
MapReduce
What it is, and why it is so popular

Luigi Laura

Dipartimento di Informatica e Sistemistica

“Sapienza” Università di Roma

Rome, May 17th, 2012

Motivations: sorting one Petabyte

Motivations: sorting...

I Nov. 2008: 1TB, 1000 computers, 68 seconds.
Previous record was 910 computers, 209 seconds.

I Nov. 2008: 1PB, 4000 computers, 6 hours; 48k harddisks...

I Sept. 2011: 1PB, 8000 computers, 33 minutes.

I Sept. 2011: 10PB, 8000 computers, 6 hours and 27 minutes.

The last slide of this talk...

“The beauty of MapReduce is that any programmer can understand
it, and its power comes from being able to harness thousands of
computers behind that simple interface”

David Patterson

Outline of this talk

What is MapReduce?

MapReduce is a distributed computing paradigm that’s here now

I Designed for 10,000+ node clusters

I Very popular for processing large datasets

I Processing over 20 petabytes per day [Google, Jan 2008]

I But virtually NO analysis of MapReduce algorithms

The origins...

“Our abstraction is inspired by the map and reduce
primitives present in Lisp and many other functional
languages. We realized that most of our computa-
tions involved applying a map operation to each log-
ical “record” in our input in order to compute a set
of intermediate key/value pairs, and then applying a
reduce operation to all the values that shared the
same key, in order to combine the derived data ap-
propriately.”

Je↵rey Dean and Sanjay Ghemawat [OSDI 2004]

Map in Lisp

The map(car) is a function that calls its first argument with each
element of its second argument, in turn.

Reduce in Lisp

The reduce is a function that returns a single value constructed by
calling the first argument (a function) function on the first two
items of the second argument (a sequence), then on the result and
the next item, and so on .

MapReduce in Lisp

Our first MapReduce program :-)

THE example in MapReduce: Word Count

def$mapper(line):,

,,,,foreach,word,in$line.split():,

,,,,,,,,output(word,,1),

,

def$reducer(key,,values):,

,,,,output(key,,sum(values)),

,

Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1
brown, 1
fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

MapReduce Execution Details

I Single master controls job execution on multiple slaves
I Mappers preferentially placed on same node or same rack as

their input block
I Minimizes network usage

I Mappers save outputs to local disk before serving them to
reducers

I Allows recovery if a reducer crashes
I Allows having more reducers than nodes

MapReduce Execution Details

MapReduce Execution Details

Single Master node

Many worker bees
Many worker bees

MapReduce Execution Details

Initial data split
into 64MB blocks

Computed, results
locally stored

Final output written

Master informed of
result locations

M sends data
location to R workers

MapReduce Execution Details

Exercise!

Word Count is trivial...
how do we compute SSSP in MapReduce?

Hint: we do not need our algorithm to be feasible...
just a proof of concept!

Programming Model

I MapReduce library is extremely easy to use
I Involves setting up only a few parameters, and defining the

map() and reduce() functions
I Define map() and reduce()
I Define and set parameters for MapReduceInput object
I Define and set parameters for MapReduceOutput object
I Main program

Most important/unknown/hidden feature: if a single key combined
mappers output is too large for a single reducer, then it is handled
“as a tournament” between several reducers!

What is MapReduce/Hadoop used for?

I At Google:
I Index construction for Google Search
I Article clustering for Google News
I Statistical machine translation

I At Yahoo!:
I “Web map” powering Yahoo! Search
I Spam detection for Yahoo! Mail

I At Facebook:
I Data mining
I Ad optimization
I Spam detection

Large Scale PDF generation - The Problem

I The New York Times needed to generate PDF files for
11,000,000 articles (every article from 1851-1980) in the form
of images scanned from the original paper

I Each article is composed of numerous TIFF images which are
scaled and glued together

I Code for generating a PDF is relatively straightforward

Large Scale PDF generation - Technologies Used

I Amazon Simple Storage Service (S3) [0.15$/GB/month]
I Scalable, inexpensive internet storage which can store and

retrieve any amount of data at any time from anywhere on the
web

I Asynchronous, decentralized system which aims to reduce
scaling bottlenecks and single points of failure

I Hadoop running on Amazon Elastic Compute Cloud (EC2)
[0.10$/hour]

I Virtualized computing environment designed for use with other
Amazon services (especially S3)

Large Scale PDF generation - Results

I 4TB of scanned articles were sent to S3

I A cluster of EC2 machines was configured to distribute the
PDF generation via Hadoop

I Using 100 EC2 instances and 24 hours, the New York Times
was able to convert 4TB of scanned articles to 1.5TB of PDF
documents

Hadoop

I MapReduce is a working framework used inside Google.

I Apache Hadoop is a top-level Apache project being built and
used by a global community of contributors, using the Java
programming language.

I Yahoo! has been the largest contributor

Typical Hadoop Cluster

Aggregation switch

Rack switch

I 40 nodes/rack, 1000-4000 nodes in cluster

I 1 Gbps bandwidth within rack, 8 Gbps out of rack

I Node specs (Yahoo terasort): 8 x 2GHz cores, 8 GB RAM, 4
disks (= 4 TB?)

Typical Hadoop Cluster

Hadoop Demo

I Now we see Hadoop in action...

I ...as an example, we consider the Fantacalcio computation...

I ... code and details available from:
https://github.com/bernarpa/FantaHadoop

Microsoft Dryad

I A Dryad programmer writes several sequential programs and
connects them using one-way channels.

I The computation is structured as a directed graph: programs
are graph vertices, while the channels are graph edges.

I A Dryad job is a graph generator which can synthesize any
directed acyclic graph.

I These graphs can even change during execution, in response
to important events in the computation.

Microsoft Dryad - A job

Yahoo! S4: Distributed Streaming Computing Platform

S4 is a general-purpose, distributed, scalable, partially
fault-tolerant, pluggable platform that allows programmers to
easily develop applications for processing
continuous unbounded streams of data.

Keyed data events are routed with a�nity to Processing Elements
(PEs), which consume the events and do one or both of the
following:

emit one or more events which may be consumed by other
PEs,

publish results.

Yahoo! S4 - Word Count example

up the WordCountPE object using the key word=“said”. If
the WordCountPE object exists, the PE object is called and
the counter is incremented, otherwise a new WordCountPE
object is instantiated. Whenever a WordCountPE object
increments its counter, it sends the updated count to a
SortPE object. The key of the SortPE object is a ran-
dom integer in [1, n], where n is the desired number of
SortPE objects. Once a WordCountPE object chooses
a sortID, it uses that sortID for the rest of its existence.
The purpose of using more than one SortPE object is
to better distribute the load across several nodes and/or
processors. For example, the WordCountPE object for key
word=“said” sends an UpdatedCountEvent event to a
SortPE object with key sortID=2 (PE5). Each SortPE
object updates its top K list as UpdatedCountEvent
events arrive. Periodically, each SortPE sends its partial
top K lists to a single MergePE object (PE8), using an
arbitrary agreed upon key, in this example topK=1234. The
MergePE object merges the partial lists and outputs the
latest authoritative top K list.

B. Processing Elements
Processing Elements (PEs) are the basic computational

units in S4. Each instance of a PE is uniquely identified
by four components: (1) its functionality as defined by a PE
class and associated configuration, (2) the types of events that
it consumes, (3) the keyed attribute in those events, and (4)
the value of the keyed attribute in events which it consumes.
Every PE consumes exactly those events which correspond
to the value on which it is keyed. It may produce output
events. Note that a PE is instantiated for each value of the
key attribute. This instantiation is performed by the platform.
For example, in the word counting example, WordCountPE
is instantiated for each word in the input. When a new word
is seen in an event, S4 creates a new instance of the PE
corresponding to that word.

A special class of PEs is the set of keyless PEs, with
no keyed attribute or value. These PEs consume all events
of the type with which they are associated. Keyless PEs
are typically used at the input layer of an S4 cluster where
events are assigned a key.

Several PEs are available for standard tasks such as count,
aggregate, join, and so on. Many tasks can be accomplished
using standard PEs which require no additional coding. The
task is defined using a configuration file. Custom PEs can
easily be programmed using the S4 software development
tools.

In applications with a large number of unique keys, it
may be necessary to remove PE objects over time. Perhaps
the simplest solution is to assign a Time-to-Live (TTL) to
each PE object. If no events for that PE object arrive within
a specified period of time, the PE becomes eligible for
removal. When system memory is reclaimed, the PE object
is removed and prior state is lost (in our example, we would

QuoteSplitterPE (PE1) counts unique
words in Quote and emits events for
each word.

A keyless event (EV) arrives at PE1 with quote:
“I meant what I said and I said what I meant.”, Dr. SeussEV Quote

KEY null

VAL quote="I ..."

EV WordEvent

KEY word="i"

VAL count=4
EV WordEvent

KEY word="said"

VAL count=2

MergePE (PE8) combines partial
TopK lists and outputs final
TopK list.

EV PartialTopKEv

KEY topk=1234

VAL words={w:cnt}

PE1

PE2

PE5

PE3 PE4

PE6 PE7

PE8

EV UpdatedCountEv

KEY sortID=2

VAL word=said count=9

EV UpdatedCountEv

KEY sortID=9

VAL word="i" count=35

WordCountPE (PE2-4)
keeps total counts for
each word across all
quotes. Emits an event
any time a count is
updated.

SortPE (PE5-7)
continuously sorts partial
lists. Emits lists at periodic
intervals

PE1 QuoteSplitterPE null

PE2 WordCountPE word="said"

PE4 WordCountPE word="i"

PE7 SortPE sortID=9

PE ID PE Name Key Tuple

PE5 SortPE sortID=2

PE8 MergePE topK=1234

Figure 1. Word Count Example

lose the count for that word). This memory management
strategy is simple but not the most efficient. To maximize
quality of service (QoS), we should ideally remove PE
objects based on the available system memory and the
impact the object may have on the overall performance of
the system. We envision a solution where PE objects can
provide the priority or importance of the object. This value is
application specific, hence the logic should be implemented
by the application programmer.

C. Processing Node

Processing Nodes (PNs) are the logical hosts to PEs. They
are responsible for listening to events, executing operations
on the incoming events, dispatching events with the as-
sistance of the communication layer, and emitting output
events (Figure 2). S4 routes each event to PNs based on a
hash function of the values of all known keyed attributes in
that event. A single event may be routed to multiple PNs.
The set of all possible keying attributes is known from the
configuration of the S4 cluster. An event listener in the PN
passes incoming events to the processing element container
(PEC) which invokes the appropriate PEs in the appropriate
order.

There is a special type of PE object: the PE prototype. It
has the first three components of its identity (functionality,
event type, keyed attribute); the attribute value is unassigned.
This object is configured upon initialization and, for any
value V, it is capable of cloning itself to create fully qualified
PEs of that class with identical configuration and value V

Google Pregel: a System for Large-Scale Graph Processing

I Vertex-centric approach

I Message passing to neighbours

I Think like a vertex mode of programming

PageRank example!

Google Pregel

Pregel computations consist of a sequence of iterations, called
supersteps. During a superstep the framework invokes a
user-defined function for each vertex, conceptually in parallel. The
function specifies behavior at a single vertex V and a single
superstep S . It can:

I read messages sent to V in superstep S � 1,

I send messages to other vertices that will be received at
superstep S + 1, and

I modify the state of V and its outgoing edges.

Messages are typically sent along outgoing edges, but a message
may be sent to any vertex whose identifier is known.

Google Pregel

3 6 2 1 Superstep 0

6 6 2 6 Superstep 1

6 6 6 6 Superstep 2

6 6 6 6 Superstep 3

Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu�ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di�erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu�ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the

137

Maximum Value Example

Twitter Storm

“Storm makes it easy to write and scale complex
realtime computations on a cluster of computers,
doing for realtime processing what Hadoop did for
batch processing. Storm guarantees that every
message will be processed. And it’s fast — you can
process millions of messages per second with a small
cluster. Best of all, you can write Storm topologies
using any programming language.”

Nathan Marz

Twitter Storm: features
I Simple programming model. Similar to how MapReduce

lowers the complexity of doing parallel batch processing,
Storm lowers the complexity for doing real-time processing.

I Runs any programming language. You can use any
programming language on top of Storm. Clojure, Java, Ruby,
Python are supported by default. Support for other languages
can be added by implementing a simple Storm communication
protocol.

I Fault-tolerant. Storm manages worker processes and node
failures. Horizontally scalable. Computations are done in
parallel using multiple threads, processes and servers.

I Guaranteed message processing. Storm guarantees that each
message will be fully processed at least once. It takes care of
replaying messages from the source when a task fails.

I Local mode. Storm has a ”local mode” where it simulates a
Storm cluster completely in-process. This lets you develop and
unit test topologies quickly.

Theoretical Models

So far, two models:

I Massive Unordered Distributed (MUD) Computation, by
Feldman, Muthukrishnan, Sidiropoulos, Stein, and Svitkina
[SODA 2008]

I A Model of Computation for MapReduce (MRC), by Karlo↵,
Suri, and Vassilvitskii [SODA 2010]

Massive Unordered Distributed (MUD)

An algorithm for this platform consist of three functions:

I a local function to take a single input data item and output a
message,

I an aggregation function to combine pairs of messages, and in
some cases

I a final postprocessing step

More formally, a MUD algorithm is a triple m = (�, �, ⌘):

I � : ⌃ ! Q maps an input item ⌃ to a message Q.

I � : Q ⇥ Q ! Q maps two messages to a single one.

I ⌘ : Q ! ⌃ produces the final output.

Massive Unordered Distributed (MUD) - The results

I Any deterministic streaming algorithm that computes a
symmetric function ⌃n ! ⌃ can be simulated by a mud
algorithm with the same communication complexity, and the
square of its space complexity.

I This result generalizes to certain approximation algorithms,
and randomized algorithms with public randomness (i.e., when
all machines have access to the same random tape).

Massive Unordered Distributed (MUD) - The results

I The previous claim does not extend to richer symmetric
function classes, such as when the function comes with a
promise that the domain is guaranteed to satisfy some
property (e.g., finding the diameter of a graph known to be
connected), or the function is indeterminate, that is, one of
many possible outputs is allowed for “successful computation”
(e.g., finding a number in the highest 10% of a set of
numbers). Likewise, with private randomness, the preceding
claim is no longer true.

Massive Unordered Distributed (MUD) - The results

I The simulation takes time ⌦(2polylog(n)) from the use of
Savitch’s theorem.

I Therefore the simulation is not a practical solution for
executing streaming algorithms on distributed systems.

Map Reduce Class (MRC)

Three Guiding Principles
The input size is n

Space Bounded memory per machine
I Cannot fit all of input onto one machine
I Memory per machine n1�"

Time Small number of rounds
I Strive for constant, but OK with logO(1)

n
I Polynomial time per machine (No streaming constraints)

Machines Bounded number of machines
I Substantially sublinear number of machines
I Total n1�"

MRC & NC

Theorem: Any NC algorithm using at most n2�" processors and
at most n2�" memory can be simulated in MRC.

Instant computational results for MRC:

I Matrix inversion [Csanky’s Algorithm]

I Matrix Multiplication & APSP

I Topologically sorting a (dense) graph

I ...

But the simulation does not exploit full power of MR

I Each reducer can do sequential computation

Open Problems

I Both the models seen are not a model, in the sense that we
cannot compare algorithms.

I We need such a model!

I Both the reductions seen are useful only from a theoretical
point of view, i.e. we cannot use them to convert
streaming/NC algorithms into MUD/MRC ones.

I We need to keep on designing algorithms the old
fashioned way!!

Things I (almost!) did not mention

In this overview several details1 are not covered:

I Google File System (GFS), used by MapReduce

I Hadoop Distributed File System, used by Hadoop

I The Fault-tolerance of these and the other frameworks...

I ... algorithms in MapReduce (very few, so far...)

Outline: Graph Algorithms in MR?

Is there any memory e�cient constant round algorithm for
connected components in sparse graphs?

I Let us start from computation of MST of Large-Scale graphs

I Map Reduce programming paradigm

I Semi-External and External Approaches

I Work in Progress and Open Problems . . .

Notation Details

Given a weighted undirected graph G = (V ,E)

I n is the number of vertices

I N is the number of edges
(size of the input in many MapReduce works)

I all of the edge weights are unique

I G is connected

Sparse Graphs, Dense Graphs and Machine Memory I

(1) Semi-External MapReduce graph algorithm.

Working memory requirement of any map or reduce computation

O(N1�✏), for some ✏ > 0

(2) External MapReduce graph algorithm.

Working memory requirement of any map or reduce computation

O(n1�✏), for some ✏ > 0

Similar definitions for streaming and external memory graph
algorithms

O(N) not allowed!

Sparse Graphs, Dense Graphs and Machine Memory II

(1) G is dense, i.e., N = n1+c

The design of a semi-external algorithm:

I makes sense for some c
1+c � ✏ > 0

(otherwise it is an external algorithm, O(N1�✏) = O(n1�✏))

I allows to store G vertices

(2) G is sparse, i.e., N = O(n)

I no di↵erence between semi-external and external algorithms

I storing G vertices is never allowed

Karlo↵ et al. algorithm (SODA ’10) I

mrmodelSODA10

(1) Map Step 1.

Given a number k , randomly partition the set of vertices into k

equally sized subsets: Gi,j is the subgraph given by (Vi [Vj ,Ei,j).

a b

c

d

e

f

G

a b

c

d

G
12

a b

e

f

G
13

c

d

e

f

G
23

Karlo↵ et al. algorithm (SODA ’10) II

(2) Reduce Step 1.

For each of the
�
k
2

�
subgraphs Gi,j , compute the MST (forest) Mi,j .

(3) Map Step 2.

Let H be the graph consisting of all of the edges present in some

Mi,j : H = (V ,
S

i,j Mi,j): map H to a single reducer $.

(4) Reduce Step 2.

Compute the MST of H.

Karlo↵ et al. algorithm (SODA ’10) III

The algorithm is semi-external, for dense graphs.

I if G is c-dense and if k = n
c0
2 , for some c � c 0 > 0:

with high probability, the memory requirement of any map or
reduce computation is

O(N1�✏) (1)

I it works in 2 = O(1) rounds

Lattanzi et al. algorithm (SPAA ’11) I

filteringSPAA11

(1) Map Step i .
Given a number k , randomly partition the set of edges into |E |

k

equally sized subsets: Gi is the subgraph given by (Vi ,Ei)

a b

c

d

e

f

G

a b

G
1

b

c

d

G
2

c

d

e

f

G
3

Lattanzi et al. algorithm (SPAA ’11) II

(2) Reduce Step i .
For each of the |E |

k subgraphs Gi , computes the graph G 0
i , obtained

by removing from Gi any edge that is guaranteed not to be a part of

any MST because it is the heaviest edge on some cycle in Gi .

Let H be the graph consisting of all of the edges present in some G 0
i

I if |E |  k ! the algorithm ends
(H is the MST of the input graph G)

I otherwise ! start a new round with H as input

Lattanzi et al. algorithm (SPAA ’11) III

The algorithm is semi-external, for dense graphs.

I if G is c-dense and if k = n1+c 0 , for some c � c 0 > 0:
the memory requirement of any map or reduce computation is

O(n1+c 0) = O(N1�✏) (2)

for some
c 0

1 + c 0
� ✏ > 0 (3)

I it works in d c
c 0 e = O(1) rounds

Summary

[mrmodelSODA10] [filteringSPAA11]
G is c-dense, and c � c 0 > 0

if k = n
c0
2 , whp if k = n1+c0

Memory O(N1�✏) O(n1+c0) = O(N1�✏)
Rounds 2 d c

c0 e = O(1)

Table: Space and Time complexity of algorithms discussed so far.

Experimental Settings (thanks to A. Paolacci)

I Data Set.
Web Graphs, from hundreds of thousand to 7 millions vertices
http://webgraph.dsi.unimi.it/

I Map Reduce framework.
Hadoop 0.20.2 (pseudo-distributed mode)

I Machine.
CPU Intel i3-370M (3M cache, 2.40 Ghz), RAM 4GB, Ubuntu
Linux.

I Time Measures.
Average of 10 rounds of the algorithm on the same instance

Preliminary Experimental Evaluation I

Memory Requirement in [mrmodelSODA10]

Mb c n1+c k = n1+c0 round 11 round 21

cnr-2000 43.4 0.18 3.14 3 7.83 4.82
in-2004 233.3 0.18 3.58 3 50.65 21.84

indochina-2004 2800 0.21 5.26 5 386.25 126.17

Using smaller values of k (decreasing parallelism)

I decreases round 1 output size ! round 2 time ¨̂

I increases memory and time requirement of
round 1 reduce step _̈

[1] output size in Mb

Preliminary Experimental Evaluation II

Impact of Number of Machines in Performances of [mrmodelSODA10]

machines map time (sec) reduce time (sec)
cnr-2000 1 49 29
cnr-2000 2 44 29
cnr-2000 3 59 29
in-2004 1 210 47
in-2004 2 194 47
in-2004 3 209 52

Implications of changes in the number of machines, with k = 3:
increasing the number of machines might increase overall
computation time (w.r.t. running more map or reduce instances on
the same machine)

Preliminary Experimental Evaluation III

Number of Rounds in [filteringSPAA11]

Let us assume, in the r -th round:

I |E | > k ;

I each of the subgraphs Gi is a tree or a forest.

a b

c

d

e

f

G

a b

c

d

G
1

c

d

G
2

c

d

e

f

G
3

input graph = output graph, and the r -th is a “void” round.

Preliminary Experimental Evaluation IV

Number of Rounds in [filteringSPAA11]

(Graph instances having same c value 0.18)

c’ expected rounds average rounds1

cnr-2000 0.03 8 8.00
cnr-2000 0.05 5 7.33
cnr-2000 0.15 2 3.00
in-2004 0.03 6 6.00
in-2004 0.05 4 4.00
in-2004 0.15 2 2.00

We noticed some few “void” round occurrences.
(Partitioning using a random hash function)

Simulation of PRAMs via MapReduce I

mrmodelSODA10; MUD10; G10

(1) CRCW PRAM. via memory-bound MapReduce framework.

(2) CREW PRAM. via DMRC:
(PRAM) O(S2�2✏) total memory, O(S2�2✏) processors and T time.

(MapReduce) O(T) rounds, O(S2�2✏) reducer instances.

(3) EREW PRAM. via MUD model of computation.

PRAM Algorithms for the MST

I CRCW PRAM algorithm [MST96]

(randomized)
O(log n) time, O(N) work ! work-optimal

I CREW PRAM algorithm [JaJa92]
O(log2 n) time, O(n2) work ! work-optimal if N = O(n2).

I EREW PRAM algorithm [Johnson92]

O(log
3

2 n) time,O(N log
3

2 n) work.

I EREW PRAM algorithm [wtMST02]

(randomized)
O(N) total memory, O(N

log n) processors.
O(log n) time, O(N) work ! work-time optimal.

Simulation of CRCW PRAM with CREW PRAM: ⌦(log S) steps.

Simulation of [wtMST02] via MapReduce I

The algorithm is external (for dense and sparse graphs).

Simulate the algorithm in [wtMST02] using CREW!MapReduce.

I the memory requirement of any map or reduce computation is

O(log n) = O(n1�✏) (4)

for some
1 � log log n � ✏ > 0 (5)

I the algorithm works in O(log n) rounds.

Summary

[mrmodelSODA10] [filteringSPAA11] Simulation
G is c-dense, and c � c 0 > 0

if k = n
c0
2 , whp if k = n1+c0

Memory O(N1�✏) O(n1+c0) = O(N1�✏) O(log n) = O(n1�✏)
Rounds 2 d c

c0 e = O(1) O(log n)

Table: Space and Time complexity of algorithms discussed so far.

Bor̊uvka MST algorithm I

boruvka26

Classical model of computation algorithm

procedure Borůvka MST(G(V ,E)):
T ! V
while |T | < n � 1 do

for all connected component C in T do
e ! the smallest-weight edge from C to another component in T
if e /2 T then

T ! T [{e}
end if

end for
end while

Bor̊uvka MST algorithm II

Figure: An example of Bor̊uvka algorithm execution.

Random Mate CC algorithm I

rm91

CRCW PRAM model of computation algorithm

procedure Random Mate CC(G(V ,E)):
for all v 2 V do cc(v) ! v end for
while there are edges connecting two CC in G (live) do

for all v 2 V do gender[v] ! rand({M, F}) end for
for all live (u, v) 2 V do

cc(u) is M ^ cc(v) is F ? cc(cc(u)) ! cc(v) : cc(cc(v)) ! cc(u)
end for
for all v 2 E do cc(v) ! cc(cc(v)) end for

end while

Random Mate CC algorithm II

u v

M F

parent[u]

parent[v]

u v

parent[v]
parent[u]

u v

parent[v]

Figure 6: Details of the merging step of Algorithm 8. Graph edges are undirected and shown as dashed lines. Super-
vertex edges are directed and are shown as solid lines.

Algorithm 8 (Random-mate algorithm for connected components)
Input: An undirected graphG = (V, E).
Output: The connected components of G, numbered in the array P [1..|V |].

1 forall v 2 V do
2 parent[v] � v
3 enddo
4 while there are live edges in G do
5 forall v 2 V do
6 gender[v] = rand({M, F})
7 enddo
8 forall (u, v) 2 E | live(u, v) do
9 if gender[parent[u]] = M and gender[parent[v]] = F then
10 parent[parent[u]] � parent[v]
11 endif
12 if gender[parent[v]] = M and gender[parent[u]] = F then
13 parent[parent[v]] � parent[u]
14 endif
15 enddo
16 forall v 2 V do
17 parent[v] � parent[parent[v]]
18 enddo
19 endwhile

Figure 6 shows the details of the merging step of Algorithm 8. We establish the complexity of this algorithm by
proving a succession of lemmas about its behavior.

Lemma 1 After each iteration of the outer while-loop, each supervertex is a star (a tree of height zero or one).
Proof: The proof is by induction on the number of iterations executed. Before any iterations of the loop have been
executed, each vertex is a supervertex with height zero by the initialization in line 2. Now assume that the claim holds
after k iterations, and consider what happens in the (k + 1)st iteration. Refer to Figure 6. After the forall loop in
line 8, the height of a supervertex can increase by one, so it is at most two. After the compression step in line 16, the
height goes back to one from two. �

Lemma 2 Each iteration of the while-loop takes �(1) steps and O(V + E) work.

17

Figure: An example of Random Mate algorithm step.

Bor̊uvka + Random Mate I

Let us consider again the labeling function cc : V ! V

(1) Map Step i (Bor

˚

uvka).

Given an edge (u, v) 2 E , the result of the mapping consists in two

key : value pairs cc(u) : (u, v) and cc(v) : (u, v).

a b

c

d

e

f

G

a b

G
1

a b

c

d

G
2

b

c

d

e

G
3

b

c

d f

G
4

c e

f

G
5

d

e

f

G
6

Bor̊uvka + Random Mate II

(2) Reduce Step i (Bor

˚

uvka).

For each subgraph Gi , execute one iteration of the Bor̊uvka

algorithm.

Let T be the output of i-th Bor̊uvka iteration.

Execute ri Random Mate rounds, feeding the first one with T .

(3) Round i + j (Random Mate).

Use a MapReduce implementation [pb10] of Random Mate algorithm

and update the function cc .

I if there are no more live edges, the algorithm ends
(T is the MST of the input graph G)

I otherwise ! start a new Bor̊uvka round

Bor̊uvka + Random Mate III

Two extremal cases:

I output of first Bor̊uvka round is connected
! O(log n) Random Mate rounds, and algorithm ends.

I output of each Bor̊uvka round is a matching
! 8i , ri = 1 Random Mate round
! O(log n) Bor̊uvka rounds, and algorithm ends.

Therefore

I it works in O(log2 n) rounds;

I example working in ⇡ 1

4

log2 n

Bor̊uvka + Random Mate IV

a

b

c

d

e

f

g

h1

2

1 1

2

2

1

2

2

2

1

a

b

c

d

e

f

g

h1

1 1

1

1

Conclusions

Work in progress for an external implementation of the algorithm
(for dense and sparse graphs).

I the worst case seems to rely on a certain kind of structure in
the graph, di�cult to appear in realistic graphs

I need of more experimental work to confirm it

Is there any external constant round algorithm for connected
components and MST in sparse graphs?

Maybe under certain (and hopefully realistic) assumptions.

Overview...

I MapReduce was developed by Google, and later implemented
in Apache Hadoop

I Hadoop is easy to install and use, and Amazon sells
computational power at really low prices

I Theoretical models have been presented, but so far there is no
established theoretical framework for analysing MapReduce
algorithms

I Several “similar” systems (Dryad, S4, Pregel) have been
presented, but are not di↵used as MapReduce/Hadoop... also
because...

The End... I told you from the beginning...

“The beauty of MapReduce is that any programmer
can understand it, and its power comes from being
able to harness thousands of computers behind that
simple interface”

David Patterson

