
Algorithm Engineering, Winter 2008-2009
Dynamic Storage Allocator

Assigned: Monday Dec. 22, 2008

Introduction

In this assignment you will be writing a dynamic storage allocator for C programs, i.e., your own version of
themalloc, free andrealloc routines. You are encouraged to explore the design space creatively and
implement an allocator that is correct, efficient and fast.

Logistics

You may work in a group of up to two people. Any clarifications and revisions to the assignment will be
posted on the course Web page:http://www.dis.uniroma1.it/∼demetres/didattica/ae2009.

Hand Out Instructions

The files for this assignment can be retrieved from:

http://www.dis.uniroma1.it/∼demetres/didattica/ae2009/upload/malloclab-ae

.tar.gz

Once you’ve downloaded this file, fill in your team information in the structure at the beginning of the file
mm.c. When you have completed the assignment, you will hand in only one file (mm.c), which contains
your solution.

Specification

Your dynamic storage allocator will consist of the following four functions, which are declared inmm.h
and defined inmm.c.

int mm_init(void);
void *mm_malloc(size_t size);

1



void mm_free(void *ptr);
void *mm_realloc(void *ptr, size_t size);

Themm.c file we have given you implements the simplest but still functionally correct malloc package that
we could think of. Using this as a starting place, modify these functions (and possibly define other private
static functions), so that they obey the following semantics:

• mm init: Before callingmm malloc mm realloc or mm free, the application program (i.e.,
the trace-driven test harness that you will use to evaluate your implementation) callsmm init to
perform any necessary initializations, such as allocatingthe initial heap area. The return value should
be -1 if there was a problem in performing the initialization, 0 otherwise.

• mm malloc: Themm malloc routine returns a pointer to an allocated block payload of atleast
size bytes. The entire allocated block should lie within the heapregion and should not overlap with
any other allocated chunk.

We will comparing your implementation to the version ofmalloc supplied in the standard C library
(libc). Since thelibc malloc always returns payload pointers that are aligned to 8bytes, your
malloc implementation should do likewise and always return8-byte aligned pointers.

• mm free: Themm free routine frees the block pointed to byptr. It returns nothing. This rou-
tine is only guaranteed to work when the passed pointer (ptr) was returned by an earlier call to
mm malloc or mm realloc and has not yet been freed.

• mm realloc: Themm realloc routine returns a pointer to an allocated region of at leastsize
bytes with the following constraints.

– if ptr is NULL, the call is equivalent tomm malloc(size);

– if size is equal to zero, the call is equivalent tomm free(ptr);

– if ptr is not NULL, it must have been returned by an earlier call tomm mallocormm realloc.
The call tomm realloc changes the size of the memory block pointed to byptr (the old
block) to size bytes and returns the address of the new block. Notice that the address of the
new block might be the same as the old block, or it might be different, depending on your imple-
mentation, the amount of internal fragmentation in the old block, and the size of therealloc
request.

The contents of the new block are the same as those of the oldptr block, up to the minimum of
the old and new sizes. Everything else is uninitialized. Forexample, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the new block are identical to the first 8
bytes of the old block and the last 4 bytes are uninitialized.Similarly, if the old block is 8 bytes
and the new block is 4 bytes, then the contents of the new blockare identical to the first 4 bytes
of the old block.

These semantics match the the semantics of the corresponding Linux malloc, realloc, andfree rou-
tines. Typeman malloc to the shell for complete documentation.

2



Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beasts toprogram correctly and efficiently. They are
difficult to program correctly because they involve a lot of(void *) pointer references. You will find it
very helpful to write a heap checker that scans the heap and checks it for consistency.

Some examples of what a heap checker might check are:

• Is every block in the free list marked as free?

• Are there any contiguous free blocks that somehow escaped coalescing?

• Is every free block actually in the free list?

• Do the pointers in the free list point to valid free blocks?

• Do any allocated blocks overlap?

• Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the functionint mm check(void) in mm.c. It will check any invari-
ants or consistency conditions you consider prudent. It returns a nonzero value if and only if your heap is
consistent. You are not limited to the listed suggestions nor are you required to check all of them. You are
encouraged to print out error messages whenmm check fails.

This consistency checker is for your own debugging during development. When you submitmm.c, make
sure to remove any calls tomm check as they will slow down your throughput. Style points will be given
for yourmm check. Make sure to put in comments and document what you are checking.

Support routines

The memlib.c package simulates the memory system for your dynamic memory allocator. You can invoke
the following functions inmemlib.c:

• void *mem sbrk(int incr): Expands the heap byincr bytes, whereincr is a positive
non-zero integer and returns a generic pointer to the first byte of the newly allocated heap area. The
semantics are identical to the Unixsbrk function, except thatmem sbrk accepts only a positive
non-zero integer argument.

• void *mem heap lo(void): Returns a generic pointer to the first byte in the heap.

• void *mem heap hi(void): Returns a generic pointer to the last byte in the heap.

• size t mem heapsize(void): Returns the current size of the heap in bytes.

• size t mem pagesize(void): Returns the system’s page size in bytes (4K on Linux systems).

3



The trace-driven test harness

Themdriver.c program in themalloclab-ae.tardistribution tests yourmm.c package for correct-
ness, space utilization, and throughput. The test harness is controlled by a set oftrace filesthat are included
in themalloclab-ae.tar distribution. Each trace file contains a sequence of allocate, reallocate, and
free directions that instruct the test harness to call yourmm malloc,mm realloc, andmm free routines
in some sequence.

The test harness accepts the following command line arguments:

• -f <tracefile>: Use one particulartracefile for testing instead of the default set.

• -h: Print a summary of the command line arguments.

• -l: Runlibc malloc in addition to the student’s malloc package.

• -v: Verbose output. Print a performance breakdown for each tracefile.

• -V: Prints additional diagnostic information as each trace file is processed. Useful during debugging
for determining which trace file is causing your malloc package to fail.

Example:./mdriver -l -V -f short1-bal.rep

Programming Rules

• You are not allowed to change any of the interfaces inmm.c.

• You should not invoke any memory-management related library calls or system calls. This excludes
the use ofmalloc, calloc, free, realloc, sbrk, brk or any variants of these calls in your
code.

• You are not allowed to define any global orstatic compound data structures such as arrays, structs,
trees, or lists in yourmm.c program. However, you are allowed to declare global scalar variables such
as integers, floats, and pointers inmm.c.

• For consistency with thelibc malloc package, your allocator must always return pointers that are
aligned to 8-byte boundaries. The test harness will enforcethis for you.

Evaluation

The homework will be evaluated in accordance with the following criteria:

• Correctness. Your solution should pass the correctness tests performed by the test harness (mdriver).
You will receive partial credit for correct implementations of malloc andfree (i.e., you pass the
first 9 trace files).

4



• Performance. Two performance metrics will be used to evaluate your solution:

– Space utilization: The peak ratio between the aggregate amount of memory used by the test
harness (i.e., allocated viamm malloc or mm realloc but not yet freed viamm free) and
the size of the heap used by your allocator. The optimal ratioequals to 1. You should find good
policies to minimize fragmentation in order to make this ratio as close as possible to the optimal.

– Throughput: The average number of operations completed per second.

The test harness (mdriver) summarizes the performance of your allocator by computinga perfor-
mance index index,P , which is a weighted sum of the space utilization and throughput

P = wU + (1 − w)min

(

1,
T

Tlibc

)

whereU is your space utilization,T is your throughput, andTlibc is the estimated throughput oflibc
malloc on your system on the default traces (7500 Kops/sec).The index favors space utilization over
throughput, with a default ofw = 0.6.

Observing that both memory space and CPU cycles are expensive system resources, we adopt this
formula to encourage balanced optimization of both. Ideally, the performance index will reach
P = w + (1−w) = 1 or 100%. Since each metric will contribute at mostw and1−w to the perfor-
mance index, respectively, you should not go to extremes to optimize either the memory utilization
or the throughput only. To receive a good score, you must achieve a balance between utilization and
throughput.

• Style. Your code should be readable and well commented. Define macros or subroutines where
necessary to make the code more understandable.

Hints

• Use themdriver -f option. During initial development, using tiny trace files will simplify debug-
ging and testing. We have included two such trace files (short1,2-bal.rep) that you can use for
initial debugging.

• Use themdriver -v and-V options. The-v option will give you a detailed summary for each
trace file. The-V will also indicate when each trace file is read, which will help you isolate errors.

• Compile withgcc -g and use a debugger.A debugger will help you isolate and identify out of
bounds memory references.

• Understand every line of the malloc implementation in the textbook. The textbook has a detailed
example of a simple allocator based on an implicit free list.Use this is a point of departure. Don’t
start working on your allocator until you understand everything about the simple implicit list allocator.

• Encapsulate your pointer arithmetic in C preprocessor macros. Pointer arithmetic in memory man-
agers is confusing and error-prone because of all the casting that is necessary. You can reduce the
complexity significantly by writing macros for your pointeroperations. See the text for examples.

5



• Do your implementation in stages.The first 9 traces contain requests tomalloc andfree. The
last 2 traces contain requests forrealloc, malloc, andfree. We recommend that you start by
getting yourmalloc andfree routines working correctly and efficiently on the first 9 traces. Only
then should you turn your attention to therealloc implementation. For starters, buildrealloc
on top of your existingmalloc andfree implementations. But to get really good performance,
you will need to build a stand-alonerealloc.

• Use a profiler.You may find thegprof tool helpful for optimizing performance.

• Start early! It is possible to write an efficient malloc package with a few pages of code. However,
we can guarantee that it will be some of the most sophisticated code you have written so far in your
career. So start early, and good luck!

6


