Algorithm Engineering, Winter 2008-2009
Dynamic Storage Allocator
Assigned: Monday Dec. 22, 2008

Introduction

In this assignment you will be writing a dynamic storage @lor for C programs, i.e., your own version of
themal | oc,free andr eal | oc routines. You are encouraged to explore the design spaatvelg and
implement an allocator that is correct, efficient and fast.

Logistics

You may work in a group of up to two people. Any clarificatiomsdaevisions to the assignment will be
posted on the course Web paget p: // www. di s. uni romal. it/ ~denetres/didattica/ae2009.

Hand Out Instructions

The files for this assignment can be retrieved from:

http://ww. dis.uniroml.it/~denetres/didattica/ae2009/ upl oad/ mal | ocl ab- ae
.tar.gz

Once you've downloaded this file, fill in your team informatim the structure at the beginning of the file
mm c¢. When you have completed the assignment, you will hand iy oné file frm c¢), which contains
your solution.

Specification

Your dynamic storage allocator will consist of the followifour functions, which are declared imm h
and defined immm c.

i nt mm.init(void);
void *mm mal | oc(size_t size);

void mmfree(void *ptr);
void rmmrealloc(void *ptr, size t size);

Themm c file we have given you implements the simplest but still fiorlly correct malloc package that
we could think of. Using this as a starting place, modify ¢haamctions (and possibly define other private
st at i ¢ functions), so that they obey the following semantics:

e Mmi ni t: Before callingnmnal | oc mmr eal | oc or nmf r ee, the application program (i.e.,
the trace-driven test harness that you will use to evaluate implementation) callsmi ni t to
perform any necessary initializations, such as allocatiegnitial heap area. The return value should
be -1 if there was a problem in performing the initializatiGmotherwise.

e Mmmmal | oc: Thenmnal | oc routine returns a pointer to an allocated block payload déast
si ze bytes. The entire allocated block should lie within the hesgpon and should not overlap with
any other allocated chunk.

We will comparing your implementation to the versionn@l | oc supplied in the standard C library
(I'i bc). Since thd i bc malloc always returns payload pointers that are aligned bgt8s, your
malloc implementation should do likewise and always re@yte aligned pointers.

e mmf ree: Thenmf r ee routine frees the block pointed to Ipt r . It returns nothing. This rou-
tine is only guaranteed to work when the passed poirger J was returned by an earlier call to
mmmal | oc or nmr eal | oc and has not yet been freed.

e mmreal | oc: Themmr eal | oc routine returns a pointer to an allocated region of at lsagte
bytes with the following constraints.

— if pt r is NULL, the call is equivalent tommal | oc(si ze) ;
— if si ze is equal to zero, the call is equivalentrtm.f r ee(ptr) ;

— if pt r isnot NULL, it must have been returned by an earlier cathtmoral | oc ormmr eal | oc.
The call tormr eal | oc changes the size of the memory block pointed topby (the old
blocK to si ze bytes and returns the address of the new block. Notice tkaaddress of the
new block might be the same as the old block, or it might betkffit, depending on your imple-
mentation, the amount of internal fragmentation in the déatk, and the size of theeal | oc
request.

The contents of the new block are the same as those of the oldblock, up to the minimum of

the old and new sizes. Everything else is uninitialized. é&@mple, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the neekldre identical to the first 8
bytes of the old block and the last 4 bytes are uninitialiZzgichilarly, if the old block is 8 bytes

and the new block is 4 bytes, then the contents of the new laoekdentical to the first 4 bytes
of the old block.

These semantics match the the semantics of the corresigohidinx mal | oc, r eal | oc, andf r ee rou-
tines. Typeman nal | oc to the shell for complete documentation.

Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beastprimgram correctly and efficiently. They are
difficult to program correctly because they involve a lo{ efoi d *) pointer references. You will find it
very helpful to write a heap checker that scans the heap asukslit for consistency.

Some examples of what a heap checker might check are:

e Is every block in the free list marked as free?

Are there any contiguous free blocks that somehow escapddsming?

Is every free block actually in the free list?

Do the pointers in the free list point to valid free blocks?

Do any allocated blocks overlap?

e Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the functiomt mmcheck(voi d) inmm c. It will check any invari-
ants or consistency conditions you consider prudent. lrmsta nonzero value if and only if your heap is
consistent. You are not limited to the listed suggestionsane you required to check all of them. You are
encouraged to print out error messages wimerc heck fails.

This consistency checker is for your own debugging duringefigpment. When you subnmtm ¢, make
sure to remove any calls tomcheck as they will slow down your throughput. Style points will bieen
for yourmmcheck. Make sure to put in comments and document what you are atgecki

Support routines

The memlib.c package simulates the memory system for youardyc memory allocator. You can invoke
the following functions imemnl i b. c:

e void »memsbrk(int incr): Expands the heap biyncr bytes, whera ncr is a positive
non-zero integer and returns a generic pointer to the figt bfythe newly allocated heap area. The
semantics are identical to the Urebr k function, except thatremsbr k accepts only a positive
non-zero integer argument.

e voi d *memheap. o(voi d) : Returns a generic pointer to the first byte in the heap.
e voi d *memheap_hi (voi d) : Returns a generic pointer to the last byte in the heap.
e sizet memheapsi ze(voi d) : Returns the current size of the heap in bytes.

e Si zet nmempagesi ze(voi d) : Returns the system’s page size in bytes (4K on Linux systems

The trace-driven test harness

Thendri ver. ¢ program in themal | ocl ab- ae. t ar distribution tests younm c¢ package for correct-
ness, space utilization, and throughput. The test harsessirolled by a set dface filesthat are included
inthemal | ocl ab- ae. t ar distribution. Each trace file contains a sequence of akpaaiallocate, and
free directions that instruct the test harness to call yoarral | oc, nmr eal | oc, andmmf r ee routines

in some sequence.

The test harness accepts the following command line argiemen

e -f <tracefil e>:Useone particularr acef i | e for testing instead of the default set.

e - h: Print a summary of the command line arguments.

-1 : Runl i bc malloc in addition to the student’s malloc package.

- v: Verbose output. Print a performance breakdown for eadefita.

- V: Prints additional diagnostic information as each traaeisilprocessed. Useful during debugging
for determining which trace file is causing your malloc paykéo fail.

Example:. / mdriver -1 -V -f shortl-bal.rep

Programming Rules

e You are not allowed to change any of the interfacesrmc.

¢ You should not invoke any memory-management related jozalls or system calls. This excludes
the use ofmal | oc, cal | oc,free,real |l oc, sbrk, brk or any variants of these calls in your
code.

e You are not allowed to define any globalstrat i ¢ compound data structures such as arrays, structs,
trees, or lists in younm ¢ program. However, you are allowed to declare global scaaables such
as integers, floats, and pointersnim c.

e For consistency with thei bc mal | oc package, your allocator must always return pointers theat ar
aligned to 8-byte boundaries. The test harness will enftirisefor you.

Evaluation
The homework will be evaluated in accordance with the foltmycriteria:

e Correctness. Your solution should pass the correctnesspedgormed by the test harnessif i ver).
You will receive partial credit for correct implementatonf nmal | oc andf r ee (i.e., you pass the
first 9 trace files).

e Performance. Two performance metrics will be used to etalyaur solution:

— Space utilization The peak ratio between the aggregate amount of memory ys#ukhest
harness (i.e., allocated viemnal | oc or mmr eal | oc but not yet freed viamf r ee) and
the size of the heap used by your allocator. The optimal efigals to 1. You should find good
policies to minimize fragmentation in order to make thisaats close as possible to the optimal.

— Throughput The average number of operations completed per second.

The test harnessr{Ir i ver) summarizes the performance of your allocator by compudimpegrfor-
mance index indexP, which is a weighted sum of the space utilization and thrpugh

T
P:wU—i-(l—w)min(l,)
Tlibc
whereU is your space utilizatior" is your throughput, and;,. is the estimated throughput bf bc
malloc on your system on the default traces (7500 Kops/déw).index favors space utilization over
throughput, with a default ab» = 0.6.

Observing that both memory space and CPU cycles are expesgitem resources, we adopt this
formula to encourage balanced optimization of both. Igedtie performance index will reach
P =w+ (1 —w)=10r100%. Since each metric will contribute at mastand1 — w to the perfor-
mance index, respectively, you should not go to extremegptionize either the memory utilization
or the throughput only. To receive a good score, you museaeha balance between utilization and
throughput.

e Style. Your code should be readable and well commented. ®afiacros or subroutines where
necessary to make the code more understandable.

Hints

e Use themdri ver -f option. During initial development, using tiny trace files will sififp debug-
ging and testing. We have included two such trace fdé®f t 1, 2- bal . r ep) that you can use for
initial debugging.

e Use thendri ver -v and- V options. The- v option will give you a detailed summary for each
trace file. The V will also indicate when each trace file is read, which willghgbu isolate errors.

e Compile withgcc - g and use a debuggerA debugger will help you isolate and identify out of
bounds memory references.

e Understand every line of the malloc implementation in thebi@ok. The textbook has a detailed
example of a simple allocator based on an implicit free ligse this is a point of departure. Don't
start working on your allocator until you understand evieinyg about the simple implicit list allocator.

e Encapsulate your pointer arithmetic in C preprocessor macPointer arithmetic in memory man-
agers is confusing and error-prone because of all the gaftat is necessary. You can reduce the
complexity significantly by writing macros for your pointeperations. See the text for examples.

5

e Do your implementation in staged.he first 9 traces contain requestsnal | oc andfr ee. The
last 2 traces contain requests fagal | oc, mal | oc, andf r ee. We recommend that you start by
getting yourmal | oc andf r ee routines working correctly and efficiently on the first 9 gacOnly
then should you turn your attention to theal | oc implementation. For starters, buifceal | oc
on top of your existingral | oc andf r ee implementations. But to get really good performance,
you will need to build a stand-alorreeal | oc.

e Use a profiler.You may find thegpr of tool helpful for optimizing performance.

e Start early! It is possible to write an efficient malloc package with a feages of code. However,
we can guarantee that it will be some of the most sophisticedele you have written so far in your
career. So start early, and good luck!

