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Abstract The Generalized Nash equilibrium problem is an important model that has
its roots in the economic sciences but is being fruitfully used in many different fields.
In this survey paper we aim at discussing its main properties and solution algorithms,
pointing out what could be useful topics for future research in the field.
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1 Introduction

This is a survey paper on the Generalized Nash equilibrium problem (GNEP for short).
Although the GNEP is a model that has been used actively in many fields in the past
50 years, it is only since the mid 1990s that research on this topic gained momentum,
especially in the operations research (OR) community. This paper aims at presenting
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in a unified fashion the contributions that have been given over the years by people
working in many different fields. In fact, the GNEP lies at the intersection of many
different disciplines (e.g. economics, engineering, mathematics, computer science,
OR), and sometimes researchers in different fields worked independently and unaware
of existing results. We hope this paper will serve as a basis for future research and will
stimulate the interest in GNEPs in the OR community. While we try to cover many
topics of interest, we do not strive for maximum technical generality and complete-
ness, especially when this would obscure the overall picture without bringing any real
new insight on the problem.

As we already mentioned, many researchers from different fields worked on the
GNEDP, and this explains why this problem has a number of different names in the
literature including pseudo-game, social equilibrium problem, equilibrium program-
ming, coupled constraint equilibrium problem, and abstract economy. We will stick
to the term generalized Nash equilibrium problem that seems the favorite one by OR
researchers in recent years.

Formally, the GNEP consists of N players, each player v controlling the variables
x" € R™. We denote by x the vector formed by all these decision variables:

which has dimension n := Zf,v:l ny, and by x 7V the vector formed by all the players’
decision variables except those of player v. To emphasize the vth player’s variables
within x, we sometimes write (x”, x ") instead of x. Note that this is still the vec-
tor x = (xl, oaxY o, xN) and that, in particular, the notation (x”, x ") does not
mean that the block components of x are reordered in such a way that x” becomes the
first block.

Each player has an objective function 6,, : R” — R that depends on both his own
variables x” as well as on the variables x " of all other players. This mapping 6, is
often called the utility function of player v, sometimes also the payoff function or loss
function, depending on the particular application in which the GNEP arises.

Furthermore, each player’s strategy must belong to a set X,(x™") € R"™ that
depends on the rival players’ strategies and that we call the feasible set or strategy
space of player v. The aim of player v, given the other players’ strategies x ", is to
choose a strategy x" that solves the minimization problem

minimize,»  6,(x", x~") subjectto x" € X, (x7"). (1

For any x ~", the solution set of problem (1) is denoted by S, (x™"). The GNEP is the
problem of finding a vector X such that

x'eS,(x7") forallv=1,...,N.

Such a point x is called a (generalized Nash) equilibrium or, more simply, a solution of
the GNEP. A point x is therefore an equilibrium if no player can decrease his objective
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function by changing unilaterally x" to any other feasible point. If we denote by S(x)
the set S(x) := l'IC/:]SU (x™"), we see that we can say that x is a solutionif ¥ € S(x),
i.e. if x is a fixed point of the point-to-set mapping S. If the feasible sets X, (x ") do
not depend on the rival players’ strategies, so we have X, (x ") = X, for some set
X, CR™andallv=1,..., N, the GNEP reduces to the standard Nash equilibrium
problem (NEP for short), cf. Sect. 2.

We find it useful to illustrate the above definitions with a simple example.

Example 1 Consider a game with two players, i.e. N = 2, withn; = 1 and np = 1,
so that each player controls one variable (for simplicity we therefore set x := xll and
yi= x]2). Assume that the players’ problems are

min, (x — 1)2 min, (y — $)?
S.t. x+y <1, s.t. x+y <1

The optimal solution sets are given by

S1(y) = [ L=y, if y>0.

1
and S>(x) = [ f’

—x, if x

IV 1A
M=

Then it is easy to check that the solutions of this problem are given by («, 1 — «) for
every o € [1/2, 1]. Note that the problem has infinitely many solutions, with different
values for both players.

In the example above the sets X, (x ~") are defined explicitly by inequality constraints.
This is the most common case and we will often use such an explicit representation in
the sequel. More precisely, in order to fix notation, we will several times assume that
the sets X, (x ") are given by

X,(x™") = " eR": g"(x", x7") <0}, 2

where g¥(-,x7") : R — R™. Equality constraints can easily be incorporated (or
can be rewritten as two inequalities), we omit them for notational simplicity. Fur-
thermore, we won’t make any distinction between constraints of player v that depend
on the player’s variables x" only and those that depend also on the other players’
variables; in fact, the former can formally be included in the latter without loss of
generality.

The paper is organized as follows: In the next section, after some historical notes,
we describe some relevant applications. In Sect. 3 we discuss relations of the GNEP
with other problems and introduce an important subclass of the GNEP. In Sect. 4, exis-
tence results are presented along with KKT conditions and some further theoretical
results. In Sect. 5, we analyze solution procedures, while in the final section we briefly
discuss further topics of interest and draw some conclusions.

A few words regarding our notation and the necessary background. The Euclidean
projection of a vector x onto a set X is denoted by Px(x). We say that a function
fisC 0 if it is continuous, and C¥ if it is k-times continuously differentiable. For a

@ Springer



F. Facchinei, C. Kanzow

real-valued C'!-function f, we denote its gradient at a point x by V f(x). Similarly,
for a vector-valued C'-function F, we write J F (x) for its Jacobian at a point x. We
assume that the reader is familiar with classical optimization concepts and has some
basic notions about variational inequalities (VIs) and quasi-variational inequalities
(QVls), cf. (Facchinei and Pang 2003).

2 Historical overview and examples

The celebrated Nash equilibrium problem (NEP), where X, (x ") = X, forall v =
1, ..., N,wasformally introduced by Nash in his 1950/1951 papers Nash (1950, 1951)
but the origins of the concept of equilibrium can be traced back to Cournot (1838), in
the context of an oligopolistic economy, and have obvious and closer antecedents in
the work of von Neumann (1928) and von Neumann and Morgenstern (1944) on zero-
sum two-person games. Nash’s (1950, 1951) papers are a landmark in the scientific
history of the twentieth century and the notion of Nash equilibrium has extensively
proved to be powerful, flexible, and rich of consequences.

However, the need of an extension of the NEP, where the players interact also at
the level of the feasible sets, soon emerged as necessary. The GNEP was first formally
introduced by Debreu (1952) (where the term social equilibrium was coined). This
paper was actually intended to be just a mathematical preparation for the famous 1954
Arrow and Debreu (1954) paper about economic equilibria. In this latter paper, Arrow
and Debreu termed the GNEP “an abstract economy” and explicitly note that ... In
a game, the pay-off to each player depends upon the strategies chosen by all, but the
domain from which strategies are to be chosen is given to each player independently of
the strategies chosen by other players. An abstract economy, then, may be character-
ized as a generalization of a game in which the choice of an action by one agent affects
both the pay-off and the domain of actions of other agents”, cf. (Arrow and Debreu
1954, p. 273). It is safe to say that (Arrow and Debreu 1954) and the subsequent book
(Debreu 1959) provided the rigorous foundation for the contemporary development
of mathematical economics.

The mathematical-economic origin of the GNEP explains why the GNEP has long
been (let’s say up to the beginning of the 1990s) the almost exclusive domain of
economists and game-theory experts. In truth, it must also be noted that in this com-
munity some reserves have been advanced on GNEPs, on the grounds that a GNEP
is not a game. For example, Ichiishi states, in his influential 1983 book (Ichiishi
1983, p. 60), “It should be emphasized, however, that an abstract economy is not
a game, ... since player j must know the others’ strategies in order to know his
own feasible strategy set .. ., but the others cannot determine their feasible strategies
without knowing j’s strategy. Thus an abstract economy is a pseudo-game and it is
useful only as a mathematical tool to establish existence theorems in various applied
contexts.”

The point here is that one cannot imagine a game where the players make their
choices simultaneously and then, for some reason, it happens that the constraints are
satisfied. But indeed, this point of view appears to be rather limited, and severely
undervalues
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(a) the descriptive and explanatory power of the GNEP model,

(b) its normative value, i.e., the possibility to use GNEPs to design rules and proto-
cols, set taxes and so forth, in order to achieve certain goals, a point of view that
has been central to recent applications of GNEPs outside the economic field (see
below and Sect. 2.2);

(c) the fact thatin any case different paradigms for games can and have been adopted,
where it is possible to imagine that, even in a noncooperative setting, there are
mechanisms that make the satisfaction of the constraints possible.

Following the founding paper (Arrow and Debreu 1954), researchers dedicated most
of their energies to the study of the existence of equilibria under weaker and weaker
assumptions and to the analysis of some structural properties of the solutions (for
example uniqueness or local uniqueness). The relevant literature will be discussed
more in detail in Sect. 4. It was not until the beginning of the 1990s, however, that
applications of the GNEP outside the economic field started to be considered along
with algorithms for calculation of equilibria. In this respect, possibly one of the early
contributions was given by Robinson in 1993 in Robinson (1993a,b). In these twin
papers, Robinson considers the problem of measuring effectiveness in optimization-
based combat models, and gives several formulations that are nothing else but, in our
terminology, GNEPs. For some of these GNEPs, Robinson provides both existence
results and computational procedures.

More or less at the same time, see Scotti (1995) and references therein, Scotti intro-
duced GNEPs in the study and solution of complex structural design problems as an
evolution of the more standard use of nonlinear programming techniques promoted
by Schmit in the 1960s (see Schmit 1981 for a review) and motivated by some early
suggestions in the previous decade, see (Rao et al. 1988; Vincent 1983).

After these pioneering contributions, in the last decade the GNEP became a rela-
tively common paradigm, used to model problems from many different fields. In fact
GNEPs arise quite naturally from standard NEPs if the players share some common
resource (a communication link, an electrical transmission line, a transportation link
etc.) or limitations (for example a common limit on the total pollution in a certain
area). More in general the ongoing process of liberalization of many markets (elec-
tricity, gas, telecommunications, transportation and others) naturally leads to GNEPs.
But GNEPs have also been employed to model more technical problems that do not fit
any of the categories listed above, and it just seems likely that now that the model is
winning more and more popularity, many other applications will be uncovered in the
near future. It is impossible to list here all relevant references for these applications;
we limit ourselves to a few that, in our view, are either particularly interesting or good
entry points to the literature (Adida and Perakis 2006a,b; Altman and Wynter 2004;
Arrow and Debreu 1954; Bagar and Olsder 1989; Bassanini et al. 2002; Breton et al.
2005; Contreras et al. 2004; Ehrenmann 2004; Gabriel et al. 2005; Gabriel and Smeers
2006; Harker 1991; Harker and Hong 1994; Haurie and Krawczyk 1997; Hobbs et al.
2001; Hobbs and Pang 2007; Jiang 2007; Kesselman et al. 2005; Krawczyk 2000,
2007; Outrata et al. 1998; Pang et al. 2007; Puerto et al. 2005; Sun and Gao 2007,
Tidball and Zaccour 2005; Wei and Smeers 1999; Zhou et al.2005).

@ Springer



F. Facchinei, C. Kanzow

In the remaining part of this section, we illustrate the scope of the GNEP by
considering in some more detail three specific applications: The abstract economy
by Arrow and Debreu, a power control problem in telecommunications, and a GNEP
arising from the application of the Kyoto protocol. While the first application has a his-
torical signification in that it constitutes the original motivation for the study of GNEPs,
the other two problems described are examples of the contemporary use of GNEPs.

2.1 Arrow and Debreu abstract economy model

The economic equilibrium model is a central theme to economics and deals with the
problem of how commodities are produced and exchanged among individuals. Walras
(1900) was probably the first author to tackle this issue in a modern mathematical
perspective. Arrow and Debreu (1954) considered a general “economic system” along
with a corresponding (natural) definition of equilibrium. They then showed that the
equilibria of their model are those of a suitably defined GNEP (which they called an
“abstract economy”); on this basis, they were able to prove important results on the
existence of economic equilibria. Below we describe this economic model.

We suppose there are / distinct commodities (including all kinds of services). Each
commodity can be bought or sold at a finite number of locations (in space and time).
The commodities are produced in “production units” (companies), whose number is
s. For each production unit j there is a set Y; of possible production plans. An element
yl e Y; is a vector in R! whose hth component designates the output of commod-
ity h accordmg to that plan; a negative component indicates an input. If we denote
by p € R/ the prices of the commodities, the production units will naturally aim at
maximizing the total revenue, pTyj ,over the set Y.

We also assume the existence of “consumption units”, typically families or indi-
viduals, whose number is . Associated to each consumption unit i we have a vector
x' € R! whose hth component represent the quantity of the #th commodity consumed
by the ith individual. For any commodity, other than a labor service supplied by the
individual, the consumption is non-negative. More in general, x' must belong to a
certain set X; € R’. The set X; includes all consumption vectors among which the
individual could choose if there were no budgetary constraints (the latter constraints
will be explicitly formulated below). We also assume that the ith consumption unit
is endowed with a vector &’ € R of initial holdings of commodities and has a con-
tractual claim to the share «;; of the profit of the jth production unit. Under these
conditions it is then clear that, given a vector of prices p, the choice of the ith unit is
further restricted to those vectors x' € X; such that p”x' < p"&' + 3% aij(p" y7).
As is standard in economic theory, the consumption units aim is to maximize a utility
function u; (x'), which can be different for each unit.

Regarding the prices, obviously the vector p must be non-negative; furthermore,
after normalization, it is assumed that 22:1 prn = 1. It is also expected that free
commodities, i.e. commodities whose price is zero, are only possible if the supply
exceeds the demand; on the other hand, it is reasonable to require that the demand is
always satisfied. These two last requirements can be expressed in the form: Zf: 1 xf—

Zj‘:l v = Z;:l £ <0Oand PT(Z?:l x' - Zj‘:l v = Z;:l §)=0.
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With the above setting in mind, Arrow and Debreu also make a series of further
technical assumptions (which are immaterial to our discussion) on the properties of the
sets Y}, X;, the functions u;, etc., that correspond to rather natural economic features,
and on this basis they define quite naturally a notion of an economic equilibrium.
Essentially, an economic equilibrium is a set of vectors ()E], Xt ﬁl, e YD)
such that all the relations described above are satisfied. From our point of view, the
interesting thing is that Arrow and Debreu show that the economic equilibria can also
be described as the equilibria of a certain GNEP, and this reduction is actually the
basis on which they can prove their key result: existence of equilibria. The GNEP they
define has s 4 ¢ + 1 players. The first s players correspond to the production units,
the following ¢ ones are the consumption units, and the final player is a fictious player
who sets the prices and that is called “market participant”. The jth production player
controls the variables y/, and his problem is

max p’y/ st oyl evY;. 3)

y./
The ith consumption player controls the variables x?, and his problem is

max i u; (x%)
S.t. xt e X;, 4
p'x < p"E +max {0, 35 ij(pTy)}

Finally, the market participant’s problem is

max, p" (T x = Xjo v - T §)
s.t. p=>0, (5)
22:1 Ph = 1.

Altogether, (3)—(5) represent a GNEP with the joint constraints coming from (4).

2.2 Power allocation in a telecommunication system

The next example comes from the telecommunication field and is an example of the
kind of applications of the GNEP that have flourished in the engineering world in
the past 10 years. The problem we consider is the power allocation in a Gaussian
frequency-selective interference channel model (Pang et al. 2007). In order to make
the presentation self-contained and as clear as possible, we consider a simplified set-
ting which, however, captures all the technical issues at stake and is furthermore
particularly significative.

Consider the digital subscriber line (DSL) technology, which is a very common
method for broadband internet access. DSL customers use a home modem to connect
to a Central Office through a dedicated wire. In a standard setting, the wires are bundled
together in a common telephone cable, at least in the proximity of the Central Office.
Due to electromagnetic couplings, the DSL signals in the wires can interfere with one
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another, causing a degradation of the quality of the service. To complete the picture,
one must take into account that the current standards prescribe the use of discrete
multitone modulation which, in practice, divides the total available frequency band in
each wire into a set of parallel subcarriers (typically either 256 for asymmetric DSL
(ADSL) and 4,096 for very high bit rate DSL (VDSL)). In this setting the parameter
that can be controlled is, for each wire ¢ and for each subcarrier k, the power pZ
allocated for transmission.

For each wire, the transmission quality is given by the maximum achievable trans-

. . . N .
mission rate R, . This quantity depends both on the vector ( pZ ) 1 Of power allocations

across the N available subcarriers for wire ¢, and p~4 := (p”) ,Q?éq, the vector repre-
senting the strategies of all the other wires. Under adequate technical assumptions, it
can be shown that

N
Ry(p?,p %) = Z]og (1 + sian) ,
k=1

with sin rZ denoting the signal-to-interference plus noise ratio (SINR) on the kth carrier
for the gth link:

2 g
g 7| b
sinry, = Y \H‘"\z i
g r#q |7k | Pr

where qu and H,? " are parameters describing the behavior of the communication sys-
tem (see Pang et al. 2007 for details).

In this setting, there is a single decision maker who must decide the power alloca-
tion. This decision maker, loosely speaking, on the one hand wants to minimize the
power employed while guaranteeing to each wire g a transmission rate of at least R(’;.
For many reasons we cannot discuss here, that are, however, rather intuitive, the tele-
communication engineers have come to the conclusion that a desirable way to choose
the power allocation is to take it as the equilibrium of a GNEP we describe below.
Each wire g is a player of the game, whose objective function is to minimize the total
power used in transmission, with the constraint that the maximum transmission rate
is at least R(’;, i.e. the problem of the generic player ¢ is

maxps Dy pf
s.t. Ry(p?,p™) = Ry,
p; > 0.

We stress that here the GNEP is used in a normative way. No one is really playing a
game; rather, a single decision maker has established that the outcome of the GNEP
is desirable and therefore (calculates and) implements it. This perspective is rather
common in many modern engineering applications of the GNEP.
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2.3 Environmental pollution control

The 1997 Kyoto agreements prescribe that the “Annex I Parties” (a list of developed
countries and countries in transition to a market economy) must reduce by the year
2012 their overall emission of greenhouse gases 5 per cent below the 1990 levels. In
order to reach this goal, various mechanisms are envisaged. One of the most interest-
ing one is the so called “Joint Implementation” (JI). This mechanism is described in
the Kyoto Protocol with the following words: “for the purpose of meeting its commit-
ments . . ., any Party included in Annex I may transfer to, or acquire from, any other
such Party emission reduction units (ERU) resulting from projects aimed at reducing
anthropogenic emissions by sources or enhancing anthropogenic removals by sinks of
greenhouse gases . ..”. Said in other words, any country can invest in abroad projects
in order to collect rewards in the form of ERU. It is expected that the JI mechanism
will provide incentives for the development of environmental technologies and will
channel physical and financial capitals to countries with in-transition economies thus
promoting their sustainable economic growth. As we illustrate below, a GNEP can be
used to assess the merits of the JI mechanism thus giving a valuable contribution to well
founded strategies for the reduction of greenhouse gases. The following presentation
is a modification of the one given in (Breton et al. 2005).

Let N be the number of countries (i.e. players) involved in the JI mechanism. For
each country i, let ¢! denote the emissions that result from its industrial production;
we assume that these emissions are proportional to the industrial output of the country
thus enabling us to express the revenue R of the country as a function of ¢/ . Emissions
can be abated by investing in projects (e.g. installing filters, cleaning a river basin
etc.) domestically or abroad. Let us indicate with I’ these environmental investments
made by country i in country j. The benefit of this investment lies in the acquisition
of ERUs, assumed here to be proportional to the investment, i.e. y;; I i (the coefficients
vij depend on both the investor, 7, and the host country, j, because in general there
is a dependence on both the investor’s technologies and laws and the situation in the
host country). The net emission in country i is given by e/ — Z;V:l Vji Il.] , which obvi-
ously cannot be negative. On the other hand, country i is accounted for the emission
of ¢! — Z?=1 Yij Iji., that is, its own emissions minus the ERUs gained by investing
in environmental projects; this quantity must be kept below a prescribed level E;. To
conclude the description of the problem, we also assume that pollution in one country
can affect also other countries (for example pollution of a river in a country can affect
another country which is crossed by the same river; acid rains are also influenced by
air pollution in neighboring countries etc.). We therefore assume that damages from
pollution in one country depend on the net emissions of all countries, according to
a function D; (e! ijl yilli, ... eV — Z L vindy ) With this setting, the ith
player’s problem becomes:

N j N P
maxg i Riteh) = X0 1= Dife! = X vl N = X0 vin i)
s.t. e,I{,...,I’ > 0,
61—271%/1’ < Ei,
ei_2j=1yjtli] >0, i=1,...,N.
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Note that in the resulting GNEP, the constraints of each problem involving other
player’s variables (the last N linear constraints) are the same for all players. This is
precisely in the spirit of the JI mechanism.

3 Reformulations and the jointly convex case

With this section, we begin a more in-depth examination of GNEPs. In our presenta-
tion, we will sometimes consider some special subclasses of GNEPs; note, however,
that we won’t explore in detail the properties of standard NEPs. Although this is obvi-
ously an extremely important subclass of GNEPs, the focus of this review is really
on what happens in the case of “genuine” GNEPs, i.e. equilibrium problems where
the feasible sets depend on the other player’s decisions. Furthermore, the literature on
pure NEPs is enormous and it would not be possible to review it in a single paper; we
refer the interested reader to (Aubin 1993; Basar and Olsder 1989; van Damme 1996;
Facchinei and Pang 2003; Fudenberg and Tirole 1991; Garcia and Zangwill 1981;
Myerson 1991) as entry points to this literature.

From now on, unless otherwise stated explicitly, we assume that all the objective
functions satisfy the following continuity assumption.

Continuity Assumption For every player v, the objective function 6, is C°.

3.1 Reformulations of the general GNEP

We begin our analysis by giving several equivalent formulations of the GNEP. On the
one hand, these formulations shed some light on the connections between the GNEP
and other better known problems while, on the other hand, they are often the basis for
both theoretical and algorithmic developments. We note that probably all the refor-
mulations given in this subsection are formally new, although they are the obvious
extensions of results well known in the more specialized context of jointly convex
GNEDPs that will be introduced and discussed in Sect. 3.2.

We first introduce a function that historically played an important role in the study
of the GNEP.

Definition 1 The mapping

N
W(x,y) =D [0, x7) —60,(3", x7")]

v=I

is called the Nikaido—Isoda-function (NI-function for short) or the Ky Fan-function of
the GNEP.

Note that both names are used in the GNEP literature and that the function ¥ depends
on the utility functions of each player, but not on the strategy spaces. In particular,
the NI-function for GNEPs is identical to the NI-function for NEPs; and actually the
NI-function was first introduced in (Nikaido and Isoda 1955) as a tool to improve on
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Nash’s original existence result for NEPs. The NI-function has a simple interpreta-
tion: Suppose that x and y are two feasible points for the GNEP, each summand in the
definition represents the improvement in the objective function of player v when he
changes his action from x" to y” while all the other players stick to the choice x ~V. It is
rather intuitive, and simple to prove, that equilibria of the GNEP are characterized by
the impossibility to get any improvement for any feasible choice y; this is essentially
the content of the following theorem.

Theorem 1 Let ¥ be the NI-function of the GNEP, and define

X(x) = Y x,(x™), V(x) == sup ¥(x,y). (6)
yeX(x)

Then the following statements hold:

@ V(x)=0forallx e X(x).
(b) V(x) =0andx € X (x) if and only if x is a solution of the GNEP.

Theorem 1 characterizes the solutions of a GNEP as the set of points ¥ € X (x) such
that 0 = V(JE) < V(x), for all x € X(x). With a little abuse of notation, we can
say that x is a solution of the GNEP if and only if it is a global minimizer with zero
objective value of the problem

min V(x) st x € X(x) (7)

that we call “constrained quasi-optimization problem”. The term “quasi-optimization”
is used to emphasize the fact that this is not a standard optimization problem, since
the feasible set depends on the variable x, and also to highlight the parallelism to
quasi-variational inequalities we will discuss shortly. Although this reformulation is
possibly not of great practical interest in the general case, it turns out to be a useful tool
in the case of “jointly convex” problems to be discussed in Sect. 3.2. Furthermore, it is
also the basis for some more useful optimization reformulations that will be discussed
in Sect. 5.3. If we consider a NEP, problem (7) becomes a real optimization problem
(since the set X (x) does not depend on x and is therefore fixed). Note, however, that
the minimization of the objective function is still a challenging task since V is, in
general, nondifferentiable.

A different kind of reformulation can be established under the following additional
convexity assumption.

Convexity Assumption For every player v and every x ", the objective function
0,(-, x7") is convex and the set X, (x ") is closed and convex.

This assumption is very common and is often satisfied, especially in the eco-
nomic applications that originated the GNEP. The following theorem holds under this
assumption.

Theorem 2 Let a GNEP be given, satisfying the Convexity Assumption, and suppose
further that the 0, are C' for all v. Then, a point % is a generalized Nash equilibrium
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if and only if it is a solution of the quasi-variational inequality QVI (X (x), F(x))",
where

X(x) =" X, (x7"), Fx) := (Vob,x)Y_,.

The connection stated in the previous theorem was first noted in (Bensoussan 1974),
is certainly illuminating and parallels the classical one showing that under the same
Convexity Assumption, a NEP is equivalent to a VI. Obviously this latter result is a
particular case of Theorem 2 when the sets X,,(x ~") = X,, do not depend on x ~". We
restate this result below for completeness.

Corollary 1 Let a NEP be given, satisfying the Convexity Assumption, and suppose
further that the 0, are C' for all v. Then a point X is an equilibrium if and only if it is
a solution of the variational inequality VI (X, F(x))2, where

X =1 X,, Fx):= (Vo).

Unfortunately, while Corollary 1 turned out to be very useful in the study of the NEP
(see for example Facchinei and Pang 2003), Theorem 2 has less interesting conse-
quences since the theory for QVIs (see, e.g., Chan and Pang 1982; Fukushima and
Pang 2005, Harker 1991) is far less advanced than that for VIs. It is therefore of
interest to see whether it is possible to reduce a GNEP to a VI, at least under some
suitable conditions. In this respect it turns out that valuable results can be obtained
for a special class of GNEPs, the “jointly convex” GNEP, that will be discussed in the
next subsection.

An alternative characterization of the solutions of a GNEP can be obtained by a
fixed-point inclusion. To this end, let ¥ once again be the NI-function, let V be the
corresponding merit function from (6), and let

Y(x):={y, € X(x) | V(x) = ¥(x, y,)} 8)

be the (possibly empty) set of vectors where the supremum is attained in the definition
of V. Note that x — Y (x) is a point-to-set mapping. The fixed points of this function
are precisely the solutions of the GNEP according to the following result.

Theorem 3 A vector x is a solution of the GNEP if and only if x € 17()2) holds.

In the particular case where f/(x) = {y(x)} is single-valued for each x, it therefore
follows that x is a solution of the GNEP if and only if X solves the fixed point equa-
tion x = y(x).In general, however, unless relatively strong assumptions like uniform
convexity of the utility functions 6, hold, the set Y (x) does not reduce to a singleton,
making the fixed point inclusion a rather difficult problem. Note that the very definition

I The quasi-variational inequality problem QVI (X (x), F(x)) consists in finding a vector x € X (x) such
that (y — ¥)TF(x) > 0 forall y € X(x).

2 The variational inequality problem VI (X,F(x)) consists in finding a vector X € X such that
(y —%)TF(x) > 0forall y € X.
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of a generalized Nash equilibrium is also given in terms of a fixed point inclusion (via
the solution mapping S). The advantage of the fixed point characterization discussed
above is that, in some cases, it can be used to develop some algorithms for the solution
of the GNEP, as we shall discuss in Sect. 5.

The fact that all reformulations we have presented reduce to extremely difficult
problems is not a deficiency in our analysis; rather it is a manifestation of the fact
that the GNEDP, in its general form, is an extremely hard problem. It is then in order
to investigate if suitable subclasses of GNEPs are more amenable to fruitful analy-
sis. To this end, we introduce in the following subsection one such subclass. Further
subclasses will be mentioned in the conclusions section.

3.2 The jointly convex case

We consider here a special class of GNEPs that is important since it arises in some
interesting applications and for which a much more complete theory exists than for
the general GNEP.

Definition 2 Let a GNEP be given, satisfying the Convexity Assumption. We say that
this GNEP is jointly convex if for some closed convex X € R* andallv=1,..., N,
we have

X,(x™) = xV eR"™: (x",x7") € X} ©)

Note that the Example 1 and the model described in Sect. 2.3 (under convexity assump-
tions on the objective functions) are instances of jointly convex GNEPs.

Remark 1 When the sets X, (x ") are defined explicitly by a system of inequalities as
in (2), then it is easy to check that (9) is equivalent to the requirement that gl =g%=
... = gV := g and that g(x) be (componentwise) convex with respect to all variables
x; furthermore, in this case, it obviously holds that X = {x € R" : g(x) < 0}.

This class of problems has been first studied in detail in a seminal paper by (Rosen
1965) and has been often identified with the whole class of GNEPs. Jointly convex
GNEPs are also often termed as GNEPs with “coupled contraints”; however, we prefer
the more descriptive definition of jointly convex.

The reformulations introduced in the previous subsection simplify in the case of
jointly convex GNEPs. We first consider the quasi-optimization reformulation (7).
Since, in the special case of jointly convex constraints, it is easy to see that (cf. von
Heusinger and Kanzow 2006)

xeX,(x") Vv=1,..., Ne=x e X,
problem (7) simplifies to the following “real” optimization problem:

min V(x) st x € X, (10
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where V is defined as in (6). Theorem 1 can therefore be rewritten in the following
way.

Theorem 4 A vector x is a solution of the GNEP in the jointly convex case if and only
if x is a global minimum of the optimization problem (10) with zero objective function
value.

Note that, in spite of the simplification, the objective function V is still hard to compute

in general and nondifferentiable; we will deal further with these issues in Sect. 5.
We now consider the quasi-variational inequality reformulation of the GNEP to see

how the jointly convex structure can help to simplify things, at least to a certain extent.

Theorem 5 Let a jointly convex GNEP be given with C'-functions 6,. Then, every
solution of the VI (X, F) (where X is the set in the definition of joint convexity and,
as usual, F(x) := (Vp6, (x)){)vzl), is also a solution of the GNEP.

We remark that the above theorem does not say that any solution of a jointly convex
GNEP is also a solution of the VI (X, F), and actually in the passage from the GNEP
to the VI it is not difficult to see that “most” solutions are lost. We illustrate this with
a simple example.

Example I (continued) In the Introduction we have shown that this game has infinitely
many solutions given by («, 1 —a) forevery o € [1/2, 1]. Consider now the VI (X, F)
where

_ 2 . _ 2x—2
X ={(x,y) e RF: x4+y<1}, F_(Zy—l)'

F is clearly strictly monotone® and therefore this VI has a unique solution which is
given by (3/4, 1/4) as can be checked by using the definition of VI. Note that, as
expected, this is a solution of the original GNEP.

Definition 3 Let a jointly convex GNEP be given with C!-functions 6,. We call a
solution of the GNEP that is also a solution of VI(X, F) a variational equilibrium.

The alternative name normalized equilibrium is also frequently used in the literature
instead of variational equilibrium. In view of its close relation to a certain variational
inequality problem, however, we prefer to use the term “variational equilibrium” here.

With this new terminology, the point (3/4, 1/4) is the (unique) variational equi-
librium of the problem in Example 1. Note that, by Corollary 1, in the case of NEPs
the set of solutions and of variational solutions coincide. For GNEPs, however, every
variational equilibrium is a generalized Nash equilibrium, but Example 1 shows that
the converse is not true in general.

It may be interesting to see whether variational equilibria enjoy some relevant struc-
tural properties. In order to investigate this point, we need the following definition.

3 F is monotone on the set X if, for any two x, y € X, it holds that (F(x) — F(y) (x — y) > 0; if the
previous inequality is strict for all x # y, F is called strictly monotone.
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Definition 4 Let X € R” = R*1*T1"~¥ be a closed and convex set. The vth section
of X at a point x is the set S,(X) := {x € X : x7V = x7"}, while we define the
section of X at x as the set S(x) := Uf)vzl Sy (x). Finally, we define the internal cone
Ix(x) to X at x as the smallest closed, convex cone with vertex at the origin such that
X + Ix(x) contains S(x).

The above definition of internal cone can be used to refine the QVI reformulation in
the case of a jointly convex GNEP.

Proposition 1 (Cavazzuti et al. 2002) Let a jointly convex GNEP be given with
C'-functions 6,. Then a point X is an equilibrium if and only if it is a solution of
the quasi-variational inequality QVI ((x + Ix(x)) N X, F).

Note that S(x) € X and, therefore, Iy (x) C Tx (x) (where Tx (X) is the usual tangent
cone to X at x). Since we therefore have

T+IxX)NX C (x+Tx(X)NX = X,

we see from the definition of variational equilibria and Proposition 1 that variational
equilibria are “more socially stable” than other equilibria of the GNEP. In other words,
given an equilibrium, no deviation from X in the internal cone will be acceptable for
the players, while if X is a variational equilibrium, no deviation in the (possibly) larger
tangent cone will be acceptable.

The results above indicate that the calculation of a variational equilibrium could be a
valuable target for an algorithm. Furthermore, in some applicative contexts, variational
equilibria can also have further practical interest, see, for example, the comments in
(Harker 1991).

In order to state a useful characterization of a variational equilibrium, let us intro-
duce a variant of the function \7, that will also be useful later, in the development of
algorithms. Set

V(x) = sup¥(x,y). (11)
yeX

Note that V is nonnegative over X and the difference between Vand V is simply in
the set over which the sup in the definition is taken. Furthermore, since for any x € X
we have X € X (x), it is obvious that V (x) > V(x) for any x € X. Therefore if for
some X € X we have V(x) = 0, then X is a solution of the GNEP by Theorem 4. In
fact, this property fully characterizes the set of variational equilibria.

Proposition 2 (von Heusinger and Kanzow 20006) Let a jointly convex GNEP be given
with C'-functions 0,.. Then a point X is a variational equilibrium if and only if ¥ € X
and V (x) = 0 holds.

Proposition 2 motivates to call any point x € X satisfying V(x) = 0 a variational
equilibrium of a jointly convex GNEP. This definition is slightly more general than the
previous one since it does not require any smoothness of the objective functions 6,,.
Note that the set of solutions of a GNEP is unaffected if we scale the utility functions
6, by a positive number r,. This, however, is not true for the variational equilibria. To
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see this, consider Example 1 again, but with the objective function of the second player
multiplied with the factor r, := 2 (whereas 01 remains unchanged). Then an easy cal-
culation shows that the unique variational equilibrium is given by ¥ = (% %) which is
different from the one given in Example 1 (continued). This observation immediately
leads to the slightly different, original definition of a normalized equilibrium given in
(Rosen’s 1965) paper.*

We conclude this subsection by observing that the jointly convex GNEP has been
the subject of much analysis, and it certainly covers some very interesting applications.
However, it should be noted that the jointly convex assumption on the constraints is
strong, and practically is likely to be satisfied only when the joint constraints g¥ = g,
v =1,..., N, are linear, i.e. of the form Ax < b for some suitable matrix A and
vector b.

4 Theory
4.1 Basic existence results

Existence of solutions has been the main focus of early research in GNEPs. The 1952
Debreu paper (Debreu 1952), where the GNEP was formally introduced, also gives
the first existence theorem. This existence result was based on fixed-point arguments,
and this turned out to be the main proof tool used in the literature. Essentially this
approach is based on the very definition of equilibrium that states that a point x is
an equilibrium if x € S(x), where S = 1'[{:’215U with the solution mappings S, of
problem (1) as introduced in Sect. 1. This shows clearly that x is a fixed point of S, thus
paving the way to the application of the fixed-point machinery to establish existence
of an equilibrium. There also exist some other approaches, an interesting one being
the one presented in (Garcia and Zangwill 1981), where a continuation approach is
used. The main existence result is probably the one established in (Arrow and Debreu
1954). We report below a slightly simplified version given by Ichiishi (1983). Recall
that, as usual, the blanket Continuity Assumption is supposed to hold.

Theorem 6 Let a GNEP be given and suppose that

(a) There exist N nonempty, convex and compact sets K, C R™ such that for
every x € R" with x¥ € K, for every v, X, (x™") is nonempty, closed and
convex, X,(x~") C K\, and X,, as a point-to-set map, is both upper and lower
semicontinuous.>

4 Rosen calls a vector ¥ a normalized equilibrium of a jointly convex GNEDP if there exist positive numbers
ry > 0 such that, in our terminology, X is a variational equilibrium of the game that is obtained from our
jointly convex GNEP by multiplying the utility functions 6,, by the factor r,,.

SA point-to-set mapping G : ¥ =2 Z (with Y and Z metric spaces, for example closed subsets of an
Euclidean space) is upper semicontinuous at y € Y if for every sequence {y } in Y convergingto y € Y,
and for every neighborhood U of G(y) in Z, there exist k such that G(y"< ) C U forall k > k. G is lower
semicontinuous at y € Y if for every sequence {y }in Y converging to y € Y, and for every open subset
U of Z, with G(y) N U # @, there exists k such that G(yk) NU # @forallk > k. G is upper (lower)
semicontinuous on Y if it is upper (lower) semicontinuous at each point of Y.
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(b) For every player v, the function 0, (-, x ™) is quasi-convex on X, (x™)0.

Then a generalized Nash equilibrium exists.

Remark 2 When the sets X, are defined by inequality constraints as in (2), the lower
and upper semicontinuity requirements translate into reasonably mild conditions on
the functions g". See for example (Aubin and Frankowska 1990; Rockafellar and Wets
1998).

The relaxation of the assumptions in the previous theorem has been the subject of a
fairly intense study. Relaxations of the (a) continuity assumptions; (b) compactness
assumptions and (c) quasi-convexity assumption have all been considered in the lit-
erature. The relaxation of the continuity assumption is the most interesting one, since
it is peculiar to GNEPs. In fact, a number of classical problems in economics can
be formulated as games with discontinuous objective functions. The best known of
these are probably Bertrand’s model of duopolistic price competition (Bertrand 1883)
and Hotelling’s model of duopolistic spatial competition (Hotelling 1929). In the
Bertrand model, firms choose prices, and the firm that charges the lower price sup-
plies the whole market. In the Hotelling model, instead, firms choose locations and
each firm monopolizes the part of the market closer to that firm than to the others.
In each case, discontinuities arise when firms charge the same price or locate at the
same point. There are, however, a host of other problems that give rise to games with
discontinuous objective functions; good entry points to the literature on the subject are
(Baye et al. 1993; Dasgupta and Maskin 1986a, b). There are several papers where the
relaxation of continuity is pursued; the seminal one is the 1986 paper (Dasgupta and
Maskin 1986a), further developments and applications are discussed in (Baye et al.
1993; Dasgupta and Maskin 1986b; Reny 1999; Tian and Zhou 1995; Vives 1994) and
references therein. However, with the (partial) exception of Baye et al. (1993), where
jointly convex GNEPs are discussed, all these papers deal only with pure NEPs. The
most general result for GNEPs seems to be the one in (Morgan and Scalzo 2004). In
order to present the main result in (Morgan and Scalzo 2004), we need the following
definition.

Definition 5 Let f : F € R’ — R be a function.

1. f is said to be upper pseudocontinuous at x € F, if for all y € F such that
f(x) < f(y), we have limsup, ., f(z) < f(y), and f is said to be upper
pseudocontinuous on JF if it is upper pseudocontinuous at every point x € F.

2. f is said to be lower pseudocontinuous at x € F (on F) if — f is upper pseudo-
continuous at x (on F ).

3. f is said to be pseudocontinuous at x € F (on F) if it is both upper and lower
pseudocontinuous at x (on F ).

6 A function f : R — R is quasi-convex if the level sets L(a) := {x € R’ : f(x) < a} are convex for
every o € R.
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We refer to (Morgan and Scalzo 2004) for a detailed discussion of pseudocontinuity,
here we note only that upper and lower pseudocontinuity are a relaxation of upper and
lower semicontinuity. The following result holds (Morgan and Scalzo 2004).

Theorem 7 Let a GNEP be given and suppose that the same assumptions of
Theorem 6 hold, except that the objective functions 6, are assumed to be pseudo-
continuous instead of continuous. Then a generalized Nash equilibrium exists.

Relaxations of the compactness assumption in Theorem 6 have also been considered,;
this issue is rather slippery and although it can be expected that suitable coercivity
assumptions on the objective functions can make up for the possible lack of (uniform)
compactness of the feasible sets, caution must be exercised to avoid inappropriate
generalizations (a good case in point being Corollary 4.2 of Basar and Olsder 1989).

Example 2 Take N = 2,n; = np = 1 and set (x,y) := (x},xlz) for simplicity.
We consider a NEP where the objective functions of the two players are given by
O1(x,y) = %xz — xy and 6r(x,y) = %yz — (x + 1)y and the feasible sets are
X1 = X7 := R (i.e. the player’s subproblems are unconstrained). It is easy to see that
in this case S1(y) = y and S>(x) = x + 1. Therefore, by definition, a solution (x, ¥)
of this game should satisfy the system x = y and y = x + 1, which has no solutions.
We then conclude that the NEP has no equilibria. Note that the two objective functions
are strongly convex (and uniformly so with respect to the rival’s variable).

Actually, already in (Arrow and Debreu 1954) a relaxation of the compactness assump-
tion was put forward that is rather peculiar to the economic model considered there.
Further results on this topic can be found in (Baye et al.1993; Cavazzuti et al. 2002);
in both cases the NI-function plays a key role and, very roughly speaking, the con-
dition that substitutes the compactness assumption in Theorem 6, is some kind of
compactness of the level sets of the NI-function.

The relaxation of the quasi-convexity assumption is also of obvious interest. For
example, if we make reference to economic applications, when noncompetitive
markets are embedded into a general equilibrium framework, the quasi-convexity
assumption stands out as an artificial addition extraneous to the basic nature of the
model, see, for example, (Laffont and Laroque 1976; Nikaido 1975). There are not
many results on this complex topic, relevant references are (Baye et al. 1993;
Nishimura and Friedman 1981).

4.2 KKT conditions

It is not difficult to derive primal-dual conditions for the GNEP. Assume, for simplic-
ity, that the problem is defined as in (1) with the sets X,,(x ") given by (2). With this
structure in place, and assuming all functions involved are C!, we can easily write
down the KKT conditions for each player’s problem; the concatenation of all these
KKT conditions gives us what we can call the KKT conditions of the GNEP. Let’s
make this more precise.

Suppose that X is a solution of the GNEP. Then, if for player v a suitable constraint
qualification holds (for example, the Mangasarian—Fromovitz or the Slater constraint
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qualification), there is a vector A” € R of multipliers so that the classical Karush—
Kuhn-Tucker (KKT) conditions

Vx"Lv(xvvi_v’)\v) =0,
0 <A L —g"x",x"=>0

are satisfied by (¥, "), where L, (x,A") := 6,(x) + g"(x)"A" is the Lagrangian
associated with the vth player’s optimization problem. Concatenating these N KKT
systems, we obtain that if X is a solution of the GNEP and if a suitable constraint
qualification holds for all players, then a multiplier A € R™ exists that together with
X satisfies the system

L(x,A) =0,
0 <ALl —gx) >0, (12)
where
At g (x) VaLi(x,2h
A= : , gx):= : , and L(x,.) := :
AN gV (x) V.vLy(x, AN)

Under a constraint qualification, system (12) can therefore be regarded as a first order
necessary condition for the GNEP and indeed system (12) is akin to a KKT system.
However, its structure is different from that of a classical KKT system. Under further
convexity assumptions, it can be easily seen that the x-part of a solution of system
(12) solves the GNEP so that (12) then turns out to be a sufficient condition as well.

Theorem 8 Let a GNEP be given defined by (1) and (2) and assume that all functions
involved are continuously differentiable.

(a) Let x be an equilibrium of the GNEP at which all the player’s subproblems sat-
isfy a constraint qualification. Then, a A exists that together with X solves system
(12).

(b) Assume that (x, L) solves the system (12) and that the GNEP satisfies the
Convexity Assumption. Then X is an equilibrium point of the GNEP.

Remark 3 The differentiability assumption on the problem functions involved can be
relaxed by using some suitable notion of subdifferential. This is rather standard and
we do not go into details on this point here.

Next consider the case of a jointly convex GNEP with the feasible set X having the
explicit representation

X={xeR":g(x) <0}

for some (componentwise) convex function g : R* — R™, cf. Remark 1. Hence the
strategy space for player v is given by

Xy(x™) = {x" 1 g(x", x7") <0}
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forallv =1, ..., N. Similar to the previous discussion on general GNEPs, it follows
that the KKT conditions of player vth optimization problem are given by

Vi, (x¥, x7") + Vg, x VA" =0, 13
0 <A L —g(x",x7") >0 (1

for some multiplier A" € R". On the other hand, consider the corresponding VI (X, F)
from Theorem 5. The KKT conditions of this VI (see Facchinei and Pang 2003) are
given by

F(x) + Vg(x)L =0, (14)
0 =il —gx =0
for some multiplier A € R™. The precise relation between these two KKT conditions
and a GNEP solution is given in the following result which, basically, says that (14)
holds if and only if (13) is satisfied with the same multiplier for all players v or, in
other words, that a solution of the GNEP is a variational equilibrium if and only if the
shared constraints have the same multipliers for all the players.

Theorem 9 (Facchinei et al. 2007a; Harker 1991) Consider the jointly convex GNEP
with g, 0, being C'. Then the following statements hold:

(a) Let X be a solution of the VI (X, F) such that the KKT conditions (14) hold with
some multiplier A. Then X is a solution of the GNEF, and the corresponding KKT

conditions (13) are satisfied with M= = =21
(b) Conversely, assume that X is a solution of the GNEP such that the KKT conditions
(13) are satisfied with M= ... =N Then (x,X) withx := Al isa KKT point

of VI (X, F), and x itself is a solution of VI (X, F).

4.3 Uniqueness

Uniqueness of the solution is a classical topic in analyzing a mathematical program-
ming problem, and is of obvious interest also in the case of GNEPs. In fact, in some
applications, it may be claimed that a GNEP model makes sense only if it has a unique
solution; for example, this is the position held by many economists with respect to
GNEPs. Unfortunately, GNEPs have the “tendency” to have non unique solutions and
to present, in fact, manifolds of solutions; Example 1 is just a manifestation of this.
This fact is part of the folklore on GNEPs and is well recognized by practitioners.
To understand a bit more about this phenomenon, we can have a second look at the
KKT conditions (12). It is well known that we can reformulate (12) as a (possibly non-
smooth) system of equations by using complementarity functions. A complementarity
function ¢ : R?> — R is a function such that

pa,b)=0 < a>0,b>0, ab=0.
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If ¢ is a complementarity function, then it is immediate to see that (12) can be refor-
mulated as the square system

. L(x,)) .
O(x.2) = (¢(—g(x),k)) —o, (1)

where ¢ : R — R (m = Zf)vzl m,) is defined, for all @, b € R™, by

¢(ar, br)
¢(a,b) = :
¢ (am, by)

Many complementarity functions are known (see, e.g., Facchinei and Pang 2003).
Probably the simplest one is the min function

¢(a,b) := min{a, b} foralla,b e R,

which is the one we assume is used in the sequel. This obviously makes the function ¢
nondifferentiable. Although it is possible to envisage differentiable complementarity
functions ¢, it is well known that the use of a nondifferentiable ¢ is advantageous
from many points of view (see Facchinei and Pang 2003; this topic will also be taken
up again in Sect. 5.6). Assume now this simple setting: the GNEP we are consider-
ing is jointly convex (therefore g = g for all players v) and X is a solution with A
being a corresponding Lagrange multiplier. Assume further that the gradients of the
active constraints are linearly independent and strict complementarity holds (i.e., for
all players, if a constraint is active, the corresponding multiplier is positive). Note
that it is difficult to think of a “better behaved” GNEP: we are in the particularly
simple jointly convex case, and all kinds of regularities one may wish for are satisfied.
Assume now, to avoid a trivial case, that in X at least one constraint g; is active for
two players, let’s say players 1 and 2 (this means that, locally, the GNEP “does not
behave” like a NEP). Straightforward calculations show that under these conditions,
¢ is differentiable at (¥, 1) and that its Jacobian is singular due to the presence of two
rows that are equal in correspondence to the gradients of the constraint g; for players
1 and 2. Some further, elementary elaboration based on the implicit function theorem
leads easily to the following result.

Proposition 3 (Facchinei et al. 2007b) In the setting described above, the solution
X is a non isolated solution of the GNEP and (x, A) is a nonisolated solution of the
system (12).

Global uniqueness results can certainly be obtained, but usually only in the context
of specific applicative contexts where the structure of the problem can be suitably
exploited; we do not go into detail on this here.

For jointly convex GNEPs one can hope for global uniqueness of a variational
equilibrium. Example 1 (continued) illustrates such a case. The theory of VI indicates
that a simple condition to have this is to require that F be strictly monotone; this is
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exactly the case of Example 1 (continued). Note, however, that this is still a strong
requirement.

Local uniqueness could also be of interest. This issue has not been much considered
in the literature, though, with the significant exception of (Debreu 1970). Note that
Proposition 3 shows that even local uniqueness can easily be in jeopardy. In any case,
it should be possible to derive some sensible conditions using, for example, the KKT
conditions or some suitable conditions on any of the reformulations we described in
Sect. 3.1.

4.4 Stability

Stability of the solution, when data are varied, is another classical topic in mathe-
matical programming. This issue has been analyzed in some detail for NEPs, see for
example Altman et al. 2000; Cavazzuti and Pacchiarotti 1986; Dafermos 1990; Flam
1994; Margiocco et al. 1997, 1999, 2002. Obviously, for NEPs one can use its reduc-
tion to VI and then apply the well-developed sensitivity theory existing for the latter
class of problems (Facchinei and Pang 2003).

However, when it comes to GNEPs in their full generality, very few results are
available. Let a GNEP be parametrized by a parameter p € R’; by this we mean that
we have a GNEP(p) for each value of p in a suitable set P € R’, which is defined
by the functions 6, (p, -) and X, (p, -). Denote by S(p) the solution set of GNEP(p).
The following result is proved in Morgan and Scalzo (2007). It is rather intuitive and
its main interest lies in the minimal continuity assumptions adopted.

Theorem 10 Let a family of GNEP(p) be given, satisfying the following assumptions
foreveryv =1,..., N and for some p € P:

(a) 6, is pseudocontinuous at (p, x) for every x such that x* € X,(p,x™");

(b) X, is upper and lower semicontinuous at (p, x~") for every x~".

Let { p*} be a sequence such that p* € P for every k and {p*} — p, and let {x*} — &,
with x* € S(pX) for every k. Then X is a solution of GNEP(p).

Note that even if we assume that S(p) # ¥, the theorem above neither says anything
about the solvability of GNEP(p) when p is close to p, nor gives any quantitative
result about the solutions of the unperturbed problem and of the perturbed ones. These
are usually the difficult issues one has to deal with in analyzing sensitivity results. It
seems there is huge room for improvements in this respect; we are only aware of some
partial results in this direction that, however, can only be applied to GNEPs with a
very particular structure, see Pang and Yao (1995). See also Jofré and Wets (2002)
and references therein for some related work.

5 Algorithms
In this section, we discuss algorithms for the solution of GNEPs. This topic is cur-

rently a very active research field, and there are many proposals. Our focus will be
on methods for general GNEPs and jointly convex GNEPs, not on specific methods
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that can be developed for particular applications of GNEPs by taking into account
their more specialized structure. We make clear from the outset that, in spite of the
many proposals, it is probably safe to say that, at present, almost no algorithm can
be shown to be globally convergent under clear or reasonable assumptions; certainly,
there is still a lot of theoretical work needed in order to develop a reliable convergence
theory for GNEPs. The only case for which some more interesting results have been
obtained is when the GNEP has a jointly convex structure. Numerical experience with
all these algorithms is still very limited, and it is not easy to assess which method is
more promising in practice.

5.1 Practitioners methods

Under this heading, we present some methods that are most popular among practitio-
ners and whose rationale is particularly simple to grasp. They are “natural” decom-
position methods, be it of Jacobi- or Gauss-Seidel-type (see, e.g., Stoer and Bulirsch
2002 for the well-known counterparts of these methods in the case of systems of linear
equations). Consider the general GNEP where the subproblem of player v is given by

min 6,(x",x7") st x" e X, (x7").
XV

We first describe the nonlinear Jacobi-type method.

Algorithm 1 (Nonlinear Jacobi-type Method)

(S.0) Choose a starting point x° = (xo’l, ceey xO’N), and set k := 0.
(S.1) If x¥ satisfies a suitable termination criterion: STOP.
(8.2) FORv=1,...,N

Compute a solution x*+1-V of

min 0,(x", x5 st x¥ e X, (xF).
X

END
(8.3) Setxktli= (xkHL1  xk+LN) &« k41, and go to (S.1).

At each iteration k, Algorithm 1 has to solve N optimization problems in (S.2): For
each v € {1, ..., N} the objective function

0, (xk’l,...,xk’”_l,x”,xk’”H,...,xk’N) (16)

has to be minimized over all x¥ € X, (x~"), whereas all block variables xX* of the
other players i # v are fixed. However, this version does not use the newest infor-
mation, since, when computing x”, we already have the new variables x+1-1 .
xkHLv=T and may use them instead of xkU 0 xkv=1 In fact, we can use these
variables both in 6, and in the feasible sets. In this way, we obtain the following
Gauss—Seidel-type method.
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Algorithm 2 (Nonlinear Gauss—Seidel-type Method)

(S5.0) Choose a starting point x0 = (xo*l, R xO’N), and set k := 0.
(S.1) If x* satisfies a suitable termination criterion: STOP.
(8.2) FORv=1,...,N

Compute a solution x*T1: of

ming 6y, (KL kTl e ko N (17
s.t. xV e X, (kL k=T kvl Ny

END
(S.3) Setxktli= (xk+LI [ xk+LN) 'k« &k +1, and go to (S.1).

While conceptually quite simple, the convergence properties of both Algorithm 1 and
Algorithm 2 are not well-understood. Even in the simplest case of a standard NEP, it
is known and easy to prove that, if the entire sequence {x¥} (provided that it exists!)
generated by one of these methods converges to a point x, then x is a Nash equilibrium
of the NEP. This result is not necessarily true if X is only an accumulation point of
such a sequence. Conditions which guarantee the convergence of the whole sequence
{xK}, however, are typically not known or extremely restrictive. The situation becomes
even more complicated for GNEPs where additional properties of the constraints are
required in order to prove suitable convergence results.

In some applications, however, convergence of these methods can be shown, see
Pang et al. (2007) for an example. The special case in which the objective functions
of the GNEP do not depend on the other players’ variables (and a few more technical
assumptions hold) is analyzed in Facchinei et al. (2007c). It is shown there that a
modification of the Gauss—Seidel method from Algorithm 2, where proximal terms
are added in the objective functions of the subproblems (17), so that the subproblems
solved in step (S.2) become

ming 6, (xk+l,l’ o xk+l,v—l’ xV, xk,v-i—l’ o xk,N) + .L,k”xu _ xk,v”2
s.t. xV e X, (kb o ket lv=l kvl kN

(with 8 > 0 and possibly tending to 0), has significant convergence properties.
Among others, under a convexity assumption, every accumulation point of the
sequence produced by Algorithm 2 is a solution of the GNEP (no need for con-
vergence of the whole sequence).

Comments. The methods described in this subsection are the most straightforward
and easy to implement ones, and this explains their popularity among practitioners.
However, at present, they can be considered, at most, good and simple heuristics.

5.2 VI-type methods

First consider the GNEP with general constraints given by (2). Theorem 8 (b) shows
that, under convexity and differentiability assumptions, a KKT point, i.e. a solution
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of system (12), will yield a solution of the GNEP. Note that (12) is a mixed comple-
mentarity problem, i.e. a special variational inequality, for which efficient solvers are
available (Dirkse and Ferris 1995; Facchinei and Pang 2003; Munson et al. 2001).
This paves the way to several solution approaches for GNEPs. Unfortunately this
statement has to be immediately qualified, since the convergence requirements for
these methods are not easily applicable to the KKT system (12), and the conditions
one obtains this way are rather unnatural in terms of the original GNEP and are not
at all clear. Garcia and Zangwill (1981) advocate the use of homotopy methods for
the solution of the KKT conditions (12). While this approach is theoretically well
founded and enjoys strong global convergence properties, it is well known that, in
practice, homotopy methods fail to solve problems as soon as the dimension of the
problem itself becomes realistic. In this context, it should also be mentioned that the
VI approach increases the dimension from n to n + m (recall that m = Zf)v: 1 M),
so the VI problem could be significantly larger depending on the overall number of
constraints.

The situation is somewhat better for jointly convex GNEPs. In this case, we can
apply Theorem 5. According to this result, we can calculate a solution of the GNEP
by finding a solution of the corresponding VI(X, F) (where X is the set in the defini-
tion of joint convexity and F(x) := (Vv 0, (x))f)\’:1 ). In principle then a (variational)
equilibrium can be found by solving the variational inequality problem. Since there
are plenty of algorithms available for VIs (see, e.g., Facchinei and Pang 2003), we
therefore obtain a whole bunch of methods for the solution of jointly convex GNEPs.
However, the conditions for convergence derived in this way are very restrictive at
best. To give a feel of what one can expect, consider the case in which F is monotone
on X. It is known (Facchinei and Pang 2003) that this is one of the weakest conditions
under which global convergence can be proved for the VI(X, F). The monotonicity of
the defining function is a standard and well accepted assumption in the VI theory, and
it is satisfied in many practical applications. However, when one looks at the specific
structure of F, it is easy to see that the monotonicity assumption implies a connection
among the 6, that cannot be expected to hold in general. To see this better, assume
that F is continuously differentiable. Then it is well known that F is monotone if and
only if its Jacobian is positive semidefinite on X. We have

Va6 V20 - Vino
Vb V20 - Vonbs
JF = . . .

Vi0y VoaOy -+ VonOy

It should be clear that requiring the positive semidefiniteness of this matrix amounts
to making a very strong assumption on the structure and relations of the objective
functions 6,,. Note that the diagonal blocks of this matrix are positive semidefinite
under the Convexity Assumption. Therefore, roughly speaking, diagonal dominance
of these blocks would ensure positive semidefiniteness of the whole matrix. This can
be interpreted as the fact that player v has “more influence” on his objective function
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than the other players do, and can therefore be expected to hold is some applications.
But it should be clear that, in general, this is a very strong requirement.

A possible disadvantage of this VI-approach is the fact that one can compute varia-
tional equilibria only, which excludes possible other solutions that might be of interest
from a practical point of view. To circumvent this problem, one can alternatively use
the characterization of all solutions of the GNEP as a QVI from Theorem 2. This
characterization is true for a general (not necessarily jointly convex) GNEP. How-
ever, although there do exist a few ideas for solving QVIs (see, e.g., Fukushima 2007;
Kocvara and Outrata 1995), none of these ideas can be viewed as an efficient and
robust tool for solving GNEPs since the numerical solution of QVIs itself is still a
highly difficult problem.

Comments. The direct solution of the KKT conditions in order to develop globally
convergent algorithms seems very appealing and quite simple (actually, we could also
have included this approach in the previous subsection). However, the methods pro-
posed in the literature are deficient either on the theoretical or on the practical side. The
VI reduction of a jointly convex problem allows us to use well established methods
for the solution of a VI. The disadvantage is that only variational equilibria can be
computed this way and that the resulting assumptions are rather stringent. Technically
speaking, probably the weakest assumption under which one can ensure convergence
of an algorithm for the solution of the VI(X, F) is that F be pseudo-monotone with
respect to the solution set of the VI’ (see Facchinei and Pang 2003, Chap. 12). As
observed in (Facchinei et al. 2007a), although not mild, this is, in any case, a weaker
assumption than those required by other methods for the solution of jointly convex
GNEPs to be discussed in the following subsections.

5.3 NI-function-type methods

Consider the general (not necessarily jointly convex) GNEP first. In principle,
Theorem 1 allows us to apply optimization techniques to the constrained optimi-
zation problem (7) in order to solve the GNEP. Similarly, Theorem 3 also motivates
the application of suitable fixed-point methods in order to solve the GNEP. However,
due to the complications of these reformulations, none of these approaches has, so far,
been investigated in the literature. In fact, all papers that we are currently aware of
and that apply the NI-function in some way to solve the GNEP are dealing with the
jointly convex case. Hence, in this subsection, we always assume that the GNEP is
jointly convex.

In this situation, Theorem 4 guarantees that we have the reformulation (10) of the
GNEDP as a constrained optimization problem where the feasible set has a much simpler
structure as in the reformulation (7). However, as noted before, the objective function
of this program is (usually) still nonsmooth. In order to avoid this nonsmoothness,
we first introduce a suitable modification of the NI-function that was proposed in

7 The function F is pseudo-monotone with respect to the solution set of the VI(X, F), if the solution set
of the VI is nonempty and for every solution X it holds that F(y)"(y —x) = Oforall y € X. Note that
pseudo-monotonicity with respect to the solution set is obviously implied by the monotonicity of F.
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Giirkan and Pang (2006) in the context of standard NEPs and later applied to GNEPs
in von Heusinger and Kanzow (2006).

Definition 6 Given a parameter y > 0, the mapping

N
Wy = D[ 0,00 ) = DI =y ] a8

v=I

is called the regularized Nikaido—Isoda-function (regularized NI-function for short)
of the GNEP.

Let ¥ denote the standard NI-function from Definition 1, then the regularized
NI-function can be written as

Wy (x.y) = W y) = Slx -y
Let us also denote by

V. = v, (x,
y (X) r}flea? y(x,y)

N
= my > o6t x™) = 0,07 ™) = D =y ]
s %
= max 3 [0, x7) =6, 2] = Dl -yl (19)

the corresponding merit function. Note that, for standard NEPs, this mapping V,
coincides with the previously defined mapping V from (11) (but is different from the
function V from (7)) when y = 0.

The following result is the counterpart of Proposition 2 (for the mapping V') and
Theorem 1 (for the mapping V) and shows, in particular, that the mapping V), has
similar properties as V and V and that, in addition, it turns out to be continuously
differentiable for each y > 0. On the other hand, note that it gives a characterization
of variational equilibria only, whereas 1% provides a complete characterization of all
solutions of a GNEP.

Theorem 11 (von Heusinger and Kanzow 2006) Consider a jointly convex GNEP.
Then the regularized function V,, has the following properties:

(@ Vy(x)>0forallx e X.
(b) X is a variational equilibrium if and only if x € X and V), (x) = 0.
(c) Foreveryx € X, there exists a unique maximizer y,, (x) such that

14
argmax e x [lI/(x, y) - 5||x - J’||2] =y ().

and y,, (x) is continuous in x.
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(d) The mapping V, is continuously differentiable if all 6, are continuously
differentiable.

Note that statements (a), (b), and (c) hold without any smoothness of the mappings
0,. Using the first two statements of Theorem 11, we see that finding a solution of the
GNEP is equivalent to computing a global minimum of the constrained optimization
problem

min V,(x) st xe€X.

The last statement of Theorem 11 shows that the new objective function overcomes one
of the deficiencies of the mappings V and V that was used in the related optimization
reformulations (7) and (10), respectively.

The following result shows that the definition of the mapping V), can also be used
in order to get a fixed point characterization of the GNEP, cf. Theorem 3.

Theorem 12 (von Heusinger and Kanzow 2006) Let Y, (x) be the vector defined in
Theorem 11 (c) as the unique maximizer in the definition of the regularized function
Vy from (19). Then X is a solution of the GNEP if and only if X is a fixed point of the
mapping x +> y,,(x), i.e,, ifand only if x =y, (X).

Using the difference of two regularized NI-functions, it is also possible to reformulate
the GNEP as an unconstrained optimization problem. In fact, let 0 < o < § be two
given parameters, let ¥, Wg denote the corresponding regularized NI-functions, and
let Vi, Vg be the corresponding merit functions. Then define

Vap(x) 1= Vo (x) — Vg(x), x e R".

This mapping has the following properties.

Theorem 13 (von Heusinger and Kanzow 2006) Under the assumption of
Theorem 11, the following statements about the function Vyg hold.:

(@) Vup(x) =0 forallx e R".

(b) x is avariational equilibrium of the GNEP if and only if X is a global minimum
of Vapg with Veg(x) = 0.

(¢) The mapping Vg is continuously differentiable if all 6, are continuously differ-
entiable.

Similar to Theorem 11, we note that the differentiability assumption is needed in the
previous result only for statement (c), whereas the other two statements hold without
any smoothness assumption on the utility mappings 6,.

Theorem 13 shows that the variational equilibria of a GNEP are precisely the global
minima of the unconstrained optimization problem

min Veg(x), x e R". 20)
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In view of Theorem 13 (c), this is a continuously differentiable optimization problem.
In general, it is not twice continuously differentiable since V), is not twice continu-
ously differentiable. However, under additional assumptions, one can show that the
mapping V,, (and, therefore, also the objective function Vyg) is an SC _mapping, i.e.
the gradient V'V, is semismooth (see Pang and Qi 1993; Qi 1993; Qi and Sun 1993 for
more details on semismoothness). This, in turn, allows the application of locally fast
convergent Newton-type methods, cf. (von Heusinger and Kanzow 2007) for more
details.

Another approach that is based on the NI-function and that exploits the fixed-point
characterization from Theorem 3 is the relaxation method (Uryasev and Rubinstein
1994), that uses the recursion

= (4 = )xk 4y,

where yk is an element of the set f/(xk ) defined in (8) and where the stepsize # satisfies
the conditions

o0
e ©,1]VkeN, # — 0, Ztkzoo,
k=0

or (Krawczyk and Uryasev 2000) the (optimal) choice

t := arg min V((1 —0)x* +tyk).
k g, min (1 —0)x" +1y")

We see that, in the relaxation method, the new iterate is constructed as a weighted
average of the “improved” point y* and the current iteration. Under a number of
technical assumptions, including the condition that the set Y (x) is single-valued and
continuous for all x, it is shown in (Uryasev and Rubinstein 1994) that the relaxation
method converges to a variational equilibrium of the GNEP. It is interesting to note
that, from the theoretical point of view, the differentiability of the objective functions
6, is not required.

The relaxation method has been applied successfully to some applications of NEPs
and GNEPs, see, e.g., (Adida and Perakis 2006a, b; Berridge and Krawczyk 1997,
Contreras et al. 2004; Krawczyk 2005; Krawczyk and Uryasev 2000). The relaxation
method is well reviewed in Krawczyk (2007).

Comments. The direct (constrained or unconstrained) optimization of one of the sev-
eral variants of the function V introduced in this subsection is very appealing, since
optimization methods are extremely reliable and well understood. Note, however, that,
as usual, little is known regarding conditions on the GNEP that guarantee the verifica-
tion of favorable conditions of one of these functions. Furthermore, the mere evaluation
of any of these variants of V entails the solution of a constrained optimization problem.
This last disadvantage is shared by the relaxation method. On the other hand, it must
be said that the relaxation method is probably the only method for a sufficiently large
class of problems for which, as indicated before, a certain practical experience has
been gathered. As a final observation on this method, we remark that the conditions
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under which the method converges imply that the F is strictly monotone (Krawczyk
2007). This shows that, from the theoretical point of view, the relaxation methods hold
little advantage in comparison to the (in some cases much simpler) methods based on
the VI-reformulation discussed in the previous subsection. It would be interesting to
see a numerical comparison of these two classes of methods.

5.4 Penalty methods

Another idea that comes from constrained optimization is to get rid of the com-
plicated joint constraints in a GNEP and to solve a (possibly infinite sequence of)
standard NEP(s) by adding the (difficult) joint constraints as a penalty term to the
objective function of each player. This approach has been advocated for the first
time in (Fukushima and Pang 2005). In that paper, a sequential penalty/augmented
Lagrangian-type method is analyzed where at each iteration a NEP is solved whose
objective function is obtained by summing the original objective function and a smooth
term involving the joint constraints and a penalty parameter that goes to infinity as
the process progresses. Since the description of this method is rather complicated, we
prefer to present its simpler “exact” counterpart, analyzed in Facchinei and Kanzow
(2007), Facchinei and Pang (2006).
Consider the general GNEP

min 6,(x",x7") st x"' € X, (x7")
XU

with strategy spaces X, (x ~") given by (2) for some smooth mappings g : R” — R,
Let p, > 0 be a penalty parameter and consider the penalized problem, where each
player v tries to solve the optimization problem

min Py (x; o) =0, (", x7") + pu 21 7, x| 21

where || - || denotes the Euclidean norm. Note that this penalized problem is a standard
(unconstrained) NEP (though having nonsmooth objective function). The correspond-
ing penalty method then looks as follows.

Algorithm 3 (Exact Penalty-type Method)

(S.0) Choose x° € R”, py>0andc, € (0,1)forv=1,...,N,setk :=0.
(S.1) If x¥ satisfies a suitable termination criterion: STOP.
(S.2) LetI*:={v : xkV & X, (xk~)}. For every v € I, if

A [

Volghehr ] @)

then double p,.
(S.3) Compute a solution of the penalized problem defined by the problems (21), set
k <k + 1, and go to (S.1).
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Note that other penalty updating schemes than those from (S.2) are possible, and in-
deed (Facchinei and Kanzow 2007) uses another technique for jointly convex GNEPs
in order to obtain stronger convergence results in this particular case. In any event, the
key point is that, under suitable conditions, after a finite number of possible updates of
the penalty parameter, the solution of the penalized problem (21) is also a solution of
the original GNEP. Note that, although structurally non differentiable, the penalized
NEPs are unconstrained.

Comments. The main drawback of the exact penalty method we just described is that
the penalized problem (21) may be very difficult to solve in practice. Similar obser-
vations also hold for the sequential penalty method in Fukushima and Pang (2005),
the difference being that in this latter case the penalized problems are differentiable
(assuming 6, and g" are differentiable), but the penalty parameter has to go to infinity
to have convergence. For these methods, little or no practical experience is available.
On the plus side, in principle penalty methods can be applied to general GNEPs (and
not just to jointly convex ones). Therefore, even if at present they are not truly practical
methods, in our opinion they hold the potential for interesting developments. As side
remark, we may add that also these methods, like the relaxation method, can be in
principle applied in the case of nondifferentiable GNEPs. The conditions required for
the convergence of penalty methods do not seem too strong, but they are substantially
different from and difficult to compare to those used in methods described in the
previous subsections.

5.5 ODE-based methods

It is possible to characterize the solutions of GNEPs as stationary points of a certain
system of ordinary differential equations (ODEs for short). The crucial question which
then arises is under which conditions such a stationary point is (asymptotically) stable.

In order to give at least a feel for the kind of results one can obtain, we consider
once again only the jointly convex GNEP in this subsection. Then X is a variational
equilibrium of this GNEP if and only if x solves the variational inequality VI (X, F)
with X and F being defined as in Theorem 5. Using standard characterizations for var-
iational inequality solutions (see Facchinei and Pang 2003, for example), it therefore
follows that x is a variational solution of the GNEP if and only if x satisfies the fixed
point equation

x = Px(x — yF(x)) (23)

for some fixed parameter y > 0. Hence X is a variational equilibrium if and only if x
is a stationary point of the dynamical system

x'(1) = Px(x(1) — yF(x (1)) — x(1). 24)
Assuming that all functions 6, are C' and have a locally Lipschitz continuous partial

derivative V,v6,, it follows from the Lipschitz-continuity of the projection operator
that the right-hand side of (24) is locally Lipschitz, too. Hence the system (24), given
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any initial state x (0) = x° with some x° € X, has a unique solution x (¢). The idea of
the ODE-based methods is then to follow the trajectory given by this solution x (). The
natural question arising in this context is then under which conditions (with respect to
the initial value x°) the solution x (¢) converges to the stationary point of (24). This
leads to the question of (asymptotic) stability of the system (24).

A stability result for this ODE system is as follows.

Theorem 14 (Cavazzuti et al. 2002) Consider the jointly convex GNEP, and let X
and F be defined as in Theorem 5. Suppose that F is Lipschitz continuous with Lips-
chitz constant L > 0 and uniformly monotone with modulus v > 0. Then, for all
y € (O, i—‘;), there is a constant ¢ > 0 such that every solution of (24) withx(0) € X
satisfies

llx(@) — x|l < [[x(0) — x[[exp(—ct) Vi =0,

i.e., x(t) converges exponentially to x.

The conditions used in Theorem 14 are relatively strong and correspond precisely
to the convergence conditions for the standard projection method for the solution of
variational inequalities that is also based on the fixed point characterization (23) of
a solution of VI(X, F). Since there exist many modifications of this standard projec-
tion method (see, e.g., Facchinei and Pang 2003) that are known to work under much
weaker assumptions, we believe that one can also show suitable stability results for
related ODE approaches.

Other ODE-approaches, always under rather stringent convexity/monotonicity
assumptions, are given in the paper by Rosen (1965), which is based on the cor-
responding KKT conditions, in Flam (1993), and in Cavazzuti et al. (2002) with a
right-hand side that is possibly not continuous (hence it is not guaranteed that a solu-
tion x(¢) of an initial value problem exists). Related ideas are also used in a series
of papers by (Antipin 2000a, b, 2001) in a slightly different context that can also be
applied to GNEPs.

Comments. We believe that, at the current state-of-the-art, ODE-based methods are
really non competitive with the other methods discussed previously, neither from the
theoretical point of view (as we explained above) nor from the practical point of view
(although this latter belief is not based on practical experience, but rather suggested by
the behavior of ODE methods in nonlinear optimization). The main interest of ODE
methods is historical, since they were first proposed in the influential paper (Rosen
1965).

5.6 Local Newton methods

All the methods we have considered so far are global methods, i.e. they are designed to
converge to a solution when the starting point is possibly very distant from the solution
itself. Local methods assume that the starting point of the algorithm is “close enough”
to a solution and aim at proving convergence at a good rate. The prototype of a local
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algorithm is obviously Newton’s method that exhibits a superlinear/quadratic conver-
gence rate. The extension of this method (or of some suitable variant) to the GNEP has
been investigated in (Facchinei et al. 2007b; Pang 2002). The approach of both papers is
similar in that they are based of some kind of Newton method applied to the KKT con-
ditions (12). As we discussed in Sect. 4.3, system (12) can be rewritten as a suitable sys-
tem of nondifferentiable equations @ (x, A) = 0, to which nonsmooth methods can be
applied. In particular, we could think to apply the famous semismooth Newton method.
This is essentially the route taken in (Facchinei et al. 2007b). However, we saw in
Sect. 4.3 that the solutions of the GNEP (and therefore also the solutions of (12))
are usually nonisolated. This fact is well known to cause severe difficulties to most
Newton-type methods, and the semismooth Newton method is no exception. There-
fore, one has to rely on some more sophisticated recent methods that are able, with
some restrictions, to cope with nonisolated solutions and still guarantee a superlin-
ear/quadratic convergence rate. We refer the reader to (Facchinei et al. 2007b) for
details. Here we only mention that the most general method in (Facchinei et al. 2007b)
is a semismooth Levenberg—Marquardt-type method applied to @ (x,A) = 0 whose
iteration is

(xk+17)‘k+l) — (xk’)\k) +dk,
where o := || @ (xF, A0, dt .= (Axk, AX%) solves the linear system
[Jo G AT To ok A +apl]d = —T @ (x* A5 @ (xF, A5 (25)

and J® (x*, AF) is a “generalized Jacobian” of @ at (x, AK). We refer the reader to
(Qi and Sun 1993; Qi 1993; Pang and Qi 1993; Facchinei and Pang 2003) for the
necessary notions of nonsmooth analysis. Here we only remark that the generalized
Jacobian used in the above Newton method is just a matrix that is easy to calculate
in our setting and that reduces to the usual Jacobian if the function @ is continuously
differentiable around the point of interest.

The critical assumption needed in establishing a fast convergence rate is an “error
bound” condition. Roughly speaking, this means that we must be able to estimate the
distance to a solution based on the information at the current iteration. Error bound
analysis is a well developed area in nonlinear programming; in the case of GNEPs,
however, very little is known on this topic; (Facchinei et al. 2007b) contains some
preliminary results in this direction.

As an alternative to semismooth methods, (Pang 2002) advocates the use of a
Josephy—Newton method for the solution of system (12). This means that, at each
iteration of the method, a linear complementarity problem has to be solved. This does
not compare favorably with the method in Facchinei et al. 2007b); furthermore, in this
latter paper, it is pointed out that the assumptions used in the analysis of the method
in Pang (2002) are somewhat restrictive.

6 Final considerations

The GNEP is a very useful and flexible modeling tool and its use is increasing steadily.
However, with possibly the exception of existence theory, the study of GNEPs in
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general form is still largely incomplete. Until now the emerging pattern for the study
of the GNEP has been: (a) consider a GNEP; (b) transform it into another, better
understood, problem (be it a VI, a QVI, a minimization problem etc.); (c) apply to the
latter problem some known results. Unfortunately, this (classical) approach has had
a somewhat limited success. The main reason is that once the conditions imposed on
the transformed problem are “brought back” to the original problem, they turn out to
be extremely demanding or of difficult interpretation.

We believe there are two avenues to overcome this state of affairs. The first one
is studying problems with special structures emerging from some real-world applica-
tions. This has already been done for some of the recent applications of GNEPs, espe-
cially those coming from web and telecommunication applications. The other, parallel
avenue, is to undertake the study of GNEPs that have some additional mathematical
structure making the problem more amenable to analysis. The study of the jointly con-
vex GNEP is certainly an extremely significative example of this second approach.
There are other mathematical structures that also appear promising, we can mention
(a) problems where the feasible sets are of the form X, (x™") = f*(x") + X, for
some f, : R7™ — R and a fixed set X, (see Pang and Yao 1995); (b) problems
where the objective functions are independent of the other players’ variables (see
Facchinei et al. 2007¢); (c) problems where the coupling constraints have a kind of
symmetric structure (see Antipin 2000a, b, 2001); (d) problems where the NI-function
is convex—concave (Flam and Ruszczyniski 1994). But certainly, what is still lacking
seems to be a method of analysis that is really tailored to the GNEP and fully takes
into account its nature and peculiarities.

We believe the near future will witness a larger and larger diffusion of GNEP
models and a parallel increase in the interest in their theoretical and algorithmic anal-
ysis. We hope we made clear that the study of GNEPs is still in its infancy, its age
notwithstanding. There are still many stimulating open problems to be attacked, both
on the theoretical side and on the algorithmic/numerical side. Furthermore, beyond
those we listed, there are further interesting topics about which little is known and that
are emerging as important. Among these we just mention two. First the problem of
selecting one specific solution among the many the GNEP usually has (what criteria
can we use to establish that a certain solution is preferable to another, how can we com-
pute it?). Second the equilibrium programming with equilibrium constraints (EPEC).
EPECs can be viewed as GNEPs whose constraints are in turn defined by some kind of
equilibrium condition. These problems naturally arise when considering multi-leader-
follower games used in modeling complex competition situations, see, e.g., (Ehrenmann
2004; Fukushima and Pang 2005; Hu and Ralph 2006; Leyffer and Munson 2005;
Zhou et al. 2005). These problems are challenging and extremely hard to analyze.
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