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This paper presents a novel method to detect side-chain clusters in pro-
tein three-dimensional structures using a graph spectral approach. Pro-
tein side-chain interactions are represented by a labeled graph in which
the nodes of the graph represent the Cb atoms and the edges represent
the distance between the Cb atoms. The distance information and the
non-bonded connectivity of the residues are represented in the form of a
matrix called the Laplacian matrix. The constructed matrix is diagona-
lized and clustering information is obtained from the vector components
associated with the second lowest eigenvalue and cluster centers are
obtained from the vector components associated with the top eigen-
values. The method uses global information for clustering and a single
numeric computation is required to detect clusters of interest. The
approach has been adopted here to detect a variety of side-chain clusters
and identify the residue which makes the largest number of interactions
among the residues forming the cluster (cluster centers). Detecting such
clusters and cluster centers are important from a protein structure and
folding point of view. The crucial residues which are important in the
folding pathway as determined by �F values (which is a measure of the
effect of a mutation on the stability of the transition state of folding) as
obtained from protein engineering methods, can be identi®ed from the
vector components corresponding to the top eigenvalues. Expanded clus-
ters are detected near the active and binding site of the protein, support-
ing the nucleation condensation hypothesis for folding. The method is
also shown to detect domains in protein structures and conserved side-
chain clusters in topologically similar proteins.
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Introduction

Non-bonded side-chain interactions are import-
ant for the stability, function and folding of pro-
teins. The role of non-covalent side-chain
interactions in stabilizing the mutual orientation of
secondary structures has been studied extensively
(Chou et al., 1990; Nemethy & Scheraga, 1979;
Creighton & Chothia, 1989). Clusters of hydro-
phobic side-chains on the surface are known to be
important for protein-protein recognition (Young
et al., 1994; Guss & Freeman, 1983; van de Kamp
et al., 1990; Pelletier & Kraut, 1992; Chen et al.,
1994), protein oligomerization (Jones et al., 1985;
Ponder & Richards, 1987; Mossing & Sauer, 1990)
and protein DNA interactions (Anderson et al.,
ing author:
1987). Often a network of charged side-chains is
found near the metal binding site and active site
(Wright et al., 1969; Weis & Drickamer, 1994; Ng
et al., 1996).

Understanding how individual side-chain inter-
actions in a protein molecule cooperate during the
process of folding can give us a possible solution
to the Levinthal paradox (Levinthal, 1969). How-
ever, monitoring side-chain interactions during the
folding process is experimentally dif®cult. Never-
theless, recent protein engineering methods have
been successful in probing the contribution of indi-
vidual side-chain interactions, to the stability of
folding intermediates and transition states (Fersht,
1997). Also NMR techniques have been used to
observe the clustering of hydrophobic side-chains
during the early stages of folding (Lumb & Kim,
1994).
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442 Side-chain Clusters in Proteins
Identifying speci®c side-chain clusters that might
be formed during the early stages of folding from
the analysis of native structure is of considerable
importance (Engelhard & Evans, 1996). There are a
few methods for such cluster detection reported in
the literature. For instance, the method of Heringa
& Argos (1991) detects side-chain clusters based on
the extent of side-chain interactions. The inter-
action between the side-chains is evaluated by the
number of side-chain atoms which come in close
proximity. A constraint on residues forming the
cluster to have higher cumulative contacts within
themselves than with the rest of the protein results
in highly compact clusters of small size. A method
for detecting such compact hydrophobic clusters
has been proposed (Zehfus, 1995) wherein the
most compact set of interacting side-chains are
said to form a cluster. Compactness here is
measured by dividing the side-chain's solvent
accessible surface area by its minimum possible
surface area. The detected compact clusters are cor-
related with protein folding units. Swindells (1995)
has proposed a method for detecting hydrophobic
cores in protein structures. The method considers
only buried hydrophobic residues and detects
hydrophobic cores based on non-polar side-chain
interactions emanating from different secondary
structural elements.

The above mentioned methods are speci®c to
detecting clusters which are compact and hydro-
phobic and are important from the folding point of
view, however charged clusters near metal binding
sites and active sites which are functionally import-
ant are not necessarily compact or buried. A tech-
nique has been described to detect such charged
clusters (Karlin & Zhu, 1996) in which residues
proximal to the metal ions are mapped to a one
dimensional array. Statistically signi®cant amino
acid clusters are deduced from the generated linear
array.

A mathematically elegant approach which
employs graph theoretical techniques has been
used here to identify side-chain clusters in protein
structures. In the literature, different aspects
related to protein structure and sequence have
been explored using graph theoretical techniques.
For instance, speci®c side-chain patterns in func-
tionally different proteins have been detected by
this approach (Artymiuk et al., 1990, 1992, 1994).
Techniques derived from graph theory have also
been used in comparing secondary structural
motifs (Mitchell et al., 1990) and analysis of sheet
topologies (Koch et al., 1992). Recently, algorithms
have been presented for protein structure predic-
tion (Samudrala & Moult, 1997) and protein mod-
eling (Samudrala & Moult, 1998). Clusters in 2D
and 3D lattice models using graph theory have
been investigated (Patra & Vishveshwara, 1998).

A variety of side-chain clusters in proteins have
been detected here using techniques derived from
graph spectral theory, a sub-®eld of graph theory.
Graph spectral theory has been used in clustering
of circuit net-lists (Hagen & Khang, 1992; Boppana,
1987; Garbers et al., 1990), wherein a circuit is rep-
resented by a weighted graph. A Laplacian matrix
for the weighted graph is constructed (see Appen-
dix) and clustering information is derived from the
vector components of the second lowest eigen-
value. In a protein structure, the side-chain inter-
actions are represented by a weighted graph (as
described in Algorithm) and the constructed graph
is represented by a Laplacian matrix. Clusters are
obtained directly from the eigenvector associated
with the second lowest eigenvalue of the Laplacian
matrix and the side-chains which make the largest
number of interactions in a cluster (cluster centers)
are obtained from the eigenvectors associated with
the top eigenvalues. The spectral method uses glo-
bal information for identifying clusters. The meth-
od is computationally ef®cient and robust, as only
a single numerical computation is required to
detect clusters in a given structure. The method is
implemented in the form of a program and the
output of the program is a two-dimensional plot
called the ``Cluster Plot''. The program is user
friendly and has options to detect clusters of inter-
est.

The method has been applied to a set of proteins
which are well studied from the structure and fold-
ing point of view. The detected clusters are mostly
buried and hydrophobic. Often a buried charged
residue is detected along with the hydrophobic
clusters. The identi®ed clusters should be import-
ant from a structure and stability point of view as
they are formed by interactions emanating from
different secondary structures of the protein. A
good correlation is observed between the detected
clusters and experimentally observed folding inter-
mediates as determined by hydrogen exchange
experiments. Clusters near the active and binding
site of the protein are detected. When the side-
chain interaction criteria is lowered, some of the
clusters are found to expand and invariably the
cluster close to the active/binding site is one
among them. The implications of the expanded
clusters on the structure and folding of proteins
are addressed. Interesting correlations are observed
with the vector components corresponding to the
top eigenvalues and the �F values that are
obtained by protein engineering methods (Fersht,
1997) to probe the formation of speci®c side-chain
interactions during the transition state of folding.
The method is also shown to be useful in detecting
protein cores and identifying protein domains.

Algorithm

Clustering by graph spectral methods

A set of points in space can be represented in the
form of a graph wherein the points represent the
vertices of the graph and the distance between the
points represents the edges. The constructed graph
can be represented mathematically in the form of a
matrix called the Laplacian matrix as described in
the Appendix. The diagonalization of such a
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matrix yields the eigenvalues and eigenvectors,
which are shown to contain information regarding
the clustering of points and branching of the points
in space. Speci®cally, the vector components of the
second lowest eigenvalue carry the clustering
information, i.e. all vector components which
belong to a cluster have the same value (Hall,
1970) and the vector components of the top eigen-
values contain the information regarding the
branching of the points forming the cluster
(Randic, 1975) and cluster centers (Cvetkovic &
Gutman, 1977; Patra & Vishveshwara, 1998). This
general methodology which has been used in other
disciplines such as electrical engineering for obtain-
ing clusters in circuit net-lists (Hagen & Kahng,
1992) has been adopted here for the identi®cation
and characterization of clusters in protein struc-
tures.

In the next four subsections we describe how a
graph and the corresponding Laplacian matrix was
constructed for a protein structure followed by an
illustration of the method by considering an
example of lysozyme.

Constructing a graph and the Laplacian matrix
for a protein structure

A protein structure can be visualized as a net-
work of side-chain interactions and a graph for
this interacting network can be constructed by con-
sidering only the interacting residues (the criteria
for interaction is discussed below). The Cb atoms
of the interacting residues are considered as ver-
tices and the distance between the Cb atoms as
edges if the speci®ed interaction criteria is satis-
®ed.

As explained in the Appendix, the Laplacian
matrix B can be obtained by determining the
adjacency matrix Aij and the degree matrix Dij. The
simplest way to construct an adjacency matrix is to
assign a value of 1 or 0 to the matrix elements Aij

depending on whether i and j are connected or not
in the graph. Here the adjacency matrix is
constructed with the weights assigned as below:

Aij � 1

dij

(if side-chains of residues i and j interact above the
speci®ed interaction criteria):

Aij � 1

100
otherwise

where dij is the distance between the Cb atoms of
the residues i and j. A distance of 100 is assigned if
two side-chains do not satisfy the interaction cri-
teria so that the corresponding weight (1/100)
becomes close to zero. The degree matrix is con-
structed as follows:

Dii �
Xn

j�1

Aij if i � j
Dij � 0 when i 6� j

where n is the order of the matrix. Hence the
Laplacian matrix B is given by

B � DÿA

The decision as to whether the side-chains i and j
interact while constructing the adjacency and
degree matrix is based on the extent of interaction
between them. The side-chain interaction can be
evaluated in several ways. For instance, an atlas of
protein side-chain interaction on 400 pairs of
amino acid side-chains has been comprehensively
presented (Singh & Thornton, 1991) wherein the
criteria for interaction of two side-chains was
de®ned by calculating the closest inter-atomic dis-
tance between the two side-chains. If the observed
distance between any two side-chain atoms of the
residues were less than the sum of their corre-
sponding Van der Waals radii plus one, then the
two side-chains were considered interacting.

Here we evaluate the side-chain interaction
between two residues by an expression similar to
that used by Heringa & Argos (1991). The
expression is of the form:

INT�Ri; Rj� �
N�Ri; Rj�

NORM�RESTYPE�Ri�� � 100 �1�

where N(Ri, Rj) in the above expression is the num-
ber of distinct interacting pairs of side-chain atoms
between the residues Ri and Rj. If any two side-
chain atoms of residues Ri and Rj are within a dis-
tance of 4.5 AÊ then they are said to form an inter-
acting pair. All such interacting pairs between
residues Ri and Rj are counted to obtain N(Ri, Rj).

The normalization values (NORM(RESTYPE(Ri)))
for all 20 residue types Ri was obtained by the
expression of the form:

NORM�RESTYPE�Ri��

�
Pp

k�1 MAXM�TYPE�Rik��
p

�2�

In order to evaluate the normalization factors, an
analysis on a non-redundant data set (Hobohm &
Sander, 1994) of 148 proteins with a resolution
greater than 2.0 AÊ was performed. The number of
interaction pairs (both main-chain and side-chain)
made by residue type Ri with all its surrounding
residues in a protein ``k`` was evaluated. MAXM
(TYPE(Rik)) was considered by the maximum
number of interactions made by residue Ri in
protein k. For example, if residue type alanine
occurred twice in protein k and if one alanine had
ten interaction pairs with the main-chain and side-
chain atoms of the surrounding residues and the
other alanine 12 interaction pairs, then MAXM
(ALAk) was determined to be 12. Similarly,
MAXM(TYPE(Rik)) for residue Ri was evaluated for
each of the proteins k in the dataset. NORM
(RESTYPE(Ri)) in equation (2) was obtained by the
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average of the maximum interaction value of the
residue Ri, over all the data set of proteins p in
which residue type Ri had occurred. The same pro-
cedure was followed to obtain the normalization
values for all the 20 residue types. The normaliza-
tion values obtained are given in Table 1 and it can
be observed that the obtained values correlate with
the size of the amino acid residue.

Heringa & Argos (1991) had evaluated the inter-
action term INT(Ri, Rj) in a slightly different way.
They evaluated N(Ri, Rj) by counting the number
of side-chain atoms of residue Rj, which come in
close proximity to residue Rj. This resulted in N(Ri,
Rj) to be different from N(Rj, Ri) whereas, the pre-
sent way of evaluating the side-chain interaction
based on the number of interaction pairs results in
N(Ri, Rj) to be equal to N(Rj, Ri). The terms in
expression (1) and (2) are further elucidated with
an example. The side-chain interaction illustrated
in Figure 1(a) shows a schematic representation of
two phenylalanine rings interacting with eight
side-chain atom pairs with a distance of 4.5 AÊ .
Here the number of interacting pairs N(Ri, Rj) � 8
and the normalization value NORM(PHE) obtained
for phenylalanine (Table 1) is 93.308. Using
expression (1), INT(Ri, Rj) is evaluated to be 8.3 %.
Figure 1(b) is a schematic representation of two
phenylalanine rings having a side-chain interaction
of 3.2 %.

Clusters of amino acids are known to occur near
the active site, in the interface regions of the inter-
action between protein-protein and protein-nucleic
acid and in regions surrounding metal ions in pro-
tein structures. The clusters which occur in each of
these regions differ in size, in the composition of
residues and in the orientation of side-chains.
Different orientations of side-chains will have
Table 1. Normalization values for the 20 residue types
derived from 148 protein structures

Residue type Norm

Ala 55.7551
Arg 93.7891
Asn 73.4097
Asp 75.1507
Cys 54.9528
Gln 78.1301
Glu 78.8288
Gly 47.3129
His 83.7357
Ile 67.9452
Leu 72.2517
Lys 69.6096
Met 69.2569
Phe 93.3082
Pro 51.331
Ser 61.3946
Thr 63.7075
Trp 106.703
Tyr 100.719
Val 62.3673

The normalization values are obtained as mentioned in the
text.
different extent of side-chain interaction and there-
fore different values of INT(Ri, Rj). Hence we have
used different side-chain overlap (interaction) cri-
teria measured by INT(Ri, Rj) to detect clusters of
various types. The classi®cation based on the side-
chain overlap is given below and the discussions
in the subsequent sections are based on this classi-
®cation.

Side-chain clusters

Interactions between all side-chains (both polar
and non-polar) are taken into account in construct-
ing the graph. Further, a variable de®nition for the
% side-chain overlap is used. (1) If the percentage
interaction between two side-chains is 8 % or more,
then it is de®ned as high side-chain overlap. (2) If
the percentage interaction is greater than 5 % and
less than 8 % then it is de®ned as a medium side-
chain overlap. (3) If the percentage interaction is
less than 5 % then it is classi®ed as low side-chain
overlap.

Hydrophobic clusters

In order to detect hydrophobic clusters, only the
hydrophobic residues (L, I, M, V, P, F, C, A, Y, W)
were considered in the protein. Two hydrophobic
residues satisfying the percentage interaction cri-
teria were connected in the graph. An overlap
(extent of interaction) of about 8 % was too high to
detect any cluster in this case and therefore a low
percentage overlap criteria was used in detecting
hydrophobic clusters. The percentage overlap
between two hydrophobic side-chains in general is
less than that of interacting exposed side-chains
since the hydrophobic residues are usually found
buried and surrounded by many other hydro-
phobic residues. However, hydrophobic residues
found on the surface are surrounded by a rela-
tively few hydrophobic residues. Therefore, along
with the overlap criteria, a further classi®cation
based on the contact of the hydrophobic residues
becomes important. A schematic representation
given in Figure 1(c) shows that side-chain 1 is sur-
rounded by four other side-chains to form a high
contact hydrophobic network, and Figure 1(d) is a
schematic of side-chain 1 having a low contact
(surrounded by two side-chains), to form a low
contact hydrophobic network. The classi®cation
used for the % side-chain overlap for detecting
hydrophobic clusters was as follows:

(1) Two hydrophobic residues having a side-
chain interaction greater than 5 % was classi®ed as
high hydrophobic overlap. (2) Interactions between
2 and 5 % was classi®ed as medium hydrophobic
overlap. (3) Less than 2 % was classi®ed as low
hydrophobic overlap. The classi®cation based on
the number of contacts was as follows:

(4) Hydrophobic residues having contact with
more than three residues and satisfying a low
side-chain overlap criteria with each of the side-
chains in contact was classi®ed as high contact



Figure 1. A schematic represen-
tation of side-chain overlap and
contacts (as de®ned in the text).
The dotted lines represent the inter-
action between side-chains.
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hydrophobic. Only the high contact residues and
the residues in contact were considered in con-
structing the graph. (5) Hydrophobic residues with
at least two residues in contact and satisfying a
low side-chain overlap criteria with the residues in
contact was classi®ed as low contact hydrophobic.

The above classi®cation based on the side-chain
overlap criteria for detecting side-chain clusters
and hydrophobic clusters was arrived at after
having experimented with a large number of side-
chain overlap criteria ranging from 1 % to 25 % in
intervals of 0.5 % on a number of proteins. The
number of clusters and the size of clusters detected
vary considerably if extreme overlap criteria are
used. Using 1 % to detect high overlap side-chain
clusters results in one big cluster which constitutes
almost all the residues of the protein molecule, and
using 8 % results in four to ®ve clusters of size
three to six residues. However, if any value within
the above classi®ed range is used, then the result-
ing clusters do not differ signi®cantly.
Detecting side-chain clusters in
protein structures

In this section we illustrate with an example of
T4 lysozyme(1LZ1) as to how the clusters and clus-
ter centers were obtained from the eigenvalues and
eigenvectors of the Laplacian matrix. The graph for
the protein molecule lysozyme is constructed by
considering the Cb atoms as vertices. Two Cb

atoms were connected with an edge weight corre-
sponding to their distance in space if the threshold
side-chain criteria between the two side-chains was
satis®ed and the degree (number of other
side-chains interacting) of at least one of the two
side-chains under consideration was greater than
one. If n number of side-chains in the protein satis-
®ed this criteria then the graph would constitute n
vertices. This way of constructing the graph elimin-
ates two residue clusters and allows us to focus on
clusters of signi®cant size. The constructed graph
is represented by a Laplacian matrix of size n � n
and diagonalized to obtain the eigenvalues and
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eigenvectors. Using a very high threshold (for
example 25 %) does not give rise to any cluster and
using a very low threshold (say 2 %) resulted in
large expanded clusters.

The clusters obtained by using a threshold of
8.5 % in the protein lysozyme (1LZ1) is shown
graphically in Figure 2(a) and in a tabular form in
Table 2A. Column 4 corresponds to the sorted
vector components of the second lowest eigen-
value, and the residues Tyr20, Lys97, Arg101
having the constant value of ÿ0.310 form a three-
residue cluster. In column 5 and 6 of Table 2A are
tabulated the accessible surface area (Connolly,
1993) of the side-chains forming the cluster and the
secondary structure (Kabsch & Sander, 1983) to
which they belong. The absolute values of the
vector components of the top eigenvalues are
given in column 7 to 13. It is evident from column
7 to 13 that the vector components of the top
eigenvalues have information on only one of the
clusters, as the vector components are 0 for the
residues which are not part of the cluster. More-
over, the magnitudes of the vector components of
the top eigenvalues are correlated to the branching
of side-chain (number of other side-chains interact-
ing). For example in cluster 1, Tyr20 is highly
Figure 2. A connected graph rep-
resentation of the detected clusters
indicating the residue numbers
(vertices) and their branching infor-
mation. The same information is
provided in Table 2A, Table 2B
and Cluster Plots (Figure 3). The
lysozyme molecule (1LZ1) is
shown in LINE representation
(Humphrey et al., 1996).



Table 2. Clusters and eigenvector components in 1LZ1

A. 8.5% Overlap criteria
Eigenvector of Magnitude of the vector components of top eigenvalues

Res. Residue 2nd lowest %
Cla no nob name eigen value ASAc SSd 1 2 3 4 5 6 7

1 20 Tyr ÿ0.310 25.739 S2 0.000 0.000 0.000 0.000 0.814 0.000 0.000
97 Lys ÿ0.310 24.702 H4 0.000 0.000 0.000 0.000 0.354 0.000 0.000
101 Arg ÿ0.310 50.130 T11 0.000 0.000 0.000 0.000 0.461 0.000 0.000

2 3 Phe ÿ0.272 2.671 C2 0.000 0.000 0.000 0.000 0.000 0.814 0.000
7 Glu ÿ0.272 37.944 H1 0.000 0.000 0.000 0.000 0.000 0.466 0.000
8 Leu ÿ0.272 0.000 H1 0.000 0.000 0.000 0.000 0.000 0.348 0.000

3 54 Tyr ÿ0.024 10.498 S6 0.795 0.000 0.000 0.000 0.000 0.000 0.000
67 Asp ÿ0.024 5.018 C7 0.560 0.000 0.000 0.000 0.000 0.000 0.000
81 Cys ÿ0.024 1.372 H3 0.235 0.000 0.000 0.000 0.000 0.000 0.000

4 112 Trp 0.022 6.819 H6 0.000 0.861 0.000 0.000 0.000 0.000 0.000
106 Ile 0.022 2.796 H5 0.000 0.210 0.000 0.000 0.000 0.000 0.000
107 Arg 0.022 51.161 H5 0.000 0.362 0.000 0.000 0.000 0.000 0.000
117 Gln 0.022 33.679 T13 0.000 0.289 0.000 0.000 0.000 0.000 0.000

5 28 Trp 0.030 0.000 H2 0.000 0.000 0.816 0.000 0.000 0.000 0.000
17 Met 0.030 0.000 C3 0.000 0.000 0.434 0.000 0.000 0.000 0.000
23 Ile 0.030 7.904 S3 0.000 0.000 0.382 0.000 0.000 0.000 0.000

6 99 Val 0.199 1.493 H4 0.000 0.000 0.000 0.817 0.000 0.000 0.000
64 Trp 0.199 14.441 T8 0.000 0.000 0.000 0.415 0.000 0.000 0.000
109 Trp 0.199 7.465 C12 0.000 0.000 0.000 0.402 0.000 0.000 0.000

7 58 Gln 0.349 3.191 T7 0.000 0.000 0.000 0.000 0.000 0.000 0.811
35 Glu 0.349 16.328 H2 0.000 0.000 0.000 0.000 0.000 0.000 0.323
53 Asp 0.349 23.420 S6 0.000 0.000 0.000 0.000 0.000 0.000 0.488

B. 6% Overlap criteria
Eigenvector of Magnitude of the vector components of top eigenvalues

Res. Residue 2nd lowest %
Cla no nob name eigen value ASAc SSd 2 3 7 8 9 11

1 20 Tyr 0.176 25.739 S2 0.000 0.000 0.000 0.000 0.000 0.814
101 Arg 0.176 50.130 T11 0.000 0.000 0.000 0.000 0.000 0.461
97 Lys 0.176 24.702 H4 0.000 0.000 0.000 0.000 0.000 0.354

2 7 Glu 0.221 37.944 H1 0.000 0.000 0.709 0.000 0.000 0.000
1 Lys 0.221 35.378 C1 0.000 0.000 0.631 0.000 0.000 0.000
3 Phe 0.221 2.671 C2 0.000 0.000 0.269 0.000 0.000 0.000
87 Asp 0.221 58.695 C10 0.000 0.000 0.128 0.000 0.000 0.000
8 Leu 0.221 0.000 H1 0.000 0.000 0.098 0.000 0.000 0.000
29 Met 0.221 0.000 H2 0.000 0.000 0.035 0.000 0.000 0.000

3 67 Asp ÿ0.007 5.018 C7 0.000 0.655 0.000 0.000 0.000 0.000
54 Tyr ÿ0.007 10.498 S6 0.000 0.509 0.000 0.000 0.000 0.000
81 Cys ÿ0.007 1.372 H3 0.000 0.420 0.000 0.000 0.000 0.000
65 Cys ÿ0.007 0.000 C6 0.000 0.264 0.000 0.000 0.000 0.000
61 Ser ÿ0.007 0.000 T8 0.000 0.203 0.000 0.000 0.000 0.000
70 Thr ÿ0.007 0.021 C7 0.000 0.144 0.000 0.000 0.000 0.000
62 Arg ÿ0.007 15.402 T8 0.000 0.059 0.000 0.000 0.000 0.000
51 Ser ÿ0.007 0.464 S6 0.000 0.019 0.000 0.000 0.000 0.000
60 Asn ÿ0.007 21.356 S7 0.000 0.007 0.000 0.000 0.000 0.000

4 112 Trp 0.030 6.819 H6 0.806 0.000 0.000 0.000 0.000 0.000
30 Cys 0.030 0.000 H2 0.399 0.000 0.000 0.000 0.000 0.000
107 Arg 0.030 51.161 H5 0.251 0.000 0.000 0.000 0.000 0.000
116 Cys 0.030 0.028 T13 0.184 0.000 0.000 0.000 0.000 0.000
117 Gln 0.030 33.679 T13 0.182 0.000 0.000 0.000 0.000 0.000
27 Asn 0.030 26.481 H2 0.148 0.000 0.000 0.000 0.000 0.000
106 Ile 0.030 2.796 H5 0.144 0.000 0.000 0.000 0.000 0.000
124 Tyr 0.030 9.776 H7 0.135 0.000 0.000 0.000 0.000 0.000

5 28 TRP ÿ0.416 0.000 H2 0.000 0.000 0.000 0.000 0.816 0.000
17 Met ÿ0.416 0.000 C3 0.000 0.000 0.000 0.000 0.434 0.000
23 Ile ÿ0.416 7.904 S3 0.000 0.000 0.000 0.000 0.382 0.000

6 109 Trp ÿ0.112 7.465 C12 0.000 0.000 0.000 0.764 0.000 0.000
99 Val ÿ0.112 1.493 H4 0.000 0.000 0.000 0.516 0.000 0.000
31 Leu ÿ0.112 0.000 H2 0.000 0.000 0.000 0.291 0.000 0.000
64 Trp ÿ0.112 14.441 T8 0.000 0.000 0.000 0.185 0.000 0.000
35 Glu ÿ0.112 16.328 H2 0.000 0.000 0.000 0.171 0.000 0.000
58 Gln ÿ0.112 3.191 T7 0.000 0.000 0.000 0.038 0.000 0.000
53 Asp ÿ0.112 23.420 S6 0.000 0.000 0.000 0.009 0.000 0.000

a Cl no, Cluster number.
b Res. no, residue number.
c ASA, accessible surface area.
d SS, secondary structure (S, sheet; H, helix; T, turn; C, coil).
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branched (interacts with two other side-chains) as
compared to Lys97 and Arg101 (Figure 2(a)) and
has the highest vector component magnitude of
0.814 (Table 2A (column 11)). Thus, a highly
branched side-chain or the side-chain which is con-
nected to highly branched side-chains, has the lar-
gest absolute vector component value in the
corresponding top eigenvalue in the cluster. Such a
side-chain (vertex) is de®ned to be the center of the
cluster. Hence branching information is a bypro-
duct of the top eigenvalue (Randic, 1975). Also in
the other clusters, the residue forming center of the
cluster has the largest vector component corre-
sponding to the top eigenvalues. Thus to summar-
ize, the vector component of the second lowest
eigenvalue gives information on the clustering of
side-chains and the vector components of the top
eigenvalues give information on its branching
(number of interactions with other side-chains).
The detected clusters are shown graphically in the
form of a two-dimensional plot called the Cluster
Plot (Figure 3(a)). Information on the number of
clusters detected, the residues forming the clusters,
the center of clusters and the solvent accessibility
are obtained by just visualizing the Cluster Plot.
The ®rst residue in each cluster of the cluster plot
corresponds to the center of the cluster. For
example Tyr20, Phe3, Tyr54, Trp112, Trp28, Val99
and Gln58 form the centers of seven clusters
(Figure 3(a)).

Expanded cluster: network of side-
chain interaction

Since the residues are connected based on %
overlap between the side-chains, the detected clus-
ters are sensitive to the overlap criteria used. As
the percentage side-chain overlap cutoff is reduced,
some of the clusters are found to expand by a net-
work of additional side-chain interactions. A
threshold of 6 % is used on the same protein
(1LZ1) to show how the previously detected clus-
ters expand. Column 4 in Table 2B shows that six
clusters are detected using a reduced cutoff and a
comparison with Table 2A shows that cluster 6 is
formed by merging of clusters 6 and 7 observed
using a high percentage cutoff. This is also shown
in Figure 2(b). Clusters 2, 3 and 4 expand by adding
in extra residues to the cluster. However clusters 1
and 5 remain the same in spite of using a reduced
cutoff criteria. The rapid expansion of one or two
clusters as the percentage overlap criteria is reduced
is a general feature observed in all the proteins
studied and its probable signi®cance to protein
folding and structure is discussed in a later section.

The center of the cluster is also found to shift as
the cluster expands. Using a high % overlap cri-
teria Phe3 forms the center of cluster 2 (Table 2A)
and gets shifted to Glu7 in a reduced overlap cri-
teria (Table 2B). Cluster 6 is formed by the merging
of clusters 6 and 7 observed using a 8.5 % overlap
criteria. The cluster center shifts to Trp109 in clus-
ter 6 (Table 2B) as this residue links the two clus-
ters 6 and 7 (Figure 2(b)) observed using 8.5 %
overlap criteria.

Materials

The protein coordinates and the entry names
used are obtained from the Brookhaven database
(Bernstein et al., 1977). The program is written in
C, Fortran and MATLAB. The program is interac-
tive and has options for side-chain overlap criteria
to be de®ned by the user. The ¯owchart of the pro-
gram is given below (Figure 4). Although the pre-
sent study is restricted to hydrophobic and all
residue side-chain clusters, the program can also
be used for detecting exclusively charged clusters
as shown in the ¯owchart. Interested users can
mail their queries to sv@mbu.iisc.ernet.in.

Results and Discussion

As there is no uniformity in the structure of pro-
teins in terms of parameters such as packing den-
sity, non-bonded contacts and pairwise side-chain
interaction (Richards, 1974; Beardsley &
Kauzmann, 1996), any analysis based on rigid cri-
teria can miss some important features. For
example a commonly used approach to assign a
residue to the hydrophobic cluster or nucleus is
based on the accessibility information of the resi-
due (Plochocka et al., 1988). This information is
necessary but not suf®cient to study the topology,
structure and other properties of non-polar regions
of the protein, as hydrophobic clusters are known
to occur also on surfaces (Laurence & Evans, 1995).

In order to overcome this problem we have in
the present analysis constructed graphs based on
several criteria (see Algorithm) which are, (1) high
side-chain overlap, (2) medium side-chain overlap,
(3) low side-chain overlap, (4) high hydrophobic
overlap, (5) medium hydrophobic overlap, (6) low
hydrophobic overlap, (7) high contact hydrophobic
and (8) low contact hydrophobic. The results of the
analysis are presented below.

High overlap side-chain clusters

Residue preferences

An 8.5 % side-chain overlap criteria was used to
detect high overlap side-chain clusters. All the resi-
dues in the protein were included for the clustering
procedure. The clusters detected using a high side-
chain overlap criteria on six proteins myoglobin
(4MBN), hemoglobin (2LHB), ribonuclease
A(7RSA), angiogenin (1AGI), hen egg white lyso-
zyme (1LZC) and alpha lactalbumin (1ALC) are
shown in the form of cluster plots in Figure 5. The
detected clusters are dominated by charged resi-
dues like K, E and aromatic residues like F, H, Y
and W. A similar trend in the preference of resi-
dues in clusters was observed for a larger dataset
of proteins studied by Heringa & Argos (1991).

mailto:sv@mbu.iisc.ernet.in.


Figure 3. Cluster Plot: the X-axis denotes the residue number and the residue type (single letter code of amino
acid) is shown above the X-axis. Y-axis denotes the vector components of second lowest eigenvalue. The symbols (�)
denotes buried, (~) partially exposed and (?) completely exposed side-chains. The ®rst residue is the center of the
cluster (cluster number marked above the residue).
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Cluster location

The solvent accessibility of the side-chains form-
ing a cluster were calculated. The side-chains hav-
ing solvent accessibility less than 15 % were
considered buried, accessibility between 15 to 60 %
were considered partially exposed and accessibility

greater than 60 % were considered highly exposed.

This is denoted by different symbols in the cluster

plot (Figure 5). It is clear from Figure 5 that most

clusters have partially exposed side-chains, and are



Figure 4. Flow chart of the algorithm.
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located on the protein surface. This trend is also
observed in a larger data set of proteins (Heringa
& Argos, 1991). It is interesting to note the pre-
sence of buried, polar and charged side-chains in
the clusters. For example, D66 of cluster 1 in hen
egg white lysozyme (1LZC) is a buried charged
residue and N57 in cluster 2 of alpha lactalbumin
(1ALC) is a buried polar side-chain. Cluster 1 of
myoglobin (4MBN) has two buried histidine resi-
dues H24 and H119. Detecting such buried
charged residues in the clusters would be of inter-
est as charge or polar groups play an important
role in generating unique structures and conferring
conformational stability (Fersht, 1984; Harbury
et al., 1993; Honig & Yang, 1995). Also, buried
polar interactions are known to reduce the rate of
folding (Waldburger et al., 1996). Charged residues
in the cluster can also be possible targets of
mutation to study the role of residues in the stab-
ility and folding of proteins.

Thermal factors

The ¯exibility of protein atoms in a crystal struc-
ture is measured by its thermal factors called the
B factor (Stout & Jensen, 1968). The lower the
B factor, the more rigid is the atom associated with
it. The average B factor of a protein was calculated
by averaging over the B factors of all the atoms
obtained from protein crystal structures. The B fac-
tor of the cluster was determined by averaging
over all the atoms of the residues which form the
cluster (Table 3). It is observed that the average
B factors of the clusters are more often close to the
average B factor of the protein. Although the aver-
age B factors are generally correlated with the
exposure of the residue, there is no strict corre-



Figure 5. Cluster Plots. High overlap side-chain clusters (a)-(f). Myoglobin (4MBN), hemoglobin (2LHB), ribonu-
clease A(7RSA), angiogenin(1AGI), hen egg lysozyme(1LZC), alpha lactalbumin(1ALC). The axis and symbols rep-
resent the same as in Figure 3.
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Table 3. Thermal factors for the detected clusters

PDB code

Cluster number
(active site cluster

in bold)
% Exposed residues

in the cluster
Average B factor

of the cluster
Average B factor

of the protein

7RSA 1 40 14.3 15.4
2 100 14.7
3 100 16.5

1AGI 1 60 31.2 29.51
2 100 20.3
3 25 9.2
4 66.6 14.8

4MBN 1 40 13.1 13.59
2 100 12.7
3 71.4 13.8
4 33.3 12.2

2LHB 1 0 12.6 17.75
2 66.6 23.4
3 66.6 12.4
4 50 15.2
5 100 21.5
6 100 20.5

1ALC 1 100 30.9 29.8
2 25 16.3
3 0 23.9
4 33.3 28.5
5 50 28.9

1LZC 1 0 10.83 16.48
2 66.6 17.10
3 0 8.44
4 33.3 11.30
5 66.6 16.23
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spondence as seen from Table 3. Further the clus-
ters marked in bold are the clusters found near the
active site and are found to have the lowest B fac-
tors among the clusters detected, except in the case
of 2LHB.

Stability

The majority of the residues forming clusters
emanate from different secondary structural
elements of the protein, stabilizing the tertiary fold.
For example, cluster 4 in alpha lactalbumin (1ALC)
(Figure 5) is formed by H107, E25 and I101 which
are from three different helices. This cluster should
be important for the stability of this fold since an
equivalent cluster (cluster 4) constituting residues
M105, W28, W111, L17, Y23 and K116 is detected
in a structurally equivalent position in hen egg
white lysozyme (1LZC) (Figure 5) which has the
same fold as that of alpha lactalbumin. In the case
of myoglobin (4MBN), cluster 4 is formed by resi-
dues T39, L32 and 103Y and the residues are from
helices B, C and G, respectively. However, no
equivalent cluster was detected in 2LHB as the
packing of helices in 2LHB is different (Weaver,
1992). Cluster 3 in hemoglobin (2LHB) is formed
by D82, Y27 and W23. Y27 and W23 from the
middle of helix A and D82 from the middle of
helix E stabilize the orientation of the two helices.

Active site: expanded clusters

Generally one of the clusters in the high overlap
side-chain cluster is close to the active/binding site
of the proteins studied (Table 4). For example clus-
ter 4 in myoglobin (4MBN) occurs near the binding
site constituting residues 39T, 32L and 103Y
(Figure 6(a)) of which 103Y interacts with the por-
phyrin ring (Takano, 1977). As mentioned earlier
this cluster also has a low B factor (Table 3). The
most interesting feature of the cluster close to the
active site is the way in which they expand as the
side-chain overlap criteria is reduced (low overlap)
to form a contiguous network. Only one or two
clusters expand when the overlap criteria is
reduced and invariably the active site cluster is one
of them (Table 4).

The active site clusters detected with high over-
lap criteria and low overlap criteria for three pro-
teins; myoglobin (4MBN), ribonuclease A (7RSA)
and hen egg white lysozyme (1LZC) are shown in
Figure 6. As the overlap criteria is reduced from
high side-chain overlap to low side-chain overlap,
a few clusters expand by incorporating other resi-
dues into the cluster. This expansion of a few clus-
ters may be important from the folding point of
view as the nucleation condensation hypothesis
supports the formation of an expanded cluster
around the nucleation center (Fersht, 1997). It has
been shown by protein engineering methods that
the residues which are involved in the catalysis are
delocalized over the whole active site and are not
restricted to just a few key residues (Fersht, 1987).
The expansion of particularly the active site cluster
is signi®cant from this perspective. The expanded
clusters may also have implications at the structur-
al level as the expanded network of side-chain
interactions surrounding the active site (Figure 6)



Table 4. Active site clusters and expanding clusters

PDB code
Active site

cluster numbera
Residues of the cluster near

the active/binding siteb
Expanding cluster

numberc

1ALC 2 Y50 N57 C77 Q65 2
1LZC 3 I98 W63 W108 3
7RSA 1 Q11 K7 L35 K41 H12 F8 1

F120 N44 T45 D83
1AGI 3 T45 F116 E118 H14 3 1
4MBN 4 T39 L32 Y103 4 1
2LHB 4 F42 Q49 F52 F55 4 1 5 6

a Details are given in Table 3.
b The residues interacting with the ligand are shown in bold.
c The active site cluster number is shown in bold.
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may be important in aiding the active site cleft
movement during the process of ligand binding.

Hydrophobic clusters

Structural similarity

It is a known fact in protein structures that the
majority of non-polar side-chains pack together to
form the core of the protein. Among sequences
which take the same topology, the buried hydro-
phobic residues are known to be the most con-
served (Murzin et al., 1992; Bashford et al., 1987).
Also, the conserved residues are shown to be
important in the mechanism of folding
(Shakhnovich et al., 1996). In order to assess the
ef®cacy of our algorithm, we have applied our
method on topologically similar proteins and have
shown that the residues which form the clusters
are conserved in the two proteins.

The hydrophobic clusters were detected using a
medium hydrophobic overlap criteria (2.5 %). The
same % overlap criteria was used on the two topo-
logically similar proteins. The detected clusters are
shown to occupy structurally similar locations
among the pairs of proteins considered (Figure 7).
The residues forming clusters are mostly buried.
Even though there are a few exposed hydrophobic
clusters detected, they are found to occupy an
equivalent position in the two topologically similar
proteins. Ribonuclease A (7RSA) and angiogenin
(1AGI) are proteins with the same fold with a
sequence similarity of 33.3 %. The detected clusters
are shown to occupy structurally equivalent pos-
itions among the two proteins. Most residues form-
ing the cluster in the two proteins are also
conserved in the two sequences as shown by a
symbol (*) in Figure 7. Similarly, in the case of
myoglobin (4MBN) and hemoglobin (2LHB) the
conserved hydrophobic residues and their
locations in the structure are shown in Figure 7.
The same observation also holds for alpha lactalbu-
min and lysozyme. Hence, the algorithm is robust
enough to detect such conserved features in struc-
turally similar proteins and can serve as a useful
tool in protein structure analysis.
Folding intermediates

A lot of experimental work has gone into identi-
fying early folding intermediates. Hydrogen
exchange experiments are used to monitor the
exchange rates of the backbone amides with the
bulk solvent. A reduction in the exchange rate of
the amide protons is due to its protection from the
bulk solvent by the protein atoms during the pro-
cess of folding (Chyan et al., 1993; Lu & Dahlquist,
1992).

The detected hydrophobic clusters with low
hydrophobic overlap criteria (1 %) show a good
correlation with the protection factors. The resi-
dues belonging to various clusters are listed in
Table 5. The residues which get protected are
shown in bold. The protection of amide hydrogen
atoms during the refolding of hen egg white lyso-
zyme was measured by Radford et al. (1992). The
amide protons of the residues which get protected
within 9 ms of the refolding process are shown in
bold in Table 5. It is observed that most of the resi-
dues in cluster 1 get protected within 9 ms. The
amide proton of at least one residue is found to
get protected within 6 ms of the folding process in
all the ®ve clusters (Table 5) detected in myoglobin
(Jennings & Wright, 1993) emphasizing the fact
that the detected clusters are very important from
the folding perspective. The degree of protection of
amide protons on RNase A has been studied
(Udgaonkar & Baldwin, 1990). The amide protons
were classi®ed based on the degree of protection,
namely strong protection, moderate protection and
weak protection. The residues of the detected clus-
ters which show strong degree of protection are
shown in bold in Table 5. For example V54, V47,
I81, I106 and V108 of cluster 1 show a strong
degree of protection. Similarly V63 in cluster 2
is measured to be strongly protected but Y97 in
cluster 3 shows a moderate protection. Thus
many of the residues detected in the hydro-
phobic clusters appear to have participated
during the intermediate stages of protein folding
and seem to be important from the folding point
of view.

The emphasis so far in the literature has been in
correlating folding intermediates with hydrophobic
regions (Evans et al., 1991; Pen & Briggs, 1992;



Figure 6. The active side clusters of 4MBN, 7RSA and 1LZC. Figures on the left ((a), (b), (c)) are the active site
clusters. Figures on the right ((d), (e), (f)) are the corresponding expanded clusters. The ligands are shown in VDW
representation and cluster residues are shown in BONDS representation. Figures were generated using VMD
(Humphrey et al., 1996).
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Gronenborn & Clore, 1994; Zehfus, 1995). How-
ever, polar interactions are shown to be barriers
during the folding process (Waldburger et al.,
1996). High overlap side-chain clusters detected
were examined to see if any charged residues in
the cluster show high protection factors. Interest-
ingly the charged/polar residues which get pro-
tected form the center of the cluster. For example



Table 5. Hydrophobic clusters

PDB
code

Cluster
number

Hydrophobic residues forming
clustera

1ALC 1 P24 L115 L119 I27 L23 Y36 F31
W118

2 L26 I21 I15 L12 I85 L8 F3
3 F80 I55 I75 M30 F53 W104 A92

W60 I72 I95 Y103
4 I41 Y50 L81

1LZC 1 F3 L8 I55 I88 M12 F38 L17
W28 L56 V92 Y23 M105
W111 V99 W108 V29 W123
A32 I58 W63 L83 I98 L75
Y53 I78 A11 Y20 F34

2 I124 L25 L129
4MBN 1 I28 I111 V114 L135

2 F123 V13 L115 M131 V10 W7
M131

3 F138 I75 I142 L86 A94 Y146 Y151
I101

4 F33 L40 F43 M55 F46 L49 L61
I30

5 W14 V17 L72 L76
7RSA 1 M13 F8 L51 V54 V47 M79 I81

F120 I106 A102 V108 V57 P117
2 I107 V63 A122 V124
3 M30 L35 F46 Y97 M29 A20 Y25

a Experimentally identi®ed residues as protected in the fold-
ing intermediate are marked in bold.
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the amide proton of K33 in cluster 5 in alpha lactal-
bumin gets protected within the ®rst minute of
folding (Buck et al., 1993) and is also the center of
cluster 5 (Figure 5(b)). A similar correlation
between the charged/polar residues having high
protection factors and the residue forming the cen-
ter of the cluster is observed in other proteins as
well. For example, in the case of cluster 1 of ribonu-
clease A, Q11 forms the center of the cluster as seen
from Figure 5(c). Q11, adjacent in sequence to the
catalytically active H12 shows a weak degree of
protection (Udgaonkar & Baldwin, 1990) and is also
a conserved residue in the ribonuclease A family.

Hydrophobic clusters: � values

The recent advances in protein engineering and
NMR procedures have contributed to our ideas on
protein folding (Fersht, 1997). Using these
methods, it has been possible to identify residues
important in the transition state of folding by per-
forming point mutations. The effect of the engi-
neered mutations on the kinetics and the
thermodynamics of the protein molecule is used as
a probe to study the structure formation during
the folding process. Each mutation alters speci®c
side-chain interactions in the transition and the
native state resulting in a difference of stability
between the mutant and wild-type protein for the
two states. This effect of the mutation is estimated
by the �F value which is obtained by the ratio
��GT ÿ D/��GN ÿ D (Fersht, 1993), where
��GN ÿ D is the change in stability of the protein
on mutation (N, native state; D, denatured state)
and ��GT ÿ D is the change in stability of the tran-
sition state of folding (T, transition state; D,
denatured state). If �F is 1, the transition state is
disrupted by mutation by the same energy as is
the fully folded protein and so indicates complete
formation of native structure in the transition state,
while �F of 0 shows that the transition state is as
insensitive to mutation as is the fully denatured
state.

In the present analysis we have attempted to
correlate the observed �F values with the detected
hydrophobic residues in the cluster. We ®nd a
good correlation between the vector components of
the top eigenvalues and the reported �F values.
Detailed � value analysis has been done for chy-
motrypsin inhibitor (1CIQ) (Itzhaki et al., 1995).
Mutations have been done on the residues forming
the core and mini core of the protein. Clusters 2
and 3 correspond to the core and mino-core,
respectively (Figure 8(a)). The largest �F of 0.53
was measured for a LA49 mutant in the core.
Leu49 is found to be the center of the hydrophobic
cluster detected (Figure 8). A correlation coef®cient
of 0.87 was obtained between �F values observed
in the core mutations and the vector components
of the top eigenvalue of the hydrophobic cluster. A
similar correlation was also obtained for the mini-
core. The �F values and the vector components are
tabulated in Table 6A.

Detailed � value analysis has also been done on
barnase (1RNB) (Matouschek et al., 1992). The re-
folding pathway comprises a folding intermediate,
a major transition state and the fully folded struc-
ture. A classi®cation based on the � value was
done to quantify the effect of mutation on the three
states observed during the folding process, namely
the intermediate state, transition state and the ®nal
folded state. The � values obtained from the tran-
sition state were classi®ed as �T and from inter-
mediate states were classi®ed as �I. For
interactions which are same in the transition state
and in the folded state �I 4 �T � 1. This is found
for IV88 mutation which has the largest vector
component magnitude of 0.763 in the hydrophobic
cluster 3 (Table 6B) and forms the center of the
cluster (Figure 8(b)). If the interactions in the tran-
sition state are stronger or more frequent than in
the intermediate state then �I 4 �T < 1. This is
observed for mutations IV109, VT10, IA76 and
LA14. The magnitudes of the vector components
are comparable in these cases. The two mutations
whose �T values do not correlate with the magni-
tude of the vector component are YA13 and YA17.
A possible reason for this disagreement could be
that the two tyrosine residues are highly exposed
to the solvent in the folded state and could have
undergone minor conformational changes after the
®nal folded state was attained. On the other hand,
the buried hydrophobic residues show a good cor-
relation with the �T values. For mutation IV96,
�I � �T < 1, means this region is formed both in
the transition state and intermediate state but less
formed in the folded state. The magnitude of the



Figure 7. (a) Top: Structural location of high contact hydrophobic cluusters in topologically similar proteins 7RSA
and 1AGI. Below: Sequence alignment. Identical residues are denoted by dark shading; equivalent residues by grey
shade; residues forming the cluster by *. (b) Structurally similar proteins 4MBN and 2LHB. The description of top
and bottom panels are the same as that of (a). The clusters are shown in BONDS representation and the protein in
LINE representation.
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Figure 8. Left panel: Connected graph representation of high contact hydrophobic cluster in chymotrypsin inhibitor
2 (1CIQ) (Neira et al., 1996) and barnase (1RNB) (Baudet & Janin, 1991). The numbered Cb atoms form the vertices
and edges represent interacting hydrophobic side-chains. Right panel: The corresponding cluster plots. The center of
the cluster L49 in (1CIQ) and I88 in (1RNB) are shown in the connected graph and in the corresponding cluster plot.
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vector component corresponding to IV96 is very
small (0.043) (Table 6B). �I � �T � 0 is observed
for IV4 mutation which shows that the structure
probed by the mutation is as unfolded in the inter-
mediate and transition state as it is in the unfolded
state. The corresponding vector component magni-



Table 6. Correlation of exprrimental �F values with the vector components

A. In 1CIQ

Protein
code

Mutation in
the core �F

Magnitude of vector
components of the top

eigenvalue

1CIQ LA49 0.53 0.665
IV20 0.40 .627
LA51 0.25 0.035
IV29 0.17 0.029
LA8 0.15 0.166
PA61 0.02 0.078
mini-core
FL50 0.28 0.478
VA38 0.26 0.206
LA32 0.21 0.088

B. In 1RNB

Protein
code Mutation �I �T

Magnitude of vector
components of the top

eigenvalue

1RNB IV88 0.7 0.9 0.763
IV109 0.4 0.6 0.174
VT10 0.3 0.4 0.326
IA76 0.2 0.5 0.213
LA14 0.5 0.6 0.208
IV96 0.6 0.6 0.043
IV4 0.0 0.0 0.049
YA13 0.4 0.5 0.000
YA17 0.5 0.6 0.000

�F, �T and �I values are described in the text.
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tude is also the least and close to 0. The overall
correlation coef®cient of the vector components
with �T values measured in the transition state is
0.55.

The cluster plot can be useful in predicting
mutations to study the transition state of folding.
For instance, the residues Y24 and A74 have sig-
ni®cantly high vector component magnitudes in
cluster 3 of 1RNB, however their �F values have
not been reported. Hence we suggest that mutation
of these residues could have a larger effect on the
transition state of folding. The technique however
is limited by the fact that one cannot predict on
those residues which do not form part of the clus-
ters detected.

Multi-domain proteins

With the increasing number of protein structures
in the protein database, a structural classi®cation is
essential. A major challenge in such a classi®cation
is in assigning the domains. A database of structur-
al domains has been presented (Sowdhamini et al.,
1996), where the domains were identi®ed based on
the clustering of secondary structural elements. As
there is no universal de®nition of a domain, the
other existing algorithms use different criteria for
domain identi®cation. Some of the algorithms
reported (Holm & Sander, 1994; Siddiqui & Barton,
1995; Islam et al., 1995) are based on the fact that
the residues forming a domain would make more
internal contacts within themselves than with the
rest of the protein. The DOMAK algorithm
(Siddiqui & Barton, 1995) calculates split values
from the number of each type of contact when the
protein is divided, the split value being larger
when the two parts of the structure are different. A
consensus approach for assignment of structural
domains has been presented (Jones et al., 1998)
which uses all the available algorithms and assigns
domains based on the consensus. For proteins
which could not be done by consensus procedure,
the domain boundaries were assigned using any
one of the algorithms and then the domains were
analyzed for trend in size and secondary structure.
The criteria for our algorithm is similar to that of
Swindells (1995) in which each domain in a protein
is considered to have a hydrophobic core and
detecting the cores would correspond to detecting
the domains. We have used high hydrophobic con-
tact criteria to construct the graph. The resulting
clusters are compact, buried and form the core of
the protein. By looking at the cluster plot, the num-
ber of cores and hence the number of domains can
be deduced. Figure 9 shows the cores detected in
glutathione reductase (3GRS) which has three
domains and hydrolase elastase (1EZM) having
two domains. When a low hydrophobic contact cri-
teria is used, the hydrophobic cores start to expand
by adding in additional hydrophobic residues
(Figure 9). A few hydrophobic clusters on the sur-
face and domain interface are also detected.

In the above sections we have demonstrated the
applicability of our method in detecting clusters
which are of interest from protein structure, func-
tion and folding points of view. Other interesting



Figure 9. Left panel: The detected cores in glutathione reductase(3GRS) (Karplus & Schulz, 1987) and hydrolase
elastase(1EZM) (Thayer et al., 1991) using high contact hydrophobic criteria. Right panel: Expanded clusters using
low contact hydrophobic criteria. The clusters are shown in VDW representation and the protein molecule in LINE
representation.
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problems like identi®cation of surface hydrophobic
patches involved in protein-protein interaction,

speci®c side-chain networks involved near the
active site and glycosylation sites can be probed by
this approach and we have started our preliminary

investigations on these lines.
Conclusions

A novel technique based on the graph spectral
method has been developed for cluster analysis in
protein structures. The non-bonded side-chain
interaction between residues in proteins and the
degree of connectivity of residues are coded in the
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form of a matrix called the Laplacian matrix. Side-
chain clusters and the information regarding the
branching of individual side-chains forming the
cluster is obtained from the eigenvalues and eigen-
vectors of the Laplacian matrix. A variety of clus-
ters are detected by using different side-chain
interaction criteria. The developed computer pro-
gram is ¯exible enough to obtain different user
de®ned criteria as input and detect clusters of
interest. The output of the program is a simple
two-dimensional cluster plot and has information
on the number of clusters, the type of residues and
the accessible surface area of the side-chain form-
ing the cluster. The residues identi®ed as the center
of the cluster from the higher eigenvector com-
ponents are also shown on the cluster plot.

In all the proteins studied, a cluster close the
active or binding site was detected, of which at least
one residue was in direct interaction with the
ligand. This cluster should be important from the
structure and function point of view as the inter-
actions of the side-chains forming the cluster should
be important to orient the side-chain which is
directly involved in the substrate binding. The most
interesting feature of the clusters close to the active
site is the way in which they expand as the side-
chain overlap criteria is reduced. Such expanded
clusters are also signi®cant in the context of nuclea-
tion-condensation hypothesis of protein folding.

The detected hydrophobic clusters show a good
correlation with the experimentally observed fold-
ing intermediates. The magnitude of the vector
components corresponding to the higher eigen-
values correlate with the � values which is a direct
measure of the importance of speci®c side-chain
interactions in the transition state of folding. Thus,
the method serves the purpose of detecting side-
chain clusters which could have formed early
during the process of folding and can serve as a
tool for studying protein folding.

The algorithm is also useful in detecting
domains in protein structures and conserved
hydrophobic side-chain clusters in topologically
equivalent protein structures. This method can
serve as a tool in the analysis of new structures
and has potential in detecting surface clusters
involved in protein-protein and protein-substrate
interaction.
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Appendix
A Clustering by Graph Spectra

A set of n points (vertices) in space can be con-
nected by m edges to represent a graph and such a
graph can be written in the form of an adjacency
matrix. The adjacency matrix of the graph is an
n � n matrix where the ijth entry is 1 if i and j are
connected and 0 if they are not connected. A
weighted graph can be constructed by assigning
weights to the edges connecting the vertices. Now
the clustering problem is to ®nd the location of n
points which minimizes the function given below
(equation (A1)) (Hall, 1970). In this section we
follow the notation and the formulation as given
by Hall (1970). Given n points and n � n
symmetric adjacency matrix Aij which gives the
connection between points i and point j, we want
to ®nd the location of n points which minimizes
the weighted sum of the squared distances
between the points.

If xi denotes the X coordinate of point i and Z
denotes the weighted sum of the squared distances
between the points,

Z � 1=2
Xn

i�1

Xn

j�1

�xi ÿ xj�2Aij �A1�

where Aij is the adjacency matrix, then the
one-dimensional problem is to ®nd a row
vector X0 � (x1, x2, . . . xn) which minimizes the
above function where prime denotes the vector
transposition. To avoid the trivial solution xi � 0
for all i, the following quadratic constraint is
imposed:

X0X � 1 �A2�
The solution to the above framed problem is as fol-
lows:

Let ai and a0j be the ith row and jth column sum,
respectively of the matrix A. Since the adjacency
matrix A is symmetric ai � a0j. De®ne a diagonal
matrix D � (dij) as follows:

dij � 0 if i 6� j
ai if i � j

�
Now de®ne the following matrix:

B � DÿA �A3�
The matrix B is called the Laplacian matrix.

Now we shall show the expression (A1) can be
rewritten in terms of the Laplacian matrix as:

Z � X0BX �A4�
Expanding equation (A1) we get:

Z � 1=2
Xn

i�1

Xn

j�1

�x2
i ÿ 2xixj � x2

j �Aij �A5�
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Z � 1=2
Xn

i�1

x2
i ai ÿ 2

Xn

i�1

Xn

j�1

xixjAij �
Xn

j�1

x2
j a0j

0@ 1A
�A6�

Z �
Xn

i�1

x2
i ai ÿ

Xn

j�1

Xn

i6�j

xixjAij �A7�

Since Aij is a symmetric matrix ai � a0j, hence Z can
be written as:

Z � X0BX �A8�
To minimize Z subject to the constraint X0X � 1,
introduce the Lagrangian multiplier l and form
the Lagrangian:

L � X0BX ÿ l�X0X ÿ 1� �A9�
Taking the ®rst partial derivative of L with respect
to the vector X and setting the result equal to zero
yields:

2BX ÿ 2lX � 0 �A10�
If I is identi®ed as the identity matrix, the above
equation can be rewritten as:

�Bÿ lI�X � 0 �A11�
which yields a nontrivial solution X, if and only if
l is an eigenvalue of the matrix B and X is the cor-
responding eigenvector. If the above equation is
premultiplied by X0 and the constraint equation
(A2) is applied we obtain:

l � X0BX �A12�
Thus, the formal solution to equations (A1) and
(A2) is simply that X is the eigenvector of B which
minimizes Z and l is the corresponding eigenvalue.
The minimum eigenvalue zero yields the uninter-
esting solution X � (1=

���
n
p

; 1=
���
n
p

; . . . ; 1=
���
n
p

).
Hence the second smallest eigenvalue and the
associated eigenvector which yields the optimal sol-
ution is considered. As we shall see, this solution is
related to the clustering of points. The above sol-
ution for one dimension also holds good in two and
three-dimensional space (Hall, 1970).

The above given procedure for clustering by
graph spectra is illustrated by the following
example. Consider a set of points in two-
dimensional space as given in Figure A1(a). In
order to cluster the points in two-dimensional
space, a graph for the given con®guration of
points is constructed. The points would rep-
resent the vertices of the graph and the edges
would represent 1/dij, where dij is the distance
between the points i and j as given in
Figure A1(b). The reciprocal of the distances
ensures that higher edge weights are assigned
to shorter distances. Here, only those points
that are less than a distance of three units (1/
dij 5 0.33) are considered to be connected in
the graph. An extremely low edge weight of
0.01 is assigned to those points that are separ-
ated by a distance greater than three units.
Figure A1. (a) A set of points in
two dimensional space. (b) A con-
nected graph representation for the
con®guration. The vertices are
numbered and the edges are
shown by their corresponding edge
weight.
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One can use any edge weight much less than
(1
3) for any two vertices greater than a distance

of three units.
Now, the adjacency matrix A for the graph in

Figure A1(b) is given by:

A �

0 1 0:67 0:01 0:01 0:01 0:01
1 0 0:50 0:01 0:01 0:01 0:01

0:67 0:50 0 0:01 0:01 0:01 0:01
0:01 0:01 0:01 0 0:5 0:4 0:01
0:01 0:01 0:01 0:5 0 0:67 0:01
0:01 0:01 0:01 0:4 0:67 0 1:2
0:01 0:01 0:01 0:01 0:01 1:2 0

0BBBBBBBB@

1CCCCCCCCA
Eigenvalues Vertex no. 0.0000 0.0700 0.834

Eigenvectors 1 0.3780 0.4364 ÿ0.000
2 0.3780 0.4364 ÿ0.000
3 0.3780 0.4364 ÿ0.000
4 0.3780 ÿ0.3273 ÿ0.595
5 0.3780 ÿ0.3273 ÿ0.336
6 0.3780 ÿ0.3273 0.245
7 0.3780 ÿ0.3273 0.686
and the degree matrix D is given by:
D �

1:71 0 0 0 0 0 0
0 1:54 0 0 0 0 0
0 0 1:21 0 0 0 0
0 0 0 0:94 0 0 0
0 0 0 0 1:21 0 0
0 0 0 0 0 2:3 0
0 0 0 0 0 0 1:25

0BBBBBBBB@

1CCCCCCCCA
Hence the Laplacian is given by B � D ÿ A which
is:
B �

1:71 ÿ1 ÿ0:67 ÿ0:01 ÿ0:01 ÿ0:01 ÿ0:01
ÿ1 1:54 ÿ0:50 ÿ0:01 ÿ0:01 ÿ0:01 ÿ0:01
ÿ0:67 ÿ0:50 1:21 ÿ0:01 ÿ0:01 ÿ0:01 ÿ0:01
ÿ0:01 ÿ0:01 ÿ0:01 0:94 ÿ0:5 ÿ0:4 ÿ0:01
ÿ0:01 ÿ0:01 ÿ0:01 ÿ0:5 1:21 ÿ0:67 ÿ0:01
ÿ0:01 ÿ0:01 ÿ0:01 ÿ0:4 ÿ0:67 2:3 ÿ1:2
ÿ0:01 ÿ0:01 ÿ0:01 ÿ0:01 ÿ0:01 ÿ1:2 1:25

0BBBBBBBB@

1CCCCCCCCA

The Laplacian matrix is diagonalized and the eigenvalues and eigenvectors are tabulated below.
2 1.5786 1.7697 2.6503 3.2573

0 0.0000 0.2824 ÿ0.7661 ÿ0.0000
0 0.0000 0.5223 0.6276 0.0000
0 0.0000 ÿ0.8047 0.1385 ÿ0.0000
9 0.6223 ÿ0.0000 0.0000 0.0876
4 ÿ0.7587 0.0000 ÿ0.0000 0.2475
7 ÿ0.0498 0.0000 0.0000 ÿ0.8289
6 0.1862 ÿ0.0000 ÿ0.0000 0.4939
It is evident that the lowest eigenvalue 0.000
gives rise to a redundant solution where all the
components have a value of 0.378 which is 1=

���
7
p

since there are seven vertices (points). An examina-
tion of the components of the eigenvector corre-
sponding to the second lowest eigenvalue shows
that they form two distinct graphs (clusters): 1, 2
and 3 have the same value (0.4364) and com-
ponents 4, 5, 6 and 7 have the same value
(ÿ0.3273). The second lowest eigenvalue (0.0700)
and its corresponding vector components are
shown in bold. It is also evident that the vector
components of the top eigenvalues (3.257 and
2.650) have information on any one of the two
clusters as the vector components are non-zero for
the vertices which form a cluster. From Figure 1(b)
it is observed that vertex 6 is highly branched as
compared to other vertices which form cluster 2.
This information is derived directly by examining
the vector components of the top eigenvalue
(3.257) of which vertex 6 has the largest magnitude
of 0.8289. In the case of cluster 1 formed by ver-
tices 1, 2 and 3 all the vertices have equal degree of
two, but vertex 1 has the two largest edge weights
(1 and 0.67) connected to it (Figure A1(b)). This
information is directly obtained from the com-
ponents of the second largest eigen value (2.650) of
which the magnitude of vertex 1 is high (0.7661) as
compared to the other two vertices 2 and 3.

Thus the above simple example demonstrates
how the analysis of eigenvalues and eigenvectors
called the study of graph spectra can be used for
deriving information regarding clusters and cluster
centers
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