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Abstract

The generation of a global “complexity” score for numerical series was derived from a prin-
cipal components analysis of a group of nonlinear measures of experimental as well simulated
series. The concept of complexity was demonstrated to be independent from other descriptors
of ordered series such as the amount of variance, the departure from normality and the relative
nonstationarity; and to be mainly related to the number of independent elements (or operations)
needed to synthesize the series. The possibility of having a univocal ranking of complexity for
diverse series opens the way to a wider application of dynamical systems concepts in empirical
sciences. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Over the last two decades, a signi>cant debate has developed regarding the de>nition
and use of the concept of complexity, inspired in some degree by interest in determin-
istic chaos [1]. A direct link between chaos theory and the real world was suggested by
analysis of time series data in situations ranging from heart rate [2] and brain activity
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[3] to >nancial markets [4]. Con>dence in these assertions diminished when questions
arose regarding the validity of these statements given that true chaotic systems are
typically stationary. Furthermore, numerous questions arose regarding the algorithms
used for detection of chaotic systems, given the rigorous mathematical assumptions
attending them. Consequently, interest in deterministic chaos has decreased in signif-
icance for biological (real) systems, but a diJerent, more realistic view of basically
stochastic systems has yet to emerge. Nevertheless, computational tools developed to
detect chaos continue to be used [5] to study the behavior of real experimental systems,
despite the fact that estimates of chaotic invariants based on short and noisy data have
questionable validity. On the other hand, the completion of the genome project and the
rise of the so-called “post genomic” era have emphasized the need for having reliable
and eLcient techniques to study complex systems such as DNA microarrays, nucleic
acids and protein sequences [6].
The character of biological data places signi>cant demands upon data analysis tools

given that many biological series cannot provide long data sets (e.g., a protein sequence
only very rarely reaches 500 amino acids), data stationarity (virtually no biological sys-
tems can be considered as stationary) and theoretical assumptions (there are no reliable
mathematical theories for biological systems if we exclude very peculiar phenomena
such as prey=predator interactions or pharmacokinetics). Given these prerequisites, there
are still many methodologies (based on various de>nitions) available which provide a
quantitative estimation of the complexity of a system. Our question is “Is it possible to
single out a unitary meaning from the plethora of complexity de>nitions distinct from
cognate concepts such as variance, nonnormality, or intermittency?” If this is the case,
we should be able to demonstrate a basic commonality between the diJerent algorithms
used for complexity estimation. This basic concordance would allow the experimenter
to shift from one technique to the other, depending on the character of the experimental
data, while maintaining invariant the basic meaning of the description.
We approached the problem from an experimental viewpoint, taking for granted the

impossibility of de>ning a common theoretical background for the myriads of diJer-
ent experimental situations in which time (or spatial as in the case of linear macro-
molecules) series are investigated. We simply collected a large and heterogeneous set
of experimental series together with simulated series of known and controlled mathe-
matical characteristics in order to look for a common scaling of the entire set when
described by a collection of diJerent complexity indexes. This common scaling was
demonstrated by the application of principal components analysis (PCA) 1 of the data
set having as statistical units the series and as variables the complexity measures (see
below). This approach is common in empirical science and used in such diverse >elds
as organic chemistry [7] and population genetics [8].

1 We use both PCA and singular value decomposition (SVD) in this study, which are related but diJerent.
See below; also: G.W. Stewart, SIAM Review 35 (1993) 551. In general we will refer to PCA in the case
of the statistical analysis of the matrix having as units (rows) the 198 series and as variables (columns)
the 13 descriptors; the term SVD will be used for the analysis of the single series in order to derive the
cumulative descriptors e1 and SVSen (see Material and Methods).
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The obtained scaling, in the form of a cumulative complexity score corresponding to
the >rst eigenvector of the data set having as statistical units the single series and as
variables the indexes summarizing the output of diJerent mathematical descriptions of
the series, was consistent with the properties of the simulated series and ful>lled some
known properties of the investigated experimental series. This opens the possibility
to obtain a consistent and quantitative measure of the amount of complexity of any
kind of numerical series. Moreover, the minor, but nevertheless statistically signi>cant
components extracted by PCA allowed for a quantitative appreciation to other aspects of
series characterization such as departure from normality or intermittency. The proposed
scaling was generated by relatively short series (300–1000 points) thus pointing to the
wide applicability of complexity measures to virtually all research >elds.

2. Materials and methods

2.1. Series collection

Almost 200 series were gathered and included four main types: random, mixed, de-
terministic (which included chaotic examples) and experimental (Table 1). The last
type refers to experimentally obtained series, while the >rst three types refer to the
generation of simulated series used as “probes”. Random series are � digits and a num-
ber of random number series coming from diJerent statistical distributions (Poisson,
Gaussian, uniform). Series of a “mixed” type come from various blendings of uncorre-
lated and correlated sources such as square waves corrupted by increasing amounts of
noise (SNR#), Gaussian white noise linearly ordered along increasingly long segments
(RAN#), or simply red=pink noise correlated by integration such as Brownian motion
(Brownian#). “Deterministic” refers to a square wave and a sinusoid, and includes
“chaotic” Henon, Lorenz and logistic series.

2.2. Complexity indexes

As stated in the introduction we limited ourselves to methods we could apply to
relatively short series. The methods calling for the generation of an embedding matrix
(recurrence quanti>cation, singular value decomposition; see below) were applied at
embedding of 8 and a delay of 1. Recurrence quanti>cation adopted a radius equal to
the 20% of mean distances between the rows of the embedding matrix.

2.2.1. Embedding-based methods
2.2.1.1. Recurrence quanti<cation. Recurrence quanti>cation analysis (RQA) is a rel-
atively new nonlinear technique, originally suggested by Eckmann et al. [9] as a purely
graphical technique and then made quantitative by Zbilut and Webber [10]. The tech-
nique has successfully applied in numerous >elds ranging from physiology [11] to
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Table 1
Components and descriptions

Type PC1 PC2 PC3 Description

Random −1:306 −0:022 −0:704 3001–3500 greek pi digits
Random −1:303 0.031 −0:778 1–500 greek pi digits
Experimental −1:298 −0:051 −0:700 Radioactive decay
Random −1:297 −0:092 −0:723 2001–2500 greek pi digits
Random −1:297 −0:037 −0:713 Simulation of a Gaussian stationary

process
Random −1:292 −0:096 −0:695 Simulation of a Gaussian stationary

process
Random −1:283 −0:057 −0:696 501–1000 greek pi digits
Mixed −1:281 0.021 −0:613 Square wave plus Gaussian error at

SNR =0:25 (snr11)
Random −1:275 −0:071 −0:692 2501–3000 greek pi digits
Random −1:274 −0:031 −0:651 3501–4000 greek pi digits
Random −1:270 −0:013 −0:620 Normal distribution
Random −1:268 −0:092 −0:642 Simulation of a Gaussian stationary

process
Random −1:265 −0:066 −0:740 1501–2000 greek pi digits
Random −1:264 −0:057 −0:678 Simulation of a Gaussian stationary

process
Random −1:264 −0:076 −0:697 1001–1500 greek pi digits
Random −1:259 −0:037 −0:634 Uniform distribution
Random −1:255 1.071 0.163 Poisson process
Mixed −1:251 −0:032 −0:612 Square wave plus Gaussian error at

SNR =0:35 (snr10)
Random −1:232 −0:050 −0:674 Uniform distribution
Experimental −1:231 −0:031 −0:454 Tree rings
Mixed −1:203 −0:018 −0:477 Square wave plus Gaussian error at

SNR =0:45 (snr8)
Mixed −1:202 −0:107 −0:497 Square wave plus Gaussian error at

SNR =0:40 (snr9)
Experimental −1:201 −0:043 −0:392 Tree rings
Mixed −1:171 0.060 −0:579 Square wave plus Gaussian error at

SNR =0:20 (snr12)
Experimental −1:151 −0:169 −0:405 Tree rings
Experimental −1:145 −0:081 −0:204 Tree rings
Experimental −1:143 0.021 −0:244 Daily total female births in California
Random −1:128 0.914 −0:034 Poisson process
Experimental −1:103 −0:211 −0:969 Protein sequence (p73)
Experimental −1:099 −0:137 −0:187 Tree rings
Mixed −1:098 −0:188 −0:358 Square wave plus Gaussian error at

SNR =0:75 (snr6)
Random −1:086 1.708 0.513 Poisson process
Experimental −1:078 0.287 −0:620 Daily US exchange rates (1995–96)
Experimental −1:076 −0:196 −0:924 Protein sequence (nphoc)
Experimental −1:067 −0:190 −0:249 Tree rings
Mixed −1:060 −0:047 −0:438 Square wave plus Gaussian error at

SNR =0:50 (snr7)
Experimental −1:013 −0:388 −0:491 Tree rings
Experimental −1:008 −0:278 −0:990 Protein sequence (hnporc)
Experimental −1:000 −0:359 −0:158 Tree rings
Experimental −0:999 −0:126 −1:053 Protein sequence (hnsen)
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Table 1
Continued

Type PC1 PC2 PC3 Description

Experimental −0:991 −0:187 −0:876 Protein sequence (npsend)
Experimental −0:970 −0:097 −0:948 Protein sequence (p63)
Experimental −0:968 −0:143 −1:099 Protein sequence (hnsv41)
Experimental −0:966 −0:294 −0:129 Tree rings
Mixed −0:953 −0:177 −0:263 Square wave plus Gaussian error at

SNR =1 (snr5)
Experimental −0:923 −0:360 −0:591 Protein sequence (npara1)
Experimental −0:918 0.417 −0:588 Daily US exchange rates (1994–95)
Experimental −0:894 −0:321 −0:136 Tree rings
Experimental −0:885 −0:046 −1:070 Protein sequence (fpho)
Experimental −0:877 −0:199 −0:021 Tree rings
Experimental −0:855 −0:109 −1:085 Protein sequence (fsv5)
Experimental −0:853 −0:111 −1:074 Protein sequence (fporc)
Experimental −0:831 −0:217 −0:199 Square wave plus Gaussian error at

SNR =1:25 (snr4)
Experimental −0:782 5.672 3.050 Daily rainfall in Melbourne

(April=1989–December=1990)
Experimental −0:763 1.209 0.638 Time interval between breaths of a

rodent (spontaneous breathing)
Experimental −0:731 0.074 −0:942 Protein sequence (p53)
Experimental −0:728 −0:532 −0:031 Tree rings
Experimental −0:722 −0:209 0.314 Tree rings
Experimental −0:699 0.336 0.109 Time interval between breaths of a

rodent (forced breathing)
Mixed −0:662 −0:461 −0:013 Square wave plus Gaussian error at

SNR =2:5 (snr3)
Experimental −0:630 −0:348 0.105 Tree rings
Experimental −0:627 −0:608 0.410 Tree rings
Experimental −0:626 −0:577 0.150 Tree rings
Experimental −0:608 −0:347 −0:326 Monthly cars production in Australia

(1961–1995)
Experimental −0:595 −0:284 0.285 Tree rings
Experimental −0:587 −0:622 0.205 Monthly values of the Southern

Oscillation Index during
1950–1995

Experimental −0:577 3.652 1.320 Daily rainfall in Melbourne
(January=1981–September=1983)

Experimental −0:559 0.474 0.544 Monthly Tows for Funder River
(1919–1956)

Experimental −0:554 4.898 2.108 Daily rainfall in Melbourne
(October=1983–June=1986)

Chaotic −0:505 0.632 −1:405 Logistic diJerence equation chaotic
region

Experimental −0:492 −0:198 −0:040 Seismograph of Kobe earthquake for
51 min at 1 s intervals

Experimental −0:482 4.084 1.543 Daily rainfall in Melbourne
(July=1986–March=1989)

Experimental −0:445 −0:309 0.032 Seismograph of Kobe earthquake for
51 min at 1 s intervals

Mixed −0:437 0.003 −0:326 Normal distribution ordered at
patches of 10 (ran1)
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Table 1
Continued

Type PC1 PC2 PC3 Description

Experimental −0:437 −0:746 0.273 Simulation of a negative trend
process

Experimental −0:436 −0:297 0.019 Tree rings
Experimental −0:424 −0:352 0.184 Tree rings
Experimental −0:421 −0:176 −0:149 Seismograph of Kobe earthquake for

51 min at 1 s intervals
Experimental −0:406 1.600 1.147 EJective federal funds rate

(December=1995–October=1997)
Experimental −0:348 −0:450 0.143 Tree rings
Experimental −0:341 −0:524 0.251 Oxygen isotope levels
Experimental −0:318 0.933 0.858 EJective federal funds rate

(June=1992–March=1994)
Experimental −0:303 0.524 0.841 Monthly Tows for Mitta Mitta River

(1936–1968)
Experimental −0:276 −0:471 0.312 Daily minimum temperatures

in Melbourne (July=1986–
March=1989)

Experimental −0:274 −0:505 0.240 Daily minimum temperatures
in Melbourne (October=1983–
June=1986)

Experimental −0:271 −0:261 0.253 Tree rings
Mixed −0:270 −0:553 0.247 Simulation of a stochastic cyclic

process
Experimental −0:246 −0:276 0.634 Tree rings
Experimental −0:242 −0:578 0.330 Daily minimum temperatures

in Melbourne (April=1989–
December=1990)

Experimental −0:239 −1:734 2.477 Tree rings
Experimental −0:218 1.108 0.852 Monthly Tows for Colorado River

(1911–1972)
Mixed −0:211 −0:552 0.380 Simulation of a positive trend process
Mixed −0:196 −0:562 0.279 Simulation of a stochastic cyclic

process
Experimental −0:188 −0:412 0.401 Seismograph of Kobe earthquake for

51 min at 1 s intervals
Mixed −0:157 −0:545 0.296 Simulation of a stochastic cyclic

process
Mixed −0:152 −0:510 0.370 Simulation of a positive trend

process
Mixed −0:146 −0:727 0.333 Simulation of a negative trend

process
Experimental −0:142 −0:466 0.387 Daily minimum temperatures

in Melbourne (January=1981–
September=1983)

Experimental −0:134 0.017 0.358 daily maximum temperatures
in Melbourne (October=1983–
June=1986)

Mixed −0:127 −0:483 0.478 Simulation of a positive trend
process

Mixed −0:127 −0:419 0.500 Simulation of a positive trend
process
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Table 1
Continued

Type PC1 PC2 PC3 Description

Mixed −0:115 −0:525 0.280 Simulation of a stochastic cyclic
process

Mixed −0:106 −0:611 0.490 Simulation of a discrete steps
nonstationary process

Mixed −0:102 −0:721 0.259 Simulation of a negative trend process
Mixed −0:101 −0:669 0.304 Simulation of a negative trend

process
Experimental −0:094 −0:577 0.691 Human heart rate
Experimental −0:092 −0:334 0.603 Human heart rate
Experimental −0:084 0.173 0.520 Human heart rate
Experimental −0:083 0.161 0.383 Daily maximum temperatures

in Melbourne (July=1986–
March=1989)

Mixed −0:073 −0:819 0.318 Simulation of a discrete steps
nonstationary process

Mixed −0:049 −0:770 0.324 Simulation of a discrete steps
nonstationary process

Experimental −0:049 1.039 1.060 Time interval between breaths of
rodent (forced breathing)

Mixed −0:037 −0:699 0.359 Simulation of a discrete steps
nonstationary process

Experimental −0:033 −0:495 0.580 Forces on cylinder in tank of water
at 0:15 s interval

Experimental −0:033 −0:111 −0:043 Time interval between breaths of a
rodent (spontaneous breathing)

Mixed −0:032 −0:607 0.391 Simulation of a discrete steps
nonstationary process

Experimental −0:008 0.055 0.437 Daily maximum temperatures
in Melbourne (April=1989–
December=1990)

Mixed 0.001 −0:723 0.383 Simulation of a discrete steps
nonstationary process

Experimental 0.029 −0:673 0.306 Human heart rate
Mixed 0.042 −0:405 0.067 Darwin sea level pressures
Experimental 0.044 0.160 0.468 Daily maximum temperatures

in Melbourne (January=1981–
September=1983)

Experimental 0.050 −0:427 0.096 Darwin sea level pressures
Experimental 0.060 −0:595 0.440 Human heart rate
Mixed 0.062 −0:539 0.557 Simulation of a discrete steps

nonstationary process
Mixed 0.081 0.134 −0:172 Normal distribution ordered at

patches of 20 (ran2)
Experimental 0.096 −0:670 0.472 Darwin sea level pressures
Experimental 0.144 −0:291 0.727 Human heart rate
Experimental 0.145 −0:664 0.581 Human heart rate
Experimental 0.169 −0:609 0.538 Human heart rate
Experimental 0.174 −0:191 0.421 Bi-daily blowTy population in a

glass jar
Experimental 0.259 −0:527 0.733 Seismograph of Kobe earthquake for

51 min at 1 s intervals
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Table 1
Continued

Type PC1 PC2 PC3 Description

Experimental 0.269 −0:861 −0:123 Monthly mean thickness ozone
columns (Dobson units)
(1791–1926)

Experimental 0.306 −0:277 0.114 Monthly beer production in
Australia (1956–1995)

Experimental 0.336 −0:275 0.718 Human heart rate
Experimental 0.339 −0:314 0.671 Human heart rate
Experimental 0.342 −0:419 0.523 Seismograph of Kobe earthquake for

51 min at 1 s intervals
Experimental 0.348 −0:335 0.767 Human heart rate
Experimental 0.371 −0:604 0.219 Monthly bricks production in

Australia (1956–1995)
Experimental 0.379 5.876 4.473 EJective federal funds rate

(July=1986–December=1987)
Experimental 0.393 −0:537 0.465 Monthly sulphuric acid production

in Australia (1956–1994)
Mixed 0.397 −0:693 0.509 Square wave plus Gaussian error at

SNR =5 (snr2)
Chaotic 0.417 0.114 −0:853 Logistic map
Experimental 0.446 1.375 1.398 EJective federal funds rate

(January=1985–June=1986)
Mixed 0.447 −0:859 0.711 Ten-cycle sine wave added uniform

white noise
Experimental 0.448 −0:075 0.266 Monthly chocolate production in

Australia (1957–1995)
Experimental 0.535 0.597 0.139 Time interval between breaths of a

rodent (forced breathing)
Experimental 0.614 −0:620 0.160 Monthly blooms and slabs produc-

tion in Australia (1956–1995)
Experimental 0.621 −0:591 0.160 Monthly rawsteel production in

Australia (1956–1993)
Experimental 0.670 −0:757 0.865 Protein structure (cpp3)
Experimental 0.675 −0:387 0.187 EJective federal funds rate

(October=1997–July=1999)
Mixed 0.712 0.157 −0:152 Normal distribution ordered at

patches of 50
Experimental 0.748 −0:264 0.057 Time interval between breaths of a

rodent (forced breathing)
Experimental 0.764 0.110 0.771 Monthly means of daily relative

sunspot numbers (1749–1832)
Experimental 0.769 −0:786 0.841 Protein structure (phh1)
Experimental 0.785 0.076 0.676 Monthly means of daily relative

sunspot numbers (1833–1915)
Experimental 0.791 −0:064 0.797 Monthly means of daily relative

sunspot numbers (1916–1977)
Experimental 0.844 −0:575 0.190 Monthly iron production in Australia

(1956–1995)
Chaotic 0.860 −0:485 0.610 Lorenz attractor
Chaotic 0.886 −0:429 0.624 Lorenz attractor
Experimental 0.913 −0:746 0.835 Protein structure (phh2)
Mixed 0.924 −0:289 0.063 Square wave plus Gaussian error at

SNR =10 (snr1)
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Table 1
Continued

Type PC1 PC2 PC3 Description

Experimental 1.015 0.056 0.537 Wheat prices (1264–1996)
Mixed 1.083 0.095 −0:074 Normal distribution ordered at

patches of 100 (ran4)
Experimental 1.090 −0:328 0.169 Daily brightness of a variable star

on 600 successive midnights
Experimental 1.257 −0:494 0.558 Daily yield on long-term US

government securities (October=
1988–June=1991)

Experimental 1.277 0.017 0.152 EJective federal funds rate
(November=1988–August=1990)

Mixed 1.320 0.070 −0:063 Normal distribution ordered at
patches of 200 (ran5)

Experimental 1.340 0.087 0.052 EJective federal funds rate
(August=1990–May=1992)

Experimental 1.368 −0:527 0.551 Protein structure (cpp1)
Experimental 1.371 −0:232 −0:320 EJective federal funds rate

(March=1994–December=1995)
Experimental 1.407 −0:584 0.405 Protein structure (phh3)
Experimental 1.408 −0:571 0.244 Protein structure (cpp2)
Experimental 1.484 −0:406 0.176 10-year Treasury constant maturity

rate
Chaotic 1.495 1.672 −3:229 Henon variable for 16-point periodic

process
Chaotic 1.495 1.672 −3:229 Henon variable for 16-point periodic

process
Experimental 1.520 −0:296 0.278 3-month CD rate (1996–1999)
Experimental 1.570 −0:083 −0:167 EJective federal funds rate

(July=1999–April=2001)
Chaotic 1.573 1.670 −3:261 Logistic diJerence equation period-4

region
Experimental 1.635 −0:342 0.240 Daily yield on long-term US

gov securities (March=1986–
October=1988)

Experimental 1.646 3.333 −5:810 2 digit Toating point values
Experimental 1.648 3.329 −5:798 2 digit Toating point values
Mixed 1.687 0.055 −0:138 Normal distribution ordered at

patches of 500 (ran6)
Mixed 1.697 −0:156 0.096 Brownian motion integrated white

noise process
Mixed 1.700 −0:413 −0:160 Brownian motion integrated white

noise process
Experimental 1.709 −0:296 0.025 Daily yield on long-term US

gov securities (February=1994–
October=1996)

Experimental 1.853 0.058 −0:256 Monthly electricity production in
Australia (1956–1995)

Experimental 1.865 −0:149 0.045 3-month CD rate (1999–2001)
Experimental 1.915 −0:427 0.421 Tracheal pressure trace from a

spontaneously breathing rodent
Experimental 1.936 −0:324 0.381 Tracheal pressure trace from a

spontaneously breathing
rodent
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Table 1
Continued

Type PC1 PC2 PC3 Description

Deterministic 1.964 −0:701 0.598 Ten-cycle sine wave
Mixed 1.970 −0:154 −0:057 Brownian motion integrated white

noise process
Deterministic 1.980 0.578 −1:216 Square wave
Experimental 2.047 0.366 −0:310 Monthly gas production in Australia

(1956–1995)
Experimental 2.080 −0:125 −0:189 Daily yield on long-term US gov

securities (June=1991–February=
1994)

Mixed 2.135 −0:085 −0:040 Normal distribution ordered at
patches of 1000 (ran7)

Mixed 2.215 −0:103 −0:186 Brownian motion integrated white
noise process

Experimental 2.291 −0:264 −0:388 3-month CD rate (1993–1996)
Experimental 2.598 0.575 −0:336 3-month CD rate (1991–1993)

molecular dynamics [12], and the study of chemical reactions [13]. Recently, it was
investigated by our group for its ability to deal with protein sequences [14].
Recurrence times are certainly not new. PoincarUe is perhaps the most famous for

describing them in the context of dynamical systems as points which visit a small
region of phase space [15]. Also, the statistical literature points out that recurrences
are the most basic of relations [16]. In this respect, it is important to reiterate the fact
that calculation of recurrence times, unlike other methods such as Fourier, Wigner–
Ville or wavelets, requires no transformation of the data, and can be used for both
linear and nonlinear systems [17]. Because recurrences are simply tallies, they make
no mathematical assumptions. Given a reference point, X0, and a ball of radius r, a
point is said to recur if

Br(X0)= {X : ‖X − X0‖6 r} : (1)

A trajectory of size N falling within Br(X0) is denoted as

S1 = {Xt1 ;Xt2 ; : : : ;Xti ; : : :} (2)

with the recurrence times de>ned as

T1(i)= ti+1 − ti; i=1; 2; : : : ; N : (3)

(Note: Although the notation here emphasizes that “times” can be calculated, for a
spatial series the ordering is substituted and time measurements simply correspond to
the sequential number along the chain.)
Given a scalar time series {x(i)= 1; 2; 3; : : :} an embedding procedure will form a

vector, Xi =(x(i); x(i+L); : : : ; x(i+(m−1)L)) with m the embedding dimension and L
the lag. {Xi =1; 2; 3; : : : ; N} then represents the multi-dimensional process of the time
series as a trajectory in m-dimensional space. Recurrence plots are symmetrical N ×N
arrays in which a point is placed at (i; j) whenever a point Xi on the trajectory is close
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to another point Xj. The closeness between Xi and Xj is expressed by calculating the
Euclidian distance between these two normed vectors, i.e., by subtracting one from
the other: ‖Xi − Xj‖6 r where r is a >xed radius. If the distance falls within this
radius, the two vectors are considered to be recurrent, and graphically this can be
indicated by a dot. An important feature of such matrixes is the existence of short
line segments parallel to the main diagonal, which correspond to sequences (i; j); (i+
1; j+ 1); : : : ; (i+ k; j+ k) such that the piece of X(j); X(j+ 1); : : : ;X(j+ k), is close
to X(i); X(i + 1); : : : ;X(i + k) in series which are deterministic. The absence of such
patterns suggest randomness [9].
Thus, recurrence plots simply correspond to the distance matrix between the diJerent

epochs (rows of the embedding matrix) >ltered, by the action of the radius, to a
binary 0=1 matrix having a 1 (dot) for distances falling below the radius and a 0 for
distances greater than radius. Distance matrices have been shown to convey all relevant
information for the global reconstruction of a system and thus represent exhaustive
representations of studied phenomena [18].
Because graphical representations may be diLcult to evaluate, Zbilut and Webber

[10] developed several strategies to quantify features of such plots originally pointed
out by Eckmann et al. [9]. Hence, the quanti>cation of recurrences leads to the gen-
eration of >ve variables including: REC—percent of plot >lled with recurrent points;
DET—percent of recurrent points forming diagonal lines, with a minimum of two
adjacent points; ENT—Shannon information entropy of the line length distribution;
MAXLN—length of longest line segment (the reciprocal of which is an approxima-
tion of the largest positive Liapunov exponent and is a measure of system divergence,
Ref. [19]); and TREND—a measure of the paling of recurrent points away from the
central diagonal. These >ve recurrence variables quantify the deterministic structure
and complexity of the plot: REC quanti>es the amount of cyclic behavior; DET the
amount of determinism through the counting of “sojourn points” [20]; ENT the richness
of deterministic structuring (and in this sense, has a somewhat opposite meaning with
respect to classical notion of entropy); MAXLN scales with the maximum Liapunov
exponent; while TREND is essentially a measure of nonstationarity. These >ve indexes
give a summary of the autocorrelation structure of the series and were demonstrated,
by means of a psychometric approach [21], to correlate with the visual impression that
a group of unbiased observers derive from the inspection of an ensemble of recurrence
plots.

2.2.1.2. Singular value decomposition. Singular value decomposition (SVD) is a
well-established method, and has had a long history in physical as well as in social
and biological sciences, and roughly corresponds to PCA. The term SVD is preferred
to the term PCA in physical applications and, in general, when dealing with dynamical
phenomena. As in PCA, the aim of SVD is to project an originally multidimensional
phenomenon on a reduced set of new axes, each orthogonal to each other, representing
the basic modes explaining the analyzed data set. When applied to a time (or spatial)
series, that is originally monodimensional. SVD necessitates that the original series be
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represented on a multidimensional space by the agency of the embedding procedure.
This “expansion” of the original monodimensional series onto a multidimensional sup-
port allows for the autocorrelation structures present in the series to be appreciated as
classical between variables statistical correlations [22].
The embedding matrix (EM) can be thought of as a multivariate matrix having

the series equal to the embedding dimension as statistical units (rows) and the whole
sequence lagged by subsequent delays as variables (columns). Thus the EM can be
considered as an M;N matrix, with M the number of elements subtracted from the
embedding dimension (the last elements are eliminated by the shifting of the series
due to the embedding procedure) and the embedding dimension.
A basic theorem in linear algebra states that each M ;N matrix X can be expressed

as

X =USV T ; (4)

where the matrices U and V are of dimensions M;K and N; K , respectively, and ful>ll
the relations UTU =V TV =1. The K; K matrix S (typically the covariance matrix)
is diagonal and has its diagonal elements (singular values) arranged in descending
order s1¿s2¿s3 · · ·¿sk ¿ 0. In intuitive terms this means that the original data
can be projected onto a new set of coordinates US (principal component scores or
eigenfunctions) such that no original information is lost. Given that each element of
X is immediately reconstructable by the equation

Xij =
∑

UikSkVjk ; k =1; : : : ; N : (5)

The new coordinates are orthogonal by construction (i.e., statistically independent),
each representing an independent aspect of the data set.
PCA (and equivalently SVD) has an optimal property that made this method one of

the most widespread modeling techniques in diverse science >elds: with the expansion
truncated to A terms (with A¡N ) one obtains the summation

Xij =
∑

UikSkVjk + Eij; k =1; : : : ; A ; (6)

where the squared error term, E2
ij, is a minimum. What diJerentiates (5) from (6) is the

presence of the error term Eij and the limitation of the summation to a lower number
of coordinates with respect to the original data set. The fact that the error term is a
minimum implies that the projection of the original data on the new component space
spanned by a smaller number of dimensions (A¡N ) is optimal in a least-squares
sense. This implies that the meaningful (signal-like) part of the information is retained
by the >rst principal components, while discarding the noise in the noise Toor.
In other words, the most correlated portion of information is retained by the >rst

components, while all the singularities are discarded in the minor components. The fact
that more complex systems are characterized by a spread of energy away from the >rst
singular values can be quanti>ed by the index:

SVSen=−
∑

si log si; i=1; : : : ; N : (7)
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This is simply the Shannon formula applied to the distribution of normalized eigenval-
ues, where si are the normalized singular values [23]. In our analysis we selected both
SVSen and the >rst eigenvalue score e1 as complexity descriptors.

2.2.2. Nonembedding related methods
The methods described above rely on the necessity of a priori setting of measurement

parameters such as embedding dimension and, in the case of RQA, the value of a
distance threshold (radius). This could be questionable (we demonstrate that a simple
“common sense” choice of these parameters, common to all the analyzed series does not
disturb the obtained results below), so we decided to complement the above techniques
with other complexity measures not depending on parameter setting.
The nonembedding related measures we adopted for this work were: Lempel–Ziv

complexity (LZ), Pearson’s correlation coeLcient (Pearson), coeLcient of variation
(CV), skewness (Skew), kurtosis (Kurt) and Hurst exponent (Hurst).
The most widely used descriptor for algorithmic complexity, for its ease in imple-

mentation, and wide applicability, is the so-called Lempel–Ziv information content (LZ)
[24]. LZ transforms the representation of a numerical sequence into a binary format,
substituting 1 for the higher-than-median values and 0 otherwise. This binary sequence
is then analyzed trying to generate any subsequent con>guration of 1’s and 0’s from the
previous one using just two operators: copy and insert acting on the initial sequence.
Starting from an initial random sequence, the procedure progressively reconstructs any
pre-de>ned series: the number of instructions (copy plus insert operations) needed to
produce the series, normalized by the number of instructions needed to generate the
corresponding random sequence, constitutes the LZ index.
Pearson’s correlation corresponds to the well-known statistical formula:

r=Cov(XY )=
√
(Var(x)Var(y)) ; (8)

where X and Y are adjacent values in the series Cov=Covariance and Var is the
variance. This is a measure of how strongly each data point correlates with its
immediate predecessor, and points to a special kind of deterministic structure.
CV is simply the ratio of standard deviation to mean, and measures the statistical

variability of the studied series independent of their scale.
Skewness is expressed as

Skew=
1
N

N∑
i=1

[
(xi − Yx)

$

]3
(9)

with N = number of points, xi =actual value of ith observation, and $; the standard
deviation. The related kurtosis is expressed as diJerence between actual kurtosis and
the kurtosis value of a Gaussian distribution:

Kurt=

{
1
N

N∑
i=1

[
(xi − Yx)

$

]4}
− 3 : (10)
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Skewness measures the departure from symmetry around the mean value of the prob-
ability density function, while kurtosis measures the relative sharpness of the modal
value with respect to the Gaussian distribution.
The last descriptor we used is the Hurst exponent (Hurst) corresponding to the

slope of the curve linking mean-square displacement from initial position and time,
using each point in the time series as an initial condition [25]. The exponent is
de>ned as

H = log(R=S)=log(T ) ; (11)

where T is the duration of the sample of data, and R=S is the range of the cumulative
deviations from the mean divided by the standard deviation. The Hurst exponent is a
measure of the relative persistent=intermittent character of the series: values around 0.5
point to Brownian motion-like behavior (coloured noise), exponents greater than 0.5
indicate persistence (past trends persist into the future), whereas exponents less than
0.5 indicate antipersistence (past trends tend to reverse into the future).

2.3. Strategy of analysis

The 13 quantitative descriptors presented above were computed for all the 198
selected series to obtain a multivariate data matrix (DM) with 198 units and 13 vari-
ables constituting the starting material of our analysis. The DM was submitted to a PCA
to extract the relevant factors (principal components) shaping the diJerences between
the 198 series. The components are independent from each other by construction, and
represent the independent concepts explaining the observed results [26]. The extracted
components were interpreted by means of inspection of component loadings, and corre-
lation coeLcients between original descriptors and the components. The >rst component
(corresponding to global complexity) was examined for consistency between obtained
complexity rankings and simulated series as well as with known peculiarities of some
experimental series. The fact that principal components were extracted in standardized
units, having a zero mean and a unit standard deviation, helps in the interpretation of
the obtained scaling.

3. Results

Fig. 1 reports the eigenvalues distribution at increasing component number: a simple
visual scree test [27] suggest two possible solutions for the number of signi>cant
components: a minimal three components solution, and a maximal >ve components
solution. Higher order components are attributable to the “noise Toor” which, in this
particular case, corresponds to the algorithmic minor subteleties of the methods not
attributable to any particular feature of the studied series. The >rst component explains
48% of the total variance, while the other “signal” components explain 15%, 13%, 8%
and 6% of the total variance.
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Fig. 1. Scree plot of PCs.

Table 2
Component correlations

Variable PC1 PC2 PC3 PC4 PC5

Skew −0:031 0.783 0.531 −0:019 −0:002
Kurt −0:110 0.815 0.498 −0:005 −0:023
Pearson 0.541 −0:420 0.660 0.092 0.024
LZ −0:949 0.023 −0:017 −0:030 −0:175
Hurst 0.474 −0:413 0.578 −0:148 −0:125
e1 0.921 −0:170 0.088 0.050 0.163
REC 0.685 0.423 −0:506 −0:024 −0:010
DET 0.875 0.224 0.064 0.040 0.172
ENT 0.887 0.271 −0:180 0.058 0.141
TREND −0:621 −0:027 −0:018 −0:117 0.727
CV −0:119 0.011 −0:019 0.976 −0:001
MAXLN 0.790 0.126 −0:306 −0:143 −0:236
SVSen −0:960 0.131 −0:020 −0:033 −0:100

In addition to the complexity score (PC1), Table 1 also reports the second and
third components of the PCA scaling for nonlinear complexity descriptors (PC2 and
PC3) pointing, respectively, to the departure from normality and relative continuous=
intermittent character of the series. These were recognized as the two most important
determinants of series description other than the major complexity component.
Table 2 reports the component loadings, i.e., the correlation coeLcients of the orig-

inal complexity descriptors with the extracted components. The >rst component (PC1)
clearly corresponds to a global inverse complexity score, being very strongly related
to LZ (r= − 0:949), e1 (r=0:921), SVSen (r= − 0:960); and signi>cantly corre-
lated with the RQA variables, DET and ENT (r=0:875 and 0.889, respectively). It is
worth noting that the complexity score is virtually independent from statistical (order
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independent) properties of the probability distribution of the series (r= − 0:031 with
Skew, r=− 0:110 and −0:119 with Kurt and CV, respectively).
This result provides a clear-cut, completely data-driven, de>nition of complexity as

the number of order parameters (in the form of statistical correlations as in SVD or
production rules as for LZ index) necessary to synthesize (reconstruct) the series. In
other words complexity takes the form of “number of degrees of freedom” of the
data. It is worth noting that there is no diJerence between embedding related and
nonembedding related methods (the correlation coeLcient between LZ and SVSen is
r=0:93): this means that, if we choose a suLciently high embedding dimension we are
sure of not biasing our measures. In general, this suggests that the algorithmic notion
of complexity is practically superimposable to the de>nition based on multivariate data
analysis.
The general complexity component is by far the most important order parameter

shaping the between series diJerences, whereas the other components point to minor
aspects of the series that, independently from complexity, describe the studied phenom-
ena. PC2 is a pure “probability distribution” factor and corresponds to the departure
from normality. In fact it scales with Skew and Kurt (r=0:783 and 0.815, respec-
tively) and has nothing to do with order-dependent descriptors. PC3 deals with the
relative continuous=intermittent character of the series. In fact, the third component is
positively correlated with the Pearson coeLcient between adjacent values (r=0:660),
Hurst exponent (r=0:578), and negatively correlated with REC (r= − 0:506). It is
worth noting that higher order components tend to have lower values of loadings and
a lower number of variables correlated with them with respect to higher order com-
ponents for the obvious reason that they explain small percentages of the variance.
On the other hand, a single descriptor could participate in more than one component
because its value depends upon more than one basic factor. For example, this is the
case for REC which is inTuenced by both “complexity at large” (r=0:685 with PC1)
and “continuity=intermittence” (r= − 0:506 with PC3) or for Pearson (r=0:541 with
PC1 and r=0:660 with PC3). In this respect is noticeable that TREND is correlated at
r=−0:621 with PC1 and r=0:727 with PC5 suggesting the degree of “non-stationarity”
of the series independent of other features (pure nonstationarity). Normalized variance
(CV) has a PC for its own (PC4) with which it is highly correlated (r=0:976). This
implies that statistical (order independent) variability is a concept completely distinct
from complexity.
Having described the extracted components from the point of view of the original

variables (descriptors of the series), we next consider a description of the component
space from the point of view of the statistical units, i.e., by the consideration of the
relative locations of the studied series in component space. Figs. 2 and 3 report the
PC1–PC2 and PC1–PC3 bidimensional spaces: the points correspond to the studied
series, with some notable series labeled. At >rst it is important to note how only PC1
constitutes a continuous ranking of the series, the other factors are mainly driven by
some peculiar (outlier) series such as the Melbourne rainfall series characterized by
both a big departure from normality (high values of PC2) and a marked “persistency”
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both due to the presence of very characterized “rain days clusters”, as well as the gen-
eral unpredictability of the series (the points are shifted toward the “high complexity”
end of PC1). On the other hand, “intermittency” (low values of PC3) is a well known
feature of both the logistic and Henon series, and helps to explain the peculiar position
of the numerical accuracy series.
The breadth of the global complexity axis ranging from pure randomness (radioac-

tive decay) to very deterministic series (square wave) is evident together with the
placement of deterministic chaos at the “low complexity” pole of the axis. This loca-
tion of deterministic chaos at the low complexity pole is reminiscent of many of the
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methods that were designed to separate deterministic chaos from pure randomness. It
is equally evident that experimental series are generally similar to the “mixed” type
series. This feature suggests a direct use of the component space to give a “coarse
grain” characterization to experimental series for which a reliable physical model is
not available: each experimental series can be compared with to a similar simulated
series, which then suggest a “>rst hypothesis” for the right model. It is important to
stress the fact that, since PCs are linear combinations of the original variables, it is
simple to compute by a multiple linear regression equation, the principal component
score relative to a nonanalyzed series, thus automatically scaling this new series with
respect to the others. This use of PCA is very common in various applicative >elds, es-
pecially in medicinal chemistry where “control component charts” are used to allocate
newly synthesized organic molecules [28].
In the present application we built some standard samples to calibrate our >ndings

for order (and alternatively disorder) to check if the global complexity score ranks
these series correctly. The two series of standards we used were the RAN# and SNR#
series. The RAN# series were generated from a 1000 points simulation from a Gaussian
distribution with elements organized in an increasing linear order along patches of
diJerent length [29]: thus RAN1 was created by ordering the series 10×10; i.e., putting
the >rst ten numbers in increasing order, then putting the second ten in increasing order
and so forth. RAN2 was created by patches of 20, until 1000 points were obtained.
The SNR# series were generated by a square wave to which were added increasing
amounts of Gaussian noise, starting from a signal-to-noise ratio of 10 (SNR1 series)
and ending with a signal-to-noise ratio of 0.2 (SNR12 series) (Fig. 4). Both the “order
parameters” structuring the two families of time series; i.e., the patch length (Fig. 5a)
and the signal-to-noise ratio (SNR) (Fig. 5b) were unequivocally recognized by the
global complexity score.
Having tested the system as for its consistency with simulated sets, we investigated

the coherence of the synthetic global score with what is known about some experimental
series. The most paradigmatic case is that of protein sequences and structures: we
have in our data set twelve diJerent protein sequences coded in terms of the relative
hydrophobicity of their amino acid residues [30], namely: p73, nphoc, hnporc, hnsen,
npsend, p63, hnsv41, npara, fpho, fsv5, fporc, and p53.
The protein sequences expressed in terms of the hydrophobicity score of their amino

acid residues are placed by our general scaling very close to pure randomness, but
clearly (even if slightly) separated from pure randomness, going from a value of −1:10
to a value of −0:74 while simulated random series go from −1:31 to −1:10 along PC1
(t-test value= 10:3; p¡ 0:00001) (Fig. 6). The slight deviation of protein hydropho-
bicity ordering is a well-known characteristic of protein primary structures [31] clearly
demonstrated by the analysis. Moreover, the p53 sequence, which is known to have a
particularly deterministic structuring of hydrophobicity due to its very peculiar biologi-
cal role, was correctly placed at the “deterministic” end of protein sequence distribution.
This means the obtained scaling, despite the huge heterogeneity of the studied system,
allows for relatively >ne measurements.
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On the other hand we have inserted in our data set six series generated by the
three-dimensional structures of two diJerent proteins (cpp and phh): these series corre-
spond to the x; y and z spatial coordinates of the constituent amino acids (expressed in
terms of their *-carbons). Obviously, given that adjacent amino acids are constrained
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by the presence of a chemical bond between them, these series have a strong inter-
nal correlation like any polymer series [32], and, in fact, they are shifted toward the
deterministic end of the spectrum (PC1 ranging between 0.67 and 1.41).
Another important aspect of these results points to the fact that experimental and

naturalistic data is strongly inTuenced by the methods by which this data is collected.
For example, economic data may be averaged as well as linked to the agency of human
institutions. This is strongly suggested by the placement of federal funds and credits
which may be intermittent, processed, and=or skewed (reTecting also the possibility of
federal policies). A similar scenario may obtain with tree ring data which is strongly
inTuenced by prevailing weather patterns, which may be cyclic (Figs. 2 and 3). Lab-
oratory data is often “>ltered” either purposefully or by limitations of instrumentation
(e.g., band-width limitations). Thus these results suggest a caution for data which may
be “censored” either naturally or unknowingly. It is also interesting to note that some
processes such as the heartbeat are situated in the middle between randomness and
determinism, contrary to the advocates for cardiac chaos. An alternative view has been
to consider the heartbeat as an alternation between deterministic and stochastic pro-
cesses and appears to have some support here. This alternating stochastic=deterministic
dynamic has been termed “terminal dynamics”, and may be a new paradigm for many
natural phenomena [33].

4. Conclusions

The notion of “amount of complexity” emerging from these results resembles the
classical mechanical notion of complexity as the number of degrees of freedom such
that a system with N particles has 3N − r degrees of freedom, r being the number of
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links (in our case correlations) linking the N elements. Normalizing for N the complex-
ity remains inversely proportional to r; i.e., the number (and strength) of correlations
present in the data. This simple reasoning uni>es the “equation-like” representation
(like SVD wherein signal components can be directly equated with independent equa-
tions of motion) and the “algorithmic complexity” view (where “symbolic rules” play
the role of equations). Increasing the number of links between the elements reduces
the number of equations necessary to describe the system.
What appears to be important in this analysis is information, but not information in

the usual order-independent sense, rather, in the order-dependent sense. (Recall that a
given degree of freedom can have varying amounts of information capacity.) The >rst
PC clearly emphasizes the role of information, algorithmically or through recurrence
as an order-dependent process. In this respect, this >nding supports observations that
ordered information is a cornerstone of the physical sciences [34] with maximum com-
plexity at one end, and determinism at the other [35]. Clearly, this bears a comforting
intuitionally real aspect making complexity relatively “simple”. Indeed, an inspection
of the categories relative to their complexity scores are signi>cantly separated from
each other in this aspect; whereas, experimental and mixed data are clearly situated in
the middle (Fig. 7).
A >nal remark is the demonstration that an unambiguous and self-consistent mea-

sure of complexity can be obtained for virtually any time (or spatial) series well in-
side the data lengths typically attainable by experimentation. Moreover, the possibility
of applying eigenvalue methods directly to correlation matrixes (e.g., reticular sys-
tems or directed graphs) enlarge the reach of the proposed method well beyond time
series.
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