Advising and Instructing Reinforcement Learning Agents with LTL and Automata

Toryn Q. Klassen
toryn@cs.toronto.edu

Department of Computer Science
University of Toronto

October 29, 2018
Credits

Rodrigo Toro Icarte Richard Valenzano Sheila A. McIlraith

Papers appearing at

• Canadian AI (Toro Icarte et al., 2018b),
• AAMAS 2018 (Toro Icarte et al., 2018a),
• and ICML 2018 (Toro Icarte et al., 2018c)
Outline

1. Reinforcement Learning (RL):
 - What is RL?
 - Two difficulties in applying RL

2. Instructions for Reinforcement Learning
 - LTL formulas
 - Reward Machines

3. Advice for Reinforcement Learning

4. Summary
How does Reinforcement Learning work?

Based on diagram from Sutton and Barto (1998, Figure 3.1)
Two difficulties in applying RL

- **Reward specification**: It is really hard to define proper reward functions for complex tasks.
- **Sample efficiency**: RL agents might require billions of interactions with the environment to learn good policies.
Outline

1. Reinforcement Learning (RL):
 • What is RL?
 • Two difficulties in applying RL
2. Instructions for Reinforcement Learning
 • LTL formulas
 • Reward Machines
3. Advice for Reinforcement Learning
4. Summary
Example environment

Luigi can collect raw materials:
- wood
- grass
- iron
- gold
- gems

... and make new objects in:
- factory
- toolshed
- workbench

Make a bridge: get wood, iron, and use the factory
Example environment

Luigi can collect raw materials:

- wood
- grass
- iron
- gold
- gems

Make a bridge: get wood, iron, and use the factory.
Example environment

Luigi can collect raw materials:
- wood
- grass
- iron
- gold
- gems

... and make new objects in:
- factory
- toolshed
- workbench
Example environment

Luigi can collect raw materials:

- wood
- grass
- iron
- gold
- gems

... and make new objects in:

- factory
- toolshed
- workbench

Make a bridge: get wood, iron, and use the factory
Linear Temporal Logic (LTL) (Pnueli, 1977)

LTL augments propositional logic with the **temporal** operators
○ (*next*), ◇ (*eventually*), and U (*until*):

\[
\varphi ::= p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \Diamond \varphi \mid \varphi_1 \mathbf{U} \varphi_2
\]

where *p* is an atomic symbol.
Linear Temporal Logic (LTL) (Pnueli, 1977)

LTL augments propositional logic with the **temporal** operators

- \(\bigcirc \) (**next**),
- \(\Diamond \) (**eventually**),
- \(\mathbf{U} \) (**until**):

\[
\varphi ::= p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \Diamond \varphi \mid \varphi_1 \mathbf{U} \varphi_2
\]

where \(p \) is an atomic symbol.

Examples:

\[\Diamond \text{got_wood} \quad (1) \]
\[\Diamond (\text{got_grass} \land \Diamond \text{used_factory}) \quad (2) \]
\[\Diamond \text{got_wood} \lor \Diamond \text{got_iron} \quad (3) \]
\[\Diamond \text{got_grass} \land \Diamond \text{got_iron} \quad (4) \]
\[(\text{is_night} \rightarrow \text{at_shelter}) \mathbf{U} \text{got_wood} \quad (5) \]
Instructing RL agents with co-safe LTL

General idea:

- Reward the agent when it satisfies the formula.
- Therefore, an optimal policy would satisfy the formula **as soon as possible.**
Instructing RL agents with co-safe LTL

General idea:

- Reward the agent when it satisfies the formula.
- Therefore, an optimal policy would satisfy the formula as soon as possible.

Main advantage:

- **Standard RL**: The reward function is a black box.
- **RL with LTL**: The LTL formula exposes the task’s structure to the agent.
Example

Consider telling the agent to learn a policy for the following task:

$$\varphi = \lozenge(got_iron \land \lozenge used_factory) \land \lozenge got_gold$$
Example

Consider telling the agent to learn a policy for the following task:

\[\varphi = \Diamond(got_iron \land \Diamond used_factory) \land \Diamond got_gold \]

Then, the agent knows that at some point it might have to satisfy some of the following formulas:

\[\varphi_1 = \Diamond(got_iron \land \Diamond used_factory) \]
\[\varphi_2 = \Diamond used_factory \land \Diamond got_gold \]
\[\varphi_3 = \Diamond used_factory \]
\[\varphi_4 = \Diamond got_gold \]
Example

Consider telling the agent to learn a policy for the following task:

$$\varphi = \Diamond (\text{got} _ \text{iron} \land \Diamond \text{used} _ \text{factory}) \land \Diamond \text{got} _ \text{gold}$$

Then, the agent knows that at some point it might have to satisfy some of the following formulas:

$$\varphi_1 = \Diamond (\text{got} _ \text{iron} \land \Diamond \text{used} _ \text{factory})$$
$$\varphi_2 = \Diamond \text{used} _ \text{factory} \land \Diamond \text{got} _ \text{gold}$$
$$\varphi_3 = \Diamond \text{used} _ \text{factory}$$
$$\varphi_4 = \Diamond \text{got} _ \text{gold}$$

We proposed to combine this knowledge with off-policy (deep) RL to learn optimal policies for the task and each subtask in parallel.
Our approach (red curve) finds better policies faster than standard DRL (blue curve)
Results

Our approach (red curve) finds better policies faster than standard DRL (blue curve) and Hierarchical DRL (yellow and cyan curves).

Paper: “Teaching Multiple Tasks to an RL Agent using LTL”
Code: https://bitbucket.org/RToroIcarte/lpopl
Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over automata representations of the reward function.
Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over automata representations of the reward function.

Figure: A reward machine
Instructing RL agents with automata

Our ICML paper generalizes the previous idea to work over automata representations of the reward function.

In this case, our approach learns one policy for each node.

Figure: A reward machine
More results

Our approach (red curve) finds better policies faster than standard DRL (blue curve) and Hierarchical DRL (yellow and cyan curves).

Paper: “Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning”

Code: https://bitbucket.org/RToroIcarte/qrm
1. Reinforcement Learning (RL):
 • What is RL?
 • Two difficulties in applying RL
2. Instructions for Reinforcement Learning
 • LTL formulas
 • Reward Machines
3. Advice for Reinforcement Learning
4. Summary
LTL as an advice language

Advice suggests how to achieve rewards, but does not define the rewards.

Idea:

• Use a model-based RL algorithm.
• Guide the exploration with a heuristic estimating what actions will make progress towards satisfying the (finite) LTL advice.
 • Good advice can reduce the amount of exploration required to learn a good policy,
 • Bad advice will eventually be recovered from.

Paper: “Advice-Based Exploration in Model-Based Reinforcement Learning”
Summary

Instructions:

- “Teaching Multiple Tasks to an RL Agent using LTL” (AAMAS 2018)
- “Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning” (ICML 2018)
Summary

Instructions:

• “Teaching Multiple Tasks to an RL Agent using LTL” (AAMAS 2018)
• “Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning” (ICML 2018)

Advice:

• “Advice-Based Exploration in Model-Based Reinforcement Learning” (Canadian AI 2018)
References

