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Networks, Dynamics, and Modularity
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The identification of general principles relating structure to dynamics has been a major goal in the
study of complex networks. We propose that the special case of linear network dynamics provides a
natural framework within which a number of interesting yet tractable problems can be defined. We
report the emergence of modularity and hierarchical organization in evolved networks supporting
asymptotically stable linear dynamics. Numerical experiments demonstrate that linear stability benefits
from the presence of a hierarchy of modules and that this architecture improves the robustness of
network stability to random perturbations in network structure. This work illustrates an approach to
network science which is simultaneously structural and dynamical in nature.

DOI: 10.1103/PhysRevLett.92.188701 PACS numbers: 89.75.Fb, 45.30.+s, 87.23.Kg, 89.75.Hc
directed, edge-weighted network and a linear dynamical work structure.
In the science of complex networks, there is a long-
standing problem concerning the identification of general
principles relating network structure to dynamics [1].
However, as several members of the physics community
have pointed out recently [1,2], research efforts have for
the most part been focused on structural properties of
networks and the evolution of these properties. The struc-
tural principles identified are often fascinating and sug-
gestive. Prominent examples include small-world [3] and
scale-free architectures [4] and community and modular
structure [5] arising in social, biological, and technologi-
cal networks. Some interesting work has been done con-
necting these structural properties to network function. It
has been shown, for instance, that ‘‘shortcut’’ links gen-
erate phase transitions in the communication of informa-
tion and disease in a small-world network [3,6] and that
scale-free networks possess a surprising robustness to
random failures [7]. Unfortunately, it is not clear how
to address general questions about dynamics on networks;
this may account for the apparent shortage of tractable
questions about the general principles relating structure
and dynamics.

We propose that linear dynamics on a network provides
a natural starting problem. A network of n nodes, labeled
1 through n, with directed, weighted links can be repre-
sented by an n-by-n matrix M in a straightforward man-
ner: the matrix element Mij defines the edge weight of the
directed edge connecting node i to node j, with a weight
of 0 indicating the absence of that particular edge. M
also, however, defines a linear dynamical system, _xx �
Mx. If we use xi to represent a state variable associated
with the ith node, this correspondence allows us to think
of the matrix M as simultaneously representing both a
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system; in this way, the entries of M naturally acquire
both structural and dynamical significance. This view-
point carries with it many interesting and important
questions about how dynamical features of the network
are related to its topology. For instance, which topologies
support stable linear dynamics? Since stability is ex-
tremely rare in large, random matrices [8], we must
expect that special structural features accompany linear
stability in a network dynamical system. What are
these features? What does a large, linearly stable network
look like? This question is of broad importance, even
for real networks exhibiting nonlinear dynamics, since
the theory of local dynamics around equilibria in a non-
linear system relies on a solid understanding of linear
dynamics.

In this Letter, we report the emergence of modularity
and hierarchical organization in evolved networks sup-
porting asymptotically stable linear dynamics. Unlike
other forms of modularity and hierarchical organization
reported recently [5], the architecture we present depends
crucially on the network having directed edges (direc-
tional links provide an important source of complexity in
real networks [1,9]). Furthermore, since the elements of
M have simultaneous structural and dynamical signifi-
cance, this modular architecture is mathematically mani-
fest in the dynamics in a precise manner. A number of
authors have conjectured about the intertwining of mod-
ularity and stability in various contexts [8,10]— our work
provides straightforward, concrete support for these con-
jectures. Numerical experiments demonstrate that linear
stability benefits from the presence of a hierarchy of
modules and that this architecture improves the robust-
ness of network stability to random perturbations in net-
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FIG. 1. Average fitness of population (solid line) and average
Hamming distance between members of the population (dashed
line, scaled to fit axes) as evolution progresses. These curves
demonstrate that our algorithm successfully evolves a large,
diverse population of asymptotically stable networks.
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FIG. 2. Decomposition of a network into a hierarchy of
strongly connected components (SCCs): The network on the
left is partitioned into three SCCs by dotted curves. The
connectivity of these SCCs is represented by the network on
the right; note the absence of directed loops in this network.
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We cannot get a good sample of linearly stable
networks by random search, but a standard genetic algo-
rithm (GA) allows us to evolve a sample in a straightfor-
ward manner.We begin with a population of 1000 25-node
random networks. These networks are generated by draw-
ing a directed edge from node i to node j (where j can
equal i) with probability p and randomly choosing edge
weights from a uniform distribution on ��1; 1�. We
choose p � 0:1 so the networks are sparse but well above
the giant-component transition [1]. The algorithm con-
sists of the following steps: First, it assigns a fitness value
(defined below) to each network in the population. Next,
it randomly selects pairs of parents, with an individual
selected a number of times proportional on average to that
individual’s fitness relative to the rest of the population.
Then, it recombines the attributes of each pair of parents
to produce a pair of offspring. Recombination is achieved
by swapping the values in a rectangular region of one
parent matrix with the corresponding values in its
‘‘spouse’’ matrix. The rectangular region is chosen by
randomly selecting corners such that all matrix entries
are equally likely to be included. Finally, the offspring
replace the parents, producing a new population of net-
works and the above steps repeat.We sample and study the
stable individuals at various generations.

By basing our fitness function on linear stability, we
interweave the dynamics on the network with evolution of
the network structure. Our fitness function rewards a
network for each eigenvalue with a negative real part.
Instead of adjusting the magnitude of its leading eigen-
value, each network evolves to become more stable by
reducing the dimension of, and eventually eliminating,
the unstable manifold of its equilibrium point. Figure 1
shows the evolution of stability by plotting the average
fitness of the population for successive generations.
Individuals of fitness 1 are asymptotically stable and,
thus, the evolution of populations with average fitness
near 1 indicates that our GA has indeed found many
large, linearly stable networks. The average Hamming
distance between two networks in a population provides
a measure of diversity. Because this measure decreases
slowly while fitness increases rapidly, the population re-
mains diverse; our results are not due to the structure of a
single network infecting the population.

At first glance, the evolved networks look no different
than the random networks comprising the initial popula-
tion—they display similar degree distributions and simi-
lar densities (where density is defined to be the fraction of
nonzero entries in M). However, these similarities belie
important differences. As evolution progresses and the
population becomes more fit, individuals show increased
modular structure, in two senses. First, the network
breaks into components. Nodes i and j are in two separate
components if and only if there exists no directed path
connecting i to j in either direction. Second, within each
component, a number of strongly connected components
(SCCs) emerge. Nodes i and j are in the same SCC if and
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only if there exists a directed path from i to j and from j
back to i (thus, i and j are part of the same directed
cycle). Two nodes are in different SCCs but the same
component if there exists a directed path from one node
to the other but not vice versa; such paths include edges
that link nodes from different SCCs. These cross-SCC
connections by definition cannot form directed cycles.
Thus, they define a hierarchy of modules, represented
in Fig. 2.

We observe in Fig. 3(a) that the number of components
increases and the average component size decreases as
evolution progresses. Most of the change occurs in the
earlier generations, where the average fitness rises steeply
from one generation to the next. The earlier generations
exhibit a bimodal distribution in component sizes, domi-
nated by large components but with a significant presence
of tiny components as well. As the average fitness of the
population rises, this distribution remains bimodal but
the tiny component peak emerges as dominant. At no time
188701-2
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FIG. 3. Distribution of component sizes (a) and SCC sizes (b) in evolved populations. Leftward motion of the probability indicates
increased modularity in the stable networks. Results are averaged over five independent runs; error bars indicate typical horizontal
spread. Note that the evolved networks retain a giant component.
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do we observe any medium-size components. Similarly,
in Fig. 3(b), we observe that the number of SCCs in-
creases and the average SCC size decreases, even if we
restrict our analysis to those networks consisting of only a
single component. Again, the earlier generations exhibit a
bimodal distribution in SCC sizes, except here the small
SCCs already dominate and medium-size SCCs are plen-
tiful. As the average fitness of the population rises, the
weight of this distribution moves to the left until the large
SCC mode has vanished. All of the above trends indicate
a motion towards increased modularity in the evolved
networks. Repeating the experiment with N � 50 and
also with a completely different (nonevolutionary) algo-
rithm, we see qualitatively similar results for networks of
similar density.

Two control experiments use alternative fitness func-
tions to ensure that the emergent structure is not an
artifact of the GA. In the first, we eliminate our fitness
function entirely by assigning equal fitness to each indi-
vidual in every generation. In the second, we observe the
consequences of assigning random fitnesses from a uni-
form distribution. In neither case do we observe any
evolution away from the characteristics of the initially
random networks. These control experiments demonstrate
that our results cannot be explained as an artifact of
recombination alone or recombination plus random drift.

We observe a decrease in network density as evolution
proceeds towards stability. As the following control ex-
periment demonstrates, this ‘‘sparsifying’’ or ‘‘pruning’’
effect is clearly a by-product and not the mechanism by
which evolution achieves stability. Starting from a popu-
lation of random networks, we remove edges at random
until the population has a density distribution identical to
that of stable networks evolved from the same initial
population. These randomly pruned networks are no
more fit than random networks; i.e., they are not stable.
Furthermore, they are far less modular than evolved net-
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works: typical evolved networks have 18.72 ( � 1:40)
SCCs, while typical randomly pruned networks have
only 7.63 ( � 0:35). Because pruning alone yields neither
the stability nor the modularity we observe in evolved
networks, our GA must be reorganizing and not just
pruning. In other words, network stability and modularity
are affected by both the presence and the placement of
zeros in M. It is interesting and important to recognize
that, as the networks evolve, they reorganize to become
more hierarchical without disconnecting.

We have demonstrated that evolution uses hierarchical
modularity as a strategy for building linearly stable net-
works. Since it is so much easier to make small stable
networks, larger stable networks are often best built by
combining smaller ones in a modular hierarchy. This
works because the eigenvalues of a matrix are precisely
the eigenvalues of its SCCs—the linear stability of the
network as a whole is determined by that of its modules
and, hence, connections between distinct modules do not
impact the linear stability of those modules. In other
words, a hierarchy protects the modules; when small
networks are combined at random, we find that the mod-
ules tend to coalesce and the result is unlikely to be stable.

Considering how sensitive stability is to the details of
network structure, it might be surprising that two stable
matrices can produce stable offspring by recombination.
That is, there is no reason to expect that a stable matrix
would remain stable after random replacement of some of
its entries. On the other hand, this is precisely what we
observe —the evolved networks are structurally stable,
i.e., their dynamics are robust to structural mutations [8].
This property emerges naturally as evolution proceeds,
since the networks which are not structurally stable pro-
duce unstable offspring which are less likely to reproduce.
Thus, the genetic material of structurally unstable net-
works tends to be weeded out of the population. To quan-
tify this trend, each stable network is subjected to a
188701-3
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perturbation in which a randomly selected entry in M is
replaced with a new value randomly selected from
a uniform distribution on ��1; 1� (a rude intrusion which
could seriously alter the eigenvalue spectrum of M).
At generation 200, a typical stable network is only 7.7%
(� 2:4%) resistant to mutation, on average (that is, ran-
dom perturbations lead to instability 92.3% of the time).
As evolution progresses and modularity increases, this
percentage rises sharply until, by generation 2000, a
typical network is 97.2% ( � 3:6%) resistant to mutation.
We test the generality of this apparent connection be-
tween robustness and modularity by repeating the above
experiment on stable hierarchies [11] and stable indecom-
posable networks, both created using an alternative (non-
evolutionary) algorithm. Preliminary results confirm that
hierarchical modularity improves the robustness of net-
work stability to random structural perturbations.

By virtue of being hierarchical, our networks suffer a
natural vulnerability to targeted attack which comple-
ments their robustness to random attack. This is reminis-
cent of a property of scale-free networks, with the
important difference that our results are concerned with
whether random perturbations destabilize network dy-
namics, rather than the purely structural question of
whether random node deletion severs the giant compo-
nent. Our framework also bears a qualitative resemblance
to that of highly optimized tolerance [12], in that an
evolutionary algorithm leads to highly structured sys-
tems characterized by robust performance and whose
dynamical and structural properties are shown to be
closely interrelated.

In conclusion, our evolved networks achieve stability
and robustness by means of a hierarchical organization of
stable modules, rather than a subdivision into a number of
disconnected networks which are trivially easier to sta-
bilize. It is interesting to note that the emergent distribu-
tion of SCC sizes (Fig. 3) has a heavy tail—smaller
modules predominate, but larger ones occur more
frequently than if the distribution were exponential.
Furthermore, since their eigenvalues determine the dy-
namics of the entire network, the modules themselves are
functional units and our results demonstrate how func-
tional modularity can be closely linked to structural
modularity. The dynamical function of a real network
may require that some of its modules be large and com-
plex, even if its need to resist mutation calls for many
small modules. A heavy-tail distribution of module sizes
therefore can provide a compromise between the conflict-
ing demands of function, flexibility, and robustness.

Although we are not implying that a need for linear
stability has governed the structure of real systems, it is
highly suggestive nevertheless that so many significant
properties emerge from a simple GA which selects only
for stability. Given the directed structure of many real
networks, e.g., genetic, metabolic, social, and business
networks, our results may be relevant in a number of
applications. Real networks are assembled according to
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system-specific rules, which may act at the level of in-
dividual nodes or on the network as a whole. Our work
demonstrates that whenever these rules guide the system
towards a modular architecture, the resulting networks
are more likely to be linearly stable and robust. Many
exciting questions remain: What are other features of
large linearly stable networks, e.g., degree correlations
[1], diagonal values, and scaling properties? How does the
relationship between structure and dynamics change in
discrete-time systems, where xn�1 � Mxn replaces _xx �
Mx? How might evolutionary rules acting at the level of
individual nodes lead to the self-organization of stable
networks [10]? We hope that our work will stimulate
further investigation of general principles connecting
structure and dynamics and that researchers can use the
linear special case as a tool for exploring the richer
behavior of nonlinear dynamics on networks.
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