Motivation

- Availability of many ML algorithms and implementations
- ML tools used by non-expert people

Problem definition

- Classification problem \(f : X \rightarrow Y, D = \{ \ldots \} \)
- Set of learning algorithms \(\{ A_1, \ldots, A_n \} \) with hyperparameters \(\{ \lambda_1, \ldots, \lambda_n \} \)
- Model selection:
 - choose \(A^* \) with optimal general performance
- Hyperparameter optimization:
 - choose \(\lambda_i^* \) optimal for algorithm \(A_i \)
Problem definition

- Classification problem \(f : X \rightarrow Y, D = \{ \ldots \} \)
- Set of learning algorithms \(\{ A_1, \ldots, A_n \} \) with hyperparameters \(\{ \lambda_1, \ldots, \lambda_n \} \)
- Model selection:
 - choose \(A^* \) with optimal general performance
- Hyperparameter optimization:
 - choose optimal \(\lambda^*_i \) for algorithm \(A_i \)
- Combined optimization:
 - choose \(A^*_i \) and \(\lambda^*_i \) optimal for \(D \)

Solution

- Sequential Model-based Algorithm Configuration (SMAC)
- Robust optimization under noisy function evaluations
- Use random forest of regression trees

Auto-WEKA

- application of CASH problem to the ML algorithms implemented in WEKA
- 39 classifiers: 27 base, 10 meta methods, 2 ensemble
- 3 search methods, 8 feature evaluators
- 786 hyperparameters, \(10^{47} \) configurations

Auto-WEKA results

- Performance for 10-fold cross-validation of UCI problems
- Better results for 20 problems over 21
<table>
<thead>
<tr>
<th>Other applications</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Propositional satisfiability (SAT)</td>
<td>• Algorithm runtime prediction</td>
</tr>
<tr>
<td>• Mixed Integer programming</td>
<td>learning (f : \text{Input} \rightarrow \text{Time})</td>
</tr>
<tr>
<td>• Planning</td>
<td>• Portfolio-based algorithm selection</td>
</tr>
<tr>
<td></td>
<td>• On-line automatic parameter configuration</td>
</tr>
</tbody>
</table>