Given a number k, randomly partition the set of vertices into k
equally sized subsets: G; ; is the subgraph given by (V; U V;, E;).

©) @
| |ee §
(2 @0
G G2 Gi3 G23

Karloff et al. algorithm (SODA '10) Il

(2) REDUCE STEP 1.

For each of the (5) subgraphs G;;, compute the MST (forest) M; ;.

(3) Map STEP 2.
Let H be the graph consisting of all of the edges present in some
M;;: H=(V,U;; Mi;): map H to a single reducer $.

(4) REDUCE STEP 2.
Compute the MST of H.

Karloff et al. algorithm (SODA '10) Il

The algorithm is semi-external, for dense graphs.

» if G is c-dense and if kK = n%, for some ¢ > ¢’ > 0:
with high probability, the memory requirement of any map or
reduce computation is

O(N'™) (1)

> it works in 2 = O(1) rounds

Lattanzi et al. algorithm (SPAA '11) |

filteringSPAA11

(1) MAP STEP .

Given a number k, randomly partition the set of edges into]

ko
equally sized subsets: G; is the subgraph given by (V;, E;)

G Gi G G3

Lattanzi et al. algorithm (SPAA '11) Il

(2) REDUCE STEP .
For each of the % subgraphs G;, computes the graph G/, obtained
by removing from G; any edge that is guaranteed not to be a part of

any MST because it is the heaviest edge on some cycle in G;.

Let H be the graph consisting of all of the edges present in some G/

» if |[E| < k — the algorithm ends
(H is the MST of the input graph G)

» otherwise — start a new round with H as input

Lattanzi et al. algorithm (SPAA '11) Il

The algorithm is semi-external, for dense graphs.

> if G is c-dense and if k = n*<", for some ¢ > > 0:
the memory requirement of any map or reduce computation is

O(n**<) = O(N'™) (2)

for some /

14+ ¢

> it works in [5] = O(1) rounds

>e>0 (3)

Summary

[mrmodelSODA10] [filteringSPAA11]
G is c-dense, and c > ¢’ >0

if k= n%,, whp if k= nite
Memory | O(N1~¢) O(n**+<') = O(N'—¢)
Rounds | 2 [5] =0(1)

Table: Space and Time complexity of algorithms discussed so far.

Experimental Settings (thanks to A. Paolacci)

» Data Set.
Web Graphs, from hundreds of thousand to 7 millions vertices
http://webgraph.dsi.unimi.it/

» Map Reduce framework.
Hadoop 0.20.2 (pseudo-distributed mode)

» Machine.
CPU Intel i3-370M (3M cache, 2.40 Ghz), RAM 4GB, Ubuntu

Linux.

» Time Measures.
Average of 10 rounds of the algorithm on the same instance

Preliminary Experimental Evaluation |

Memory Requirement in [mrmodelSODA10]

Mb c nttc k=n*< round 1! round 2!
cnr-2000 | 434 0.18 3.14 3 7.83 4.82
in-2004 | 233.3 0.18 3.58 3 50.65 21.84
indochina-2004 | 2800 0.21 5.26 5 386.25 126.17

Using smaller values of k (decreasing parallelism)

» decreases round 1 output size — round 2 time =

> increases memory and time requirement of

round 1 reduce step —~

[1] output size in Mb

Preliminary Experimental Evaluation I

Impact of Number of Machines in Performances of [mrmodelSODA10]

machines map time (sec) reduce time (sec)
cnr-2000 | 1 49 29
cnr-2000 | 2 44 29
cnr-2000 | 3 59 29
in-2004 | 1 210 47
in-2004 | 2 194 47
in-2004 | 3 209 52

Implications of changes in the number of machines, with kK = 3:
increasing the number of machines might increase overall
computation time (w.r.t. running more map or reduce instances on

the same machine)

Preliminary Experimental Evaluation IlI

Number of Rounds in [filteringSPAA11]

Let us assume, in the r-th round:

> |E| > k;
» each of the subgraphs G; is a tree or a forest.
@0 (@) @ @®
@@ %0
OR0, © © ©e
G G Go Gs

input graph = output graph, and the r-th is a “void” round.

Preliminary Experimental Evaluation IV

Number of Rounds in [filteringSPAA11]

(Graph instances having same ¢ value 0.18)

c expected rounds average rounds?
cnr-2000 | 0.03 8 8.00
cnr-2000 | 0.05 5 7.33
cnr-2000 | 0.15 2 3.00
in-2004 | 0.03 6 6.00
in-2004 | 0.05 4 4.00
in-2004 | 0.15 2 2.00

We noticed some few “void” round occurrences.
(Partitioning using a random hash function)

Simulation of PRAMs via MapReduce |

mrmodelSODA10; MUD10; G10

(1) CRCW PRAM. via memory-bound MapReduce framework.

(2) CREW PRAM. via DMRC:
(PRAM) O(5272¢) total memory, O(5272¢) processors and T time.
(MapReduce) O(T) rounds, O(5%72¢) reducer instances.

(3) EREW PRAM. via MUD model of computation.

PRAM Algorithms for the MST

» CRCW PRAM algorithm [MST96]
(randomized)
O(log n) time, O(N) work — work-optimal

» CREW PRAM algorithm [JaJa92]

O(log® n) time, O(n?) work — work-optimal if N = O(n?).
» EREW PRAM algorithm [Johnson92]

O(Iog% n) time,O(NIog% n) work.
» EREW PRAM algorithm [wtMST02]

(randomized)
O(N) total memory, O(-Y-) processors.

log n

O(log n) time, O(N) work — work-time optimal.

Simulation of CRCW PRAM with CREW PRAM: Q(log S) steps.

Simulation of [wtMST02] via MapReduce |

The algorithm is external (for dense and sparse graphs).

Simulate the algorithm in [wtMST02] using CREW—MapReduce.

» the memory requirement of any map or reduce computation is
O(log n) = O(n'™°) (4)

for some
1—loglogn>e¢>0 (5)

> the algorithm works in O(log n) rounds.

Summary

Memory
Rounds

[mrmodelSODA10]

[filteringSPAA11]

Simulation

G is c-dense, and c > ¢’ >0

if k=n%, whp
O(Nl—e)
2

if k= ntte

O(n1+c’) — O(Nl—e)

/

(o1 =0(1)

O(log n) = O(n*~°)
O(log n)

Table: Space and Time complexity of algorithms discussed so far.

Borlivka MST algorithm |

boruvka26

Classical model of computation algorithm

procedure Boruvka MST(G(V, E)):
T—>YV
while |T| < n—1 do
for all connected component C in T do
e — the smallest-weight edge from C to another component in T
if e ¢ T then
T — TU{e}
end if
end for
end while

Borlivka MST algorithm ||

Figure: An example of Borlivka algorithm execution.

Random Mate CC algorithm |

rm91

CRCW PRAM model of computation algorithm

procedure Random Mate CC(G(V, E)):
for all v € V do cc(v) — v end for
while there are edges connecting two CC in G (live) do
for all v € V do gender[v] — rand({M, F}) end for
for all live (u,v) € V do
cc(u) is M A cc(v) is F 7 cc(cc(u)) — cc(v) : cc(eec(v)) — cc(u)
end for
for all v € E do cc(v) — cc(cc(v)) end for
end while

Random Mate CC algorithm I

parent[v]

M F parent[v] parent[v]

parentfu]

parent[u]

Figure: An example of Random Mate algorithm step.

Borivka + Random Mate |

Let us consider again the labeling function cc: V — V

(1) Map STEP / (BORUVKA).
Given an edge (u,v) € E, the result of the mapping consists in two
key : value pairs cc(u) : (u,v) and cc(v) : (u, v).

"0t ew o ol L

G G 1 G2 G3 G4 G5 G6

Boruvka + Random Mate Il

(2) REDUCE STEP /i (BORUVKA).
For each subgraph G;, execute one iteration of the Borlivka
algorithm.

Let T be the output of /-th Boriivka iteration.
Execute r; Random Mate rounds, feeding the first one with T.

(3) RounD i+ j (RANDOM MATE).
Use a MapReduce implementation [pb10] of Random Mate algorithm
and update the function cc.

» if there are no more live edges, the algorithm ends
(T is the MST of the input graph G)

» otherwise — start a new Bortvka round

Boriuvka + Random Mate Il

Two extremal cases:

» output of first Boriivka round is connected
— O(log n) Random Mate rounds, and algorithm ends.

» output of each Borlivka round is a matching
— Vi, r; =1 Random Mate round
— O(log n) Boriivka rounds, and algorithm ends.

Therefore
> it works in O(log? n) rounds;

» example working in ~ }ilog2 n

Boruvka + Random Mate IV

AP,
b7

® ©®
| 1/‘\1 1
@ ' @

10

Conclusions

Work in progress for an external implementation of the algorithm
(for dense and sparse graphs).

> the worst case seems to rely on a certain kind of structure in
the graph, difficult to appear in realistic graphs

» need of more experimental work to confirm it

Is there any external constant round algorithm for connected
components and MST in sparse graphs?

Maybe under certain (and hopefully realistic) assumptions.

Overview...

» MapReduce was developed by Google, and later implemented
in Apache Hadoop

» Hadoop is easy to install and use, and Amazon sells
computational power at really low prices

» Theoretical models have been presented, but so far there is no
established theoretical framework for analysing MapReduce
algorithms

» Several “similar’ systems (Dryad, S4, Pregel) have been
presented, but are not diffused as MapReduce/Hadoop... also
because...

The End... | told you from the beginning...

“The beauty of MapReduce is that any programmer
can understand it, and its power comes from being
able to harness thousands of computers behind that
simple interface”

David Patterson

