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Abstract

Algorithm Engineering is concerned with the design, analysis, implementation, tun-
ing, debugging and experimental evaluation of computer programs for solving algorithmic
problems. It provides methodologies and tools for developing and engineering efficient al-
gorithmic codes and aims at integrating and reinforcing traditional theoretical approaches
for the design and analysis of algorithms and data structures.

1 Introduction

In recent years, many areas of theoretical computer science have shown growing interest in
solving problems arising in real-world applications, experiencing a remarkable shift to more
application-motivated research. However, for many decades, researchers have been mostly
using mathematical methods for analyzing and predicting the behavior of algorithms: asymp-
totic analysis in the Random Access Model has been the main tool in the design of efficient
algorithms, yielding substantial benefits in comparing and characterizing their behavior and
leading to major algorithmic advances. The new demand for algorithms that are of practical
utility has now raised the need to refine and reinforce the traditional theoretical approach
with experimental studies, fitting the general models and techniques used by theoreticians to
actual existing machines, and bringing algorithmic research back to its roots. This implies
to consider often overlooked, yet practically important issues such as hidden constant fac-
tors, effects of the memory hierarchy, implications of communication complexity, numerical
precision, and use of heuristics.

The whole process of designing, analyzing, implementing, tuning, debugging and exper-
imentally evaluating algorithms is usually referred to as Algorithm Engineering. Algorithm
Engineering views algorithmics also as an engineering discipline rather than a purely math-
ematical discipline. Implementing algorithms and engineering algorithmic codes is a key
step for the transfer of algorithmic technology, which often requires a high-level of expertise,
to different and broader communities, and for its effective deployment in industry and real
applications. Moreover, experiments often raise new conjectures and theoretical questions,
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opening unexplored research directions that may lead to further theoretical improvements
and eventually to more practical algorithms. Theoretical breakthroughs that answer funda-
mental algorithmic questions and solve long-standing open problems (such as deterministic
primality testing [3]) are a crucial step towards the solution of a problem. However, they of-
ten lead to algorithms that are far from being amenable to efficient implementations, raising
the question of whether more practical solutions exist. We take as an example the case of
linear programming, i.e., the problem of optimizing a linear function subject to a collection
of linear inequalities. The worst-case exponential running time of the simplex algorithm pro-
posed by Dantzig [25] in 1947, together with the experimental observation that it usually runs
in low-order polynomial time on real-world instances, stimulated much theoretical research
aimed at discovering if linear programming was polynomially solvable. The first answer was
the ellipsoid method of Khachiyan [37], which, however, was impractical. The quest for a
practical algorithm finally led to the interior-point approach of Karmarkar [36]. Introducing
a competitor of the simplex method, in turn, inspired a great fluorishing of theoretical and
experimental work, leading to major improvements in performances for both approaches, that
have been also implemented in a widely used library. We believe that Algorithm Engineering
should take into account the whole process, from the early design stage to the realization of
efficient implementations.

A major goal of Algorithm Engineering is to define standard methodologies and realistic
computational models for the analysis of algorithms. For instance, there is more and more
interest in defining models for the memory hierarchy and for Web algorithmics. Studying data
distribution schemes to achieve locality of reference at each level of the memory hierarchy is
indeed fundamental in order to minimize I/O accesses and cache misses and to get efficient
codes. This topic recently has been the subject of much research: we review some of the most
promising advances in Section 2. Issues related to Web algorithmics are also very interesting,
as the Internet is nowadays a primary motivation for several problems: security infrastructure,
Web caching, Internet searching and information retrieval are just a few of the hot topics.
Devising realistic models for the Internet and Web graphs is thus essential for testing the
algorithmic solutions proposed in this settings.

Another aspect of Algorithm Engineering, usually referred to as Experimental Algorith-
mics, is related to performing empirical studies for comparing actual relative performance of
algorithms so as to study their amenability for use in specific applications. This may lead to
the discovery of algorithm separators, i.e., families of problem instances for which the perfor-
mances of solving algorithms are clearly different, and to identifying and collecting problem
instances from the real world. Other important results of empirical investigations include
assessing heuristics for hard problems, characterizing the asymptotic behavior of complex
algorithms, discovering the speed-up achieved by parallel algorithms and studying the effects
of the memory hierarchy and of communication on real machines, thus helping in predicting
performance and finding bottlenecks in real systems. The main issues and common pitfalls
in Experimental Algorithmics are reviewed in Section 3.

The surge of investigations in Algorithm Engineering is also producing, as a side effect,
several tools whose target is to offer a general-purpose workbench for the experimental val-
idation and fine-tuning of algorithms and data structures. In particular, software libraries
of efficient algorithms and data structures, collections and generators of test sets, program
checkers, and software systems for supporting the implementation and debugging process are
relevant examples of such an effort. We will discuss some relevant aspects concerning tools for
coding and debugging in Section 4 and the benefits of robust, efficient, and well-documented
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software libraries in Section 5.
Last, but not least, Algorithm Engineering encourages fruitful cooperation not only be-

tween theoreticians and practitioners, but also, and more importantly, between computer
scientists and researchers from other fields. Indeed, experiments have played so far a crucial
role in many scientific disciplines: in physics, biology, and other natural sciences, for instance,
researchers have been extensively running experiments to learn certain aspects of nature and
to discover unpredictable features of its internal organization. Approaches and results from
different fields may be therefore very useful for algorithm design and optimization.

2 Abstractions and Models in Algorithmics

The mainstream model of computation used in algorithm design is the Random Access
Model [4], which assumes a sequential processor and constant access time to memory lo-
cations. The main analytical tool is asymptotic analysis of worst-case behavior, w.r.t. either
running time or quality of the solution. These abstractions have provided a strong math-
ematical framework for the analysis of algorithms, that led to major algorithmic advances
over the last 30 years. However, predicting the actual behavior of an algorithmic code may
be a difficult task, since these general models and techniques do not directly fit to existing
machines and real problems. In the following we discuss some aspects of these difficulties.

At the edge of Asymptopia. Many authors call “Asymptopia” the range of problem
instances for which an algorithm exhibits clear asymptotic behavior. Unfortunately, for cer-
tain algorithms, Asymptopia may include only huge problem instances, far beyond the needs
of any reasonable practical application. This means that, due to the high constants hidden
in the analysis, theoretical bounds may fail to describe the behavior of algorithms on many
instances of practical interest. As a typical example, the experimental study in [48] compares
implementations of Prim’s minimum spanning tree algorithm based on simple binary heaps
and on the more sophisticated Fibonacci heaps by Fredman and Tarjan [32]: the latter im-
plementation, although asymptotically better, improves in practice upon the former only for
huge dense graphs.

The situation may be even worse: constants hidden in the asymptotic time bounds may
be so large as to prevent any practical implementation from running to completion. The
Robertson and Seymour cubic-time algorithm [50] for testing if a graph is a minor of another
graph provides an extreme example: as a matter of fact, no practical implementation seems
able to face the daunting 10150 constant factor embedded in the algorithm, and no substantial
improvement has been proposed yet.

Beyond worst-case analysis. Algorithms are usually analyzed either in the worst or in
the average case. Many algorithms typically behave much better than in the worst case, so
considering just worst-case bounds may lead to underestimate their practical utility. On the
other side, many algorithms perform unusually well on random inputs in the average-case,
but random instances often little resemble instances actually encountered in practice. Since
the input distribution is unknown in most applications, a realistic average case analysis is
typically unfeasible. Quite recently, an alternative approach, dubbed smoothed analysis, has
been proposed in [53]: the performance of an algorithm is measured under slight random
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perturbations of arbitrary inputs. It seems that the smoothed approach can explain the
behavior of some algorithms where other analyses fail.

An interesting example in this setting is provided by the simplex algorithm for solving
linear programs. In the late 1970’s, the simplex algorithm was shown to converge in expected
polynomial time on various distributions of random inputs with quite unrealistic character-
istics. The asymptotic worst-case time bound was known to be exponential, yet experiments
showed that the running time was bounded by a low-degree polynomial also in many real-
world instances. This raised the quest for a more precise analysis. It has been actually proved
in [53] that the simplex algorithm has polynomial smoothed complexity.

Of a similar flavor is research on parameterized complexity, proposed by Rod Downey and
Mike Fellows [30]: this is a novel approach to complexity theory which offers a means of
analysing algorithms in terms of their tractability and which is much important in dealing
with NP-hard problems. The key idea of the theory is to isolate some aspect of the input,
the parameter, and to confine the combinatorial explosion of computational difficulty to an
additional function of the parameter, with other costs remaining polynomial. Fixed-parameter
tractable problems have algorithms running in O(f(k)nd) time, where n is the instance size,
k is the parameter, f is some exponential (or worse) function of k, and d is a constant
independent of k. This kind of algorithms are of practical importance for small values of the
parameter k and are often at the base of very effective heuristics.

Computational models. Providing simplified computational models which preserve the
essential features of the real technology is essential in Algorithm Engineering. To exemplify
this idea, we discuss issues related to memory performances. Modern computers are indeed
characterized by an increasingly steep memory hierarchy, consisting of several levels of internal
memories (registers, caches, main memory) and of external devices (e.g., disks or CD-ROMs).
Due to physical principles and economical reasons, faster memories are small and expensive,
while slower memories can be larger and inexpensive. Designing algorithms in the classical
RAM model, which does not take into account memory latency issues, benefits of cache
hits and overheads due to cache misses, is therefore becoming progressively more dangerous.
Efficient algorithmic codes are forced to cope with bounded (and not unlimited) memory
resources and should attempt at taking advantage of the hierarchy as much as possible. This
poses the challenging problem of designing algorithms that maintain locality of reference in
data access patterns, i.e., able to cluster memory accesses both in time and in space.

Many extensions of the RAM model have been proposed at this aim. Since I/O accesses
represent the major bottleneck when dealing with massive data sets, early works focused on
issues related to external memories. Many efficient algorithms and data structures have been
designed in the classical I/O model [2, 8, 57], which abstracts a two-level hierarchy consisting
of a main memory and a disk from/to which data are transferred in blocks of B contiguous
items. The model was soon extended to deal with parallel systems (multiple processors,
parallel memories) [58, 59] and with multi-level hierarchies [1, 59]. Unfortunately, analyzing
algorithms in multi-level models is not easy, due to the many parameters involved in the
analysis: among others, block size B and memory size M at each level of the hierarchy must
be considered. This encouraged research for simpler alternatives.

The cache-oblivious model recently introduced by Frigo et al. [33] appears to be very
appealing in this setting, as it allows it to reason about two levels of the hierarchy, but to
prove results for an unknown number of levels. The key idea is not using parameters B and M
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Figure 1: Van Emde-Boas layout.

explicitly: we exemplify it on B-trees, the classical dynamic external-memory dictionary [11].
In a B-tree on n elements, the degree of each internal node is proportional to the block size
B: in this way, the depth of the tree is reduced from O(log2 n) to O(logB n), thus achieving
optimality of I/O accesses in search operations. As noticed by Prokop [49], the same effect
can be achieved even if B is unknown by using the Van Emde-Boas layout, which distributes
the nodes of a balanced binary tree in memory as shown in Figure 1. The tree is partitioned in
Θ(

√
n) subtrees, which can appear in any order, provided their internal layout is obtained by

recursively applying the same partitioning scheme. Bender, Demaine and Farach-Colton show
how to make the Van Emde-Boas layout dynamic, i.e., how to support insertions and deletions
of elements, thus devising the first cache-oblivious version of B-trees [13]. Many other cache-
oblivious algorithms and data structures have been designed since then [14, 12, 18]. Such
algorithms appear to be portable and flexible. A few works, including [14, 18, 40], study also
experimentally the practicality of cache-oblivious data structures w.r.t. hand-tuned cache-
aware versions, though we believe that much work still remains to be done on this topic.

3 Experimental Algorithmics

Algorithms must be implemented and tested in order to have a practical impact. Experiments
can help measure practical indicators, such as implementation constant factors, real-life bot-
tlenecks, locality of references, cache effects and communication complexity, that may be
extremely difficult to predict theoretically. They may also help discover easy and hard in-
stances for a problem. For example, it has been observed that some hard computational
problems, such as data clustering, seem to be “hard only when they are not interesting”:
when the solution is robust, like in many real-world instances, it is often not too difficult to
discover it. A careful tuning of the code, as well as the addition of ad-hoc heuristics and local
hacks, may dramatically improve the performances of some algorithms, although the theoret-
ical asymptotic behavior may be not affected. Many clear examples of this fact are addressed
in the literature: among them, the implementation issues of the push-relabel algorithm for
the maximum flow problem by Goldberg and Tarjan [22] stand out.

Unfortunately, as in any empirical science, it may be sometimes difficult to draw gen-
eral conclusions about algorithms from experiments. Common pitfalls, often experienced by
researchers in their studies, seem to be:
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• Dependence of empirical results upon the experimental setup:

– Architecture of the running machine: memory hierarchy, CPU instructions pipelin-
ing, CISC vs RISC architectures, CPU and data bus speed are technical issues that
may substantially affect the execution performance.

– Operating system: CPU scheduling, communication management, I/O buffering
and memory management are also important factors.

– Encoding language: features such as built-in types, data and control flow syntactic
structures and language paradigm should be taken into account when choosing
the encoding language. Among others, C++, C and Fortran are most commonly
used in this context. However, we point out that powerful C++ features such as
method invocations, overloading of functions and operators, overriding of virtual
functions, dynamic casting and templates may introduce high hidden computation
costs in the generated machine code even using professional compilers.

– Compiler’s optimization level: memory alignment, register allocation, instruction
scheduling, repeated common subexpression elimination are the most common op-
timization issues.

– Measuring of performance indicators: time measuring may be a critical point in
many situations including profiling of fast routines. Important factors are the
granularity of the time measuring function (typically 1 µsec to 10 msec, depending
upon the platform), and whether we are measuring the real elapsed time, the time
used by the user’s process, or the time spent by the operating system to do I/O,
communication or memory management.

– Programming skills of developers: the same algorithm implemented by different
programmers may lead to different conclusions on its practical performances. More-
over, even different successive refined implementations coded by the same program-
mer may greatly differ from each other.

– Problem instances used in the experiments: the range of parameters defining the
test sets used in the experiments and the structure of the problem instances them-
selves may lead to formulate specific conclusions on the performance of algorithms
without ensuring generality. Another typical pitfall in this context consists of test-
ing codes on data sets representing classes that are not broad enough. This may
lead to inaccurate performance prediction. An extreme example is given by the
Netgen problem instances for the minimum cost flow problem [38] that were used
to select the best code for a multicommodity flow application [41]. That code was
later proved to behave much slower than several other codes on real-life instances
by the same authors of [41]. In general, it has been observed that some algorithms
behave quite differently if applied on real-life instances and on randomly generated
test sets. Linear programming provides a well known example.

• Difficulty in separating the behavior of algorithms: it is sometimes hard to identify
problem instances on which the performance of two codes is clearly distinguishable. In
general, good algorithm separators are problem families on which differences grow with
the problem size [34].
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• Unreproducibility of experimental results: possibly wrong, inaccurate or misleading
conclusions presented in experimental studies may be extremely difficult to detect if the
results are not exactly and independently reproducible by other researchers.

• Modularity and reusability of the code: modularity and reusability of the code seem to
conflict with any size and speed optimization issues. Usually, special implementations
are difficult to reuse and to modify because of hidden or implicit interconnections be-
tween different parts of the code, often due to sophisticated programming techniques,
tricks and hacks which they are based on, but yield to the best performances in practice.
In general, using the C++ language seems to be a good choice if the goal is to come up
with a modular and reusable code because it allows defining clean, elegant interfaces
towards (and between) algorithms and data structures, while C is especially well suited
for fast, compact and highly optimized code.

• Limits of the implementations: many implementations have strict requirements on the
size of the data they deal with, e.g., work only with small numbers or problem instances
up to a certain maximum size. It is important to notice that ignoring size limits may
lead to substantially wrong empirical conclusions, especially in the case where the used
implementations, for performance reasons, do not explicitly perform accurate data size
checking.

• Numerical robustness: implementations of computational geometry algorithms may typ-
ically suffer from numerical errors due to the finite-precision arithmetic of real computing
machines.

Although it seems there is no sound and generally accepted solution to these issues, some
researchers have proposed accurate and comprehensive guidelines on different aspects of the
empirical evaluation of algorithms maturated from their own experience in the field (see, for
example [7, 34, 35, 47]). The interested reader may find in [43] an annotated bibliography of
experimental algorithmics sources addressing methodology, tools and techniques.

3.1 Test Sets

The outcome of an experimental study may strongly depend on instance type and size: using
wrong or not general test sets may lead to wrong conclusions. Performing experiments on a
good collection of test problems may also help in establishing the correctness of a code: in
particular, collecting problem instances on which a code has exhibited buggy behavior may be
useful for testing further implementations for the same problem. In the case of optimization
algorithms, there usually exist classes of examples for which an algorithm does well or poorly:
examining such “pathological” examples may help characterize why the algorithm does poorly
and improve its performances on a larger class.

Standardizing common benchmarks for algorithm evaluation is a fundamental task in
Experimental Algorithmics. Much effort has been put in collecting, designing and generating
good problem instances both for specific problems and for general purpose applications. A
first important question is whether to use real or synthetic test-sets. It is often the case
that algorithms behave quite differently if applied on real-life instances and on randomly
generated test sets: both types of instances should be therefore considered. It may be also
useful testing the algorithm on synthetic instances with solution structure known in advance:
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this is especially true in the case of hard problems, where exact optima are difficult, or even
impossible, to find efficiently. A common technique for generating instances with a given
solution structure consists of starting from the desired solution and adding data to hide
it [34]. We wish to remark that finding real data may not be easy, as they may be owned by
private companies. The Stanford GraphBase, the NIST collection and the DIMACS test sets
are successful examples of such an effort.

The Stanford GraphBase [39] is a collection of datasets and computer programs that
generate and examine a wide variety of graphs and networks. It consists of small building
blocks of code and data and is less than 1.2 megabytes altogether. Data files include, for
instance, numerical data representing the input/output structure of US economy, highway
distances between North American cities, digitized version of famous paintings, “digested”
versions of classic works of literature. Several instance generators included in the package are
designed to convert these data files into a large variety of interesting test sets that can be
used to explore combinatorial algorithms. Other generators produce graphs with a regular
structure or random instances.

The US National Institute of Standards and Technology (NIST) collects heterogeneous
types of real data sets. In particular, Matrix Market [17] is a visual repository of test data
for use in comparative studies of algorithms, with special emphasis on numerical linear al-
gebra. It features nearly 500 sparse matrices from a variety of application domains, such as
air traffic control, astrophysics, biochemistry, circuit physics, computer system simulation,
finite elements, demography, economics, fluid flow, nuclear reactor design, oceanography,
and petroleum engineering. Each matrix in the collection features a web page which pro-
vides statistics on the matrix properties and different visualizations of its structure (e.g.,
2-dimensional structure plots or 3-dimensional city plots).

The Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) en-
courages experimentation with algorithms by organizing, since 1993, challenges in which the
best codes for specific problems are compared. Previous challenges include, among others,
network flow and matching, cliques, coloring and satisfiability, traveling salesman problem,
priority queues, dictionaries, and multi-dimensional point sets, parallel algorithms for com-
binatorial problems [29]. Many test sets and instance generators have been collected for the
problems considered so far. All of them conform to specific formats and are available over
the Web from the DIMACS website [29]. DIMACS test sets are commonly used as standard
benchmarks for comparing the behavior of different algorithms for the same problem.

4 Tools for Coding and Debugging

Software tools such as editors for test sets, program checkers, and systems for development,
debugging, visualization and analysis have proved themselves to yield consistent and valuable
support in all phases of the algorithm implementation process. In this section we discuss
two such efforts: algorithm visualization systems, which help developers gain insight about
algorithms using a form of interactive graphics, and program checkers, which can be used
to show the correctness of the implementation of an algorithm and to gain confidence in its
output.
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4.1 Algorithm Visualization Systems

Many software systems in the algorithmic area have been designed with the goal of provid-
ing specialized environments for algorithm visualization. Such environments exploit inter-
active graphics to enhance the development, presentation, and understanding of computer
programs [55]. Thanks to the capability of conveying a large amount of information in a
compact form that is easily perceivable by a human observer, visualization systems can help
developers gain insight about algorithms, test implementation weaknesses, and tune suitable
heuristics for improving the practical performances of algorithmic codes. Some examples of
this kind of usage are described in [26].

Systems for algorithm animation have matured significantly since the rise of modern com-
puter graphic interfaces and dozens of algorithm animation systems have been developed in
the last two decades [19, 20, 54, 51, 27, 24, 56, 42, 21, 10]. For a comprehensive survey we
refer the interested reader to [55, 28] and to the references therein. In the following we limit
to discuss the features of algorithm visualization systems that appear to be most appealing
for their deployment in algorithm engineering.

• From the viewpoint of the algorithm developer, it is desirable to rely on systems that
offer visualizations at a high level of abstraction. Namely, one would be more inter-
ested in visualizing the behavior of a complex data structure, such as a graph, than in
obtaining a particular value of a given pointer.

• Fast prototyping of visualizations is another fundamental issue: algorithm designers
should be allowed to create visualization from the source code at hand with little effort
and without heavy modifications. At this aim, reusability of visualization code could be
of substantial help in speeding up the time required to produce a running animation.

• One of the most important aspects of algorithm engineering is the development of
libraries. It is thus quite natural to try to interface visualization tools to algorithmic
software libraries: libraries should offer default visualizations of algorithms and data
structures that can be refined and customized by developers for specific purposes.

• Software visualization tools should be able to animate not just “toy programs”, but
significantly complex algorithmic codes, and to test their behavior on large data sets.
Unfortunately, even those systems well suited for large information spaces often lack
advanced navigation techniques and methods to alleviate the screen bottleneck. Finding
a solution to this kind of limitations is nowadays a challenge.

• Advanced debuggers take little advantage of sophisticated graphical displays, even in
commercial software development environments. Nevertheless, software visualization
tools may be very beneficial in addressing problems such as finding memory leaks,
understanding anomalous program behavior, and studying performance. In particular,
environments that provide interpreted execution may more easily integrate advanced
facilities in support to debugging and performance monitoring, and many recent systems
attempt at exploring this research direction.

• Debugging concurrent programs is more complicated than understanding the behavior
of sequential codes: not only concurrent computations may produce vast quantities
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of data, but also the presence of multiple threads that communicate, compete for re-
sources, and periodically synchronize may result in unexpected interactions and non-
deterministic executions. Tools for the visualization of concurrent computations should
therefore support a non-invasive approach to visualization, since the execution may
be non-deterministic and an invasive visualization code may change the outcome of a
computation. Declarative specification appears well suited at this aim.

• There is a general consensus that algorithm visualization systems can strongly benefit
from the potentialities offered by the World Wide Web. Indeed, the use of the Web
for easy communication, education, and distance learning can be naturally considered
a valid support for improving the cooperation between students and instructors, and
between algorithm engineers.

4.2 Program Checkers

Showing the correctness of an algorithm and of its implementation is fundamental to gain
total confidence in its output. While theoretical proofs are the standard approach to the
former task, devising methodologies for assuring software reliability still remains a difficult
problem, for which general powerful solutions are unlikely to be found.

A typical debugging approach relies on testing suites: a variety of input instances for which
the correct solution is known is selected, the program is run on the test set and its output is
compared to the expected one, possibly discovering anomalies and bugs. A careful selection
of the test suite (e.g., degenerate or worst-case instances) may lead to discover interesting
facts about the code, but there is no consesus on what a good test set is and how meaningful
test sets can be generated. More importantly, testing allows it to prove the correctness of a
code only on specific instances.

A different approach, named program verification, attempts at solving the debugging
problem by formally proving that the program is correct. However, proving mathematical
claims about the behavior of even simple programs appears to be very difficult.

An alternative method is offered by program checking, which is easier to do than verifi-
cation, but more rigorous than testing. A program checker is an algorithm for checking the
output of a computation: given a program and an instance on which the program is run, the
checker certifies whether the output of the program on that instance is correct. For instance,
a checker for a code that implements a planarity testing algorithm should exhibit a plane
embedding if the input graph is declared to be planar, or a Kuratowski subgraph if the input
graph is declared to be non-planar [44].

Designing good checkers may be not easy. Randomization and techniques derived from
the theory of error-detecting codes proved themselves to be valuable tools at this aim [16, 60].
We take as an example the case of sorting. The input of the checker is a pair of arrays:
the first, say x̄, represents the input of the sorting program, the second, say ȳ, its output.
The checker must verify not only that the elements in ȳ are in increasing order, but also
that they in fact are a permutation of the elements in x̄. This latter check can be easily
accomplished if each element of ȳ has attached a pointer to its original position in x̄. Even
if ȳ cannot be augmented with such pointers, the problem can still be solved by employing a
randomized method [16, 61]: a hash function h is chosen at random from a suitably defined
set of possibilities, and

∑
i h(xi) is compared against

∑
i h(yi). If ȳ is a permutation of x̄,

the two values must be equal; otherwise, it can be proved that they differ with probability at
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least 1

2
. If the checker accepts only pairs x̄-ȳ for which t such tests pass, the probability of

error will be ≤ (1

2
)t, which can be made arbitrarily small.

To conclude, we wish to remark that checking allows one to test on all inputs, and not only
on inputs for which the correct output is known. Checkers are usually simpler and faster than
the programs they check, and thus, presumably, less likely to have bugs. Moreover, checkers
are typically reusable in the following sense: since they depend only on the specification of
a computational task, the introduction of a new unreliable algorithm for solving an old task
may not require any change to the associated checker.

5 Putting Algorithms to Work: Software Libraries

New algorithmic results often rely on previous ones, and devising them only at theoretical
level may lead to a major problem: researchers who would eventually come up with a practical
implementation of their results may be required to code several layers of earlier unimplemented
complex algorithms and data structures, and this task may be extremely difficult. The need
for robust and efficient implementations of algorithms and data structures that can be used
by non-experts is one of the main motivations for Algorithm Engineering. Devising fast, well
documented, reliable, and tested algorithmic codes is a key aspect in the transfer of theoretical
results into the setting of applications, but it is fraught with many of the pitfalls described
in Section 3. Without claim of completeness, we survey some examples of such an effort.

LEDA. LEDA, the Library of Efficient Data Types and Algorithms, is a library of ef-
ficient data structures and algorithms used in combinatorial computing [45]. It provides
a sizable collection of data types and algorithms in a form which allows them to be used
by non-experts. The authors started the LEDA project in 1989 as an attempt to bridge
the gap between algorithm research, teaching and implementation. The library is written
in C++ and features efficient implementations of most of the algorithms and data types
described in classical text books such as [4, 5] and [23]. Additional LEDA Extension Pack-
ages have been developed by different researchers, and include dynamic graph algorithms,
abstract Voronoi diagrams, D-dimensional geometry, graph iterators, parametric search, SD-
trees and PQ-trees. Besides, LEDA includes classes for building graphic user interfaces and
for I/O, error handling and memory management. LEDA is currently being developed for
commercial purposes. Further information can be found over the Internet at the URL:
http://www.algorithmic-solutions.com/enleda.htm. The design of the LEDA library
is heavily based upon features of the C++ language and the library itself is intended to be
a flexible and general purpose tool: for this reason, programs based on it tend to be less
efficient than especially tuned implementations. However, LEDA is often used as a practical
framework for empirical studies in the field of Experimental Algorithmics.

Stony Brook Algorithm Repository. The Stony Brook Algorithm Repository is a com-
prehensive collection of algorithm implementations for over seventy of the most fundamental
problems in combinatorial algorithms. The repository is accessible via WWW at the URL:
http://www.cs.sunysb.edu/~algorith/. Problems are classified according to different cat-
egories: data structures, numerical problems, combinatorial problems, polynomial-time prob-
lems on graphs, hard problems on graphs, computational geometry, set and string problems.
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The repository features implementations coded in in different programming languages, includ-
ing C, C++, Fortran, Lisp, Mathematica and Pascal. Also available are some input data files
including airplanes routes and schedules, a list of over 3000 names from several nations, and
a subgraph of the Erdos-number author connectivity graph. According to a study on WWW
hits to the Stony Brook Algorithm Repository site recorded over a period of ten weeks [52],
most popular problems were shortest paths, traveling-salesman, minimum spanning trees as
well as triagulations and graph data structures. On the opposite, least popular problems,
among others, were determinants, satisfiability and planar graph drawing.

Libraries for specialized domains. Many other libraries for specialized domains have
been also implemented. TPIE [9] is a templated C++ library that abstracts the Parallel Disk
Model and implements basic I/O primitives such as scanning, sorting, permuting, and I/O
efficient data structures such as B-trees, R-trees, K-D-B-trees. CNOP [46] is a package for
resource constrained network optimization problems that implements, among others, state
of the art algorithms for the constrained shortest path and minimum spanning tree prob-
lems. The AGD library [6] offers a broad range of existing algorithms for two-dimensional
graph drawing, including drawing planar graphs on the grid with straight lines, orthogonal
layout algorithms, hierarchical approaches. The CGAL library [31] supports numerically ro-
bust implementations of many computational geometry algorithms, providing primitives for
manipulating basic and advanced geometric objects and data structures, including polygons,
triangulations, polyhedrons, planar maps, range and segment trees, and kd-trees. It also
contains generators for geometric objects. CPLEX is a widely used software package for
solving integer, linear and quadratic programming problems. It was originally developed by
Bixby [15] and later commercialized. The software includes several versions of the simplex and
barriers algorithms and has undergone several major improvements in more than ten years.
This fact, coupled with the improvements in computer hardware, resulted in a software which
is today more than 6 orders of magnitude faster than in its first version: there are problems
that can be solved in seconds today on desktop computers that would have taken more than
2 years to solve using the best linear programming codes and best hardware available in the
late 1980s.

6 Concluding Remarks

Algorithm Engineering refers to the process of designing, analyzing, implementing, tuning,
debugging, and experimentally evaluating algorithms. It refines and reinforces the traditional
theoretical approach with experimental studies, fitting the general models and techniques
used by theoreticians to actual existing machines and leading to robust and efficient imple-
mentations of algorithms and data structures that can be used by non-experts. Trends in
algorithm engineering include the following. First of all, programs should be considered as
first class citizens: going from efficient algorithms to programs is not a trivial task and the
development of algorithmic libraries may be helpful for this. Furthermore, in may applica-
tions seconds matter, and thus experimentation can add new insights to theoretical analyses.
Moreover, current computing machines are far away from RAMs: if algorithms are to have
a practical utility, issues such as effects of the memory hierarchy (cache, external memory),
implications of communication complexity, numerical precision must be considered. Machine
architecture, compiler optimization, operating system, programming language are just a few
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of the technical issues that may substantially affect the execution performance. Algorithmic
software libraries, tools for algorithm visualization, program checkers, generators of test sets
for experimenting with algorithms may be of great help throughout this process.

Since it may be sometimes difficult to draw general conclusions about algorithms from
experimental observations, developing a science of algorithm testing appears to be funda-
mental. Important questions that have been only partially answered include the following.
What is an adequate set of test instances and how does performance depend on instance
type and size? How can we provide evidence of the correctness of an implementation, i.e.,
guarantee that the algorithm implemented is the one intended and that the results it provides
are correct? Which are proper performance indicators? In particular, in case of bicriteria
problems, how can one consistently explore tradeoffs between running time and quality of the
solutions? And, finally, what are the proper questions that should be asked and the proper
methodologies for experimental works?
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