The Siren Song of Temporal Synthesis

Moshe Y. Vardi

Rice University
Verification

Model Checking:

- **Given**: Program P, Specification φ.
- **Task**: Check that P satisfies φ

Success:

- **Algorithmic methods**: temporal specifications and finite-state programs.
- **Also**: Certain classes of infinite-state programs
- **Tools**: SMV, SPIN, SLAM, etc.
- **Impact** on industrial design practice is increasing.

Problems:

- Designing P is hard and expensive.
- Redesigning P when P does not model φ is hard and expensive.
Automated Design

Basic Idea:

- Start from spec φ, design P s.t. P satisfies φ.

 Advantage:
 - No verification
 - No re-design

- Derive P from φ algorithmically.

 Advantage:
 - No design

In essence: Declarative programming taken to the limit.

Harel, 2008: “Can Programming be Liberated, Period?”
Program Synthesis

The Basic Idea: “Mechanical translation of human-understandable task specifications to a program that is known to meet the specifications.”

- Prove realizability of function, e.g., \((\forall x)(\exists y)(Pre(x) \rightarrow Post(x, y)) \)

- Extract program from realizability proof.

Classical vs. Temporal Synthesis:

- **Classical:** Synthesize transformational programs

- **Temporal:** Synthesize programs for ongoing computations (protocols, operating systems, controllers, robots, etc.)
Temporal Logic

Linear Temporal logic (LTL): logic of temporal sequences (Pnueli, 1977)

Main feature: time is implicit

- **next** φ: φ holds in the next state.
- **eventually** φ: φ holds eventually
- **always** φ: φ holds from now on
- **φ until** ψ: φ holds until ψ holds.

Semantics: over infinite traces

- $\pi, w \models next \varphi$ if $w \bullet \bullet \bullet \bullet \bullet \bullet \ldots$
- $\varphi \models until \psi$ if $w \bullet \bullet \bullet \bullet \bullet \bullet \bullet \ldots$

Examples

• always not (CS$_1$ and CS$_2$): mutual exclusion (safety)

• always (Request implies eventually Grant): liveness

• always (Request implies (Request until Grant)): liveness
Synthesis of Ongoing Programs

Spec: Temporal logic formulas

Early 1980s: Satisfiability approach (Wolper, Clarke+Emerson, 1981)

- *Given*: φ

- *Satisfiability*: Construct model M of φ

- *Synthesis*: Extract P from M.

Example:

\[
\text{always } \ (\text{odd }\rightarrow\text{ next }\neg\text{odd}) \land \\
\text{always } \ (\neg\text{odd }\rightarrow\text{ next odd})
\]
Reactive Systems

Reactivity: Ongoing interaction with environment (Harel+Pnueli, 1985), e.g., hardware, operating systems, communication protocols, robots, etc. (also, *open systems*).

Example: Printer specification –

- \(J_i \) - job \(i \) submitted, \(P_i \) - job \(i \) printing.

- **Safety**: two jobs are not printing together

 always \(\neg (P_1 \land P_2) \)

- **Liveness**: every jobs is eventually printed

 always \(\land_{i=1}^{2} (J_i \rightarrow eventually P_i) \)
Satisfiability and Synthesis

Specification Satisfiable? Yes!

Model M: A single state where J_1, J_2, P_1, and P_2 are all false.

Extract program from M? No!

Why? Because M handles only one input sequence.

- J_1, J_2: input variables, controlled by environment
- P_1, P_2: output variables, controlled by system

Desired: a system that handles *all* input sequences.

Conclusion: Satisfiability is *inadequate* for synthesis.
Realizability

\(I \): input variables
\(O \): output variables

Game:
- \textbf{System}: choose from \(2^O \)
- \textbf{Env}: choose from \(2^I \)

Infinite Play:
\(i_0, i_1, i_2, \ldots \)
\(0_0, 0_1, 0_2, \ldots \)

Infinite Behavior: \(i_0 \cup o_0, i_1 \cup o_1, i_2 \cup o_2, \ldots \)

Win: Behavior satisfies spec.

Specifications: LTL formula on \(I \cup O \)

Strategy: Function \(f : (2^I)^* \rightarrow 2^O \)

\textbf{Realizability:} Abadi+Lamport+Wolper, 1989
Pnueli+Rosner, 1989
Existence of winning strategy for specification.

\textbf{Desideratum:} A \textit{universal} plan! \textbf{Why:} Autonomy!
Church’s Problem

Church, 1957: Realizability problem wrt specification expressed in MSO (monadic second-order theory of one successor function)

Büchi+Landweber, 1969:

- Realizability is decidable.
- If a winning strategy exists, then a finite-state winning strategy exists.
- Realizability algorithm produces finite-state strategy.

Question: LTL is subsumed by MSO, so what did Pnueli and Rosner do?

Answer: better algorithms!
Strategy Trees

Infinite Tree: $D^* (D - \text{directions})$

- **Root:** ε; **Children:** $xd, x \in D^*, d \in D$

Labeled Infinite Tree: $\tau: D^* \rightarrow \Sigma$

Strategy: $f: (2^I)^* \rightarrow 2^O$

Rabin’s insight: A strategy is a labeled tree with directions $D = 2^I$ and alphabet $\Sigma = 2^O$.

Example: $I = \{p\}, O = \{q\}$

Winning: Every branch satisfies spec.

Rabin, 1972: Finite-state automata on infinite trees
Emptiness of Tree Automata

\[L(A) = \emptyset \]

Emptiness of Automata on Finite Trees: PTIME test (Doner, 1965)

Emptiness of Automata on Infinite Trees: Difficult

- Rabin, 1969: non-elementary
- Hossley+Rackoff, 1972: 2EXPTIME
- Rabin, 1972: EXPTIME
- Emerson, V.+Stockmeyer, 1985: In NP
- Emerson+Jutla, 1991: NP-complete
Rabin’s Realizability Algorithm

\textbf{REAL}(\phi):

\begin{itemize}
 \item Construct Rabin tree automaton \(A_\phi\) that accepts all winning strategy trees for spec \(\phi\).
 \item Check non-emptiness of \(A_\phi\).
 \item If nonempty, then we have realizability; extract strategy from non-emptiness witness.
\end{itemize}

\textbf{Complexity}: non-elementary

\textit{Reason}: \(A_\phi\) is of non-elementary size for spec \(\phi\) in MSO.
Post-1972 Developments

- **Pnueli, 1977**: Use LTL rather than MSO as spec language.

- **V. + Wolper, 1983**: Elementary (exponential) translation from LTL to automata.

- **Safra, 1988**: Doubly exponential construction of tree automata for strategy trees wrt LTL spec (using V. + Wolper).

- **Rosner, 1990**: Realizability is 2EXPTIME-complete.
Impractical! 2EXPTIME is a horrible complexity.

Response:

- 2EXPTIME is just worst-case complexity.
- 2EXPTIME lower bound implies a doubly exponential bound on the size of the smallest strategy; thus, hand design cannot do better in the worst case.

Real Challenge: very difficult algorithmics!
Classical AI Planning

Deterministic Finite Automaton (DFA)

\[A = (\Sigma, S, s_0, \rho, F) \]

- **Alphabet:** \(\Sigma \)
- **States:** \(S \)
- **Initial state:** \(s_0 \in S \)
- **Transition function:** \(\rho : S \times \Sigma \rightarrow S \)
- **Accepting states:** \(F \subseteq S \)

Input word: \(a_0, a_1, \ldots, a_{n-1} \) **Run:** \(s_0, s_1, \ldots, s_n \)

- \(s_{i+1} = \rho(s_i, a_i) \) for \(i \geq 0 \)

Acceptance: \(s_n \in F \).

Planning Problem: Find word leading from \(s_0 \) to \(F \).

- **Realizability:** \(L(A) \neq \emptyset \)
- **Program:** \(w \in L(A) \)
Dealing with Nondeterminism

Nondeterministic Finite Automaton (NFA)
\[A = (\Sigma, S, s_0, \rho, F) \]
- **Alphabet**: \(\Sigma \)
- **States**: \(S \)
- **Initial state**: \(s_0 \in S \)
- **Transition function**: \(\rho : S \times \Sigma \rightarrow 2^S \)
- **Accepting states**: \(F \subseteq S \)

Input word: \(a_0, a_1, \ldots, a_{n-1} \)
Run: \(s_0, s_1, \ldots, s_n \)

- \(s_{i+1} \in \rho(s_i, a_i) \) for \(i \geq 0 \)

Acceptance: \(s_n \in F \).

Planning Problem: Find word leading from \(s_0 \) to \(F \).
- **Realizability**: \(L(A) \neq \emptyset \)
- **Program**: \(w \in L(A) \)
Automata on Infinite Words

Nondeterministic Büchi Automaton (NBW)

\[A = (\Sigma, S, s_0, \rho, F) \]
- **Alphabet:** \(\Sigma \)
- **States:** \(S \)
- **Initial state:** \(s_0 \in S \)
- **Transition function:** \(\rho : S \times \Sigma \rightarrow 2^S \)
- **Accepting states:** \(F \subseteq S \)

Input word: \(a_0, a_1, \ldots \)

Run: \(s_0, s_1, \ldots \)
- \(s_{i+1} \in \rho(s_i, a_i) \) for \(i \geq 0 \)

Acceptance: \(F \) visited infinitely often

Motivation:
- characterizes \(\omega \)-regular languages
- equally expressive to MSO (Büchi 1962)
- more expressive than LTL
Examples

\[((0 + 1) * 1)^\omega : \]

\[\begin{array}{c}
\emptyset \\
0 \\
1 \\
\end{array} \]

- infinitely many 1’s

\[((0 + 1) * 1)^\omega : \]

\[\begin{array}{c}
\emptyset \\
0, 1 \\
1 \\
\end{array} \]

- finitely many 0’s
Infinitary Planning

Planning Problem: Given NBW $A = (\Sigma, S, s_0, \rho, F)$, find infinite word $w \in L(A)$

From Automata to Graphs: $G_A = (S, E_A)$,
$E_A = \{(s, t) : t \in \rho(s, a) \text{ for some } a \in \Sigma\}$.

Lemma: $L(A) \neq \emptyset$ iff there is a state $f \in F$ such that G_A contains a path from s_0 to f and a cycle from f to itself.

Corollary: $L(A) \neq \emptyset$ iff there are finite words $u, v \in \Sigma^*$ such that $uv^\omega \in L(A)$.

Bonus: Finite-state program.

Synthesized Program: Do u and then repeatedly do v.
Temporal Logic vs. Büchi Automata

Paradigm: Compile high-level logical specifications into low-level finite-state language

The Compilation Theorem: V.-Wolper, 1983

Given an LTL formula φ, one can construct an NBW A_{φ} such that a computation σ satisfies φ if and only if σ is accepted by A_{φ}. Furthermore, the size of A_{φ} is at most exponential in the length of φ.

always eventually p:

$$
\begin{array}{c}
\xrightarrow{p} \\
\xleftarrow{p}
\end{array}
$$

– infinitely many p’s

eventually always p:

$$
\begin{array}{c}
\xrightarrow{p} \\
\xleftarrow{\overline{p}}, \overline{p}
\end{array}
$$

– finitely many \overline{p}’s
LTL Planning

- **Input**: LTL formula φ
- **Planning Problem**: Find word $w \models \varphi$
- **Realizability**: φ is satisfiable.
- **Solution**: Solve infinitary planning with A_{φ}
Synthesis of Reactive Systems

Game Semantics: view an open system S as playing a game with an adversarial environment E, with the specifications being the winning condition.

DFA Games:
- S choose output value $a \in \Sigma$
- E choose input value $b \in \Delta$
- **Round:** S and E set their values
- **Play:** word in $(\Sigma \times \Delta)^*$
- **Specification:** DFA A over the alphabet $\Sigma \times \Delta$
- S wins when play is accepted by A.

Realizability and Synthesis:
- **Strategy** for S – $\tau : \Delta^* \to \Sigma$
- **Realizability** – exists *winning* strategy for S
- **Synthesis** – obtain such winning strategy.
Solving DFA Games

\[A = (\Sigma \times \Delta, S, s_0, \rho, F) \]

Define \(\text{win}_i(A) \subseteq S \) inductively:

- \(\text{win}_0(A) = F \)
- \(\text{win}_{i+1}(A) = \text{win}_i(A) \cup \{ s : (\exists a \in \Sigma)(\forall b \in \Delta) \rho(s, (a, b)) \in \text{win}_i(A) \} \)

Lemma: \(S \) wins the \(A \) game iff \(s_0 \in \text{win}_\infty(A) \).

Bottom Line: *linear-time*, least-fixpoint algorithm for DFA realizability. What about synthesis?
Transducers

Transducer: a finite-state representation of a strategy—deterministic automaton with output

\[T = (\Delta, \Sigma, Q, q_0, \alpha, \beta) \]

- \(\Delta \): input alphabet
- \(\Sigma \): output alphabet
- \(Q \): states
- \(q_0 \): initial state
- \(\alpha : S \times \Delta \rightarrow S \): transition function
- \(\beta : S \rightarrow \Sigma \): output function

Key Observation: A transducer representing a winning strategy can be extracted from \(win_0(A), win_1(A), \ldots \)
Reachability Games

Game Graphs: $G = (V_0, V_1, E, v_s, W)$
- $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$
- v_s: start node
- $W \subseteq V_0 \cup V_1$: winning set
- Player 0 moves from V_0, Player 1 moves from V_1.
- Player 0 wins: reach W.

Fact: Reachability games can be solved in *linear time* – least fixpoint algorithm

Consequence: realizability and synthesis
NFA Games

NFA Games:
• S choose output value $a \in \Sigma$
• E choose input value $b \in \Delta$
• Round: S and E set their variables
• Play: word in $(\Sigma \times \Delta)^*$
• Specification: NFA A over the alphabet $\Sigma \times \Delta$
• S wins when play is accepted by A.

Solving NFA Games: Basic mismatch between nondeterminism and strategic behavior.

• Nondeterministic automata have perfect foresight.
• Strategies have no foresight.

Conclusion: Determinize A and then solve.
NBW Games

NBW Games:
- S choose output value $a \in \Sigma$
- E choose input value $b \in \Delta$
- **Round:** S and E set their variables
- **Play:** infinite word in $(\Sigma \times \Delta)^\omega$
- **Specification:** NBW A over the alphabet $\Sigma \times \Delta$
- S wins when infinite play is accepted by by A.

Resolving the mismatch: Determinize A

LTL Games:
- **Specification:** LTL formula φ
- **Solution:** Construct A_φ and determinize.

History:
- Church, 1957: problem posed (for MSO)
- Büchi-Landweber, 1969: decidability shown
- Rabin, 1972: solution via tree automata
Determinization

Key Fact (Landweber, 1969): Nondeterministic Büchi automata are more expressive than deterministic Büchi automata.

Example: \((0 + 1)^*1^\omega\):

![Diagram of Büchi automaton]

– finitely many 0’s

McNaughton, 1966: NBW can be determinized using more general acceptance condition – blow-up is doubly exponential.
Parity Automata

Deterministic Parity Automata (DPW)

\[A = (\Sigma, S, s_0, \rho, \mathcal{F}) \]

- \(\mathcal{F} = (F_1, F_2, \ldots, F_k) \) - partition of \(S \).
- **Parity index**: \(k \)
- **Acceptance**: Least \(i \) such that \(F_i \) is visited infinitely often is even.

Example: \((0 + 1)^*1^\omega\)

\[
\begin{array}{c}
\ell \\
0 \\
\hline
\end{array}
\quad \begin{array}{c}
1 \\
\hline
\end{array}
\quad \begin{array}{c}
r \\
1 \\
\hline
\end{array}
\]

– finitely many 0’s

Parity condition: \((\{\ell\}, \{r\})\)

Safra, 1988: NBW with \(n \) states can be translated to DPW with \(n^{O(n)} \) states and index \(O(n) \).
Parity Games

Game Graphs: \(G = (V_0, V_1, E, v_s, W) \)
- \(E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0) \)
- \(v_s \): start node
- \(W \subseteq V_0 \cup V_1 \): winning set
- Player 0 moves from \(V_0 \),
 Player 1 moves from \(V_1 \).
- \(W = (W_1, W_2, \ldots, W_k) \) – partition of \(V_0 \cup V_1 \)
- Play 0 wins: least \(i \) such that \(W_i \) is visited infinitely often is even.

Solving Parity Games: complexity
- Jurzinski, 1998: \(\text{UP} \cap \text{co-UP} \)
- Schewe, 2007: \(O(n^{k/3}) \)
- Calude et al., 2017: Quasi-PTIME

Open Question: In PTIME?
Algorithm for LTL Synthesis:

- Convert specification φ to NBW A_φ (exponential blow-up)
- Convert NBW A_φ to DPW A^d_φ (exponential blow-up)
- Solve parity game for A^d_φ (exponential)

Pnueli-Rosner, 1989: LTL realizability and synthesis is 2EXPTIME-complete.

- **Transducer**: finite-state program with doubly exponentially many states (exponentially many state variables)
Theory, Experiment, and Practice

Automata-Theoretic Approach in Practice:

- Mona: MSO on finite words
- Linear-Time Model Checking: LTL on infinite words

Experiments with Automata-Theoretic Approach:

- Symbolic decision procedure for CTL (Marrero 2005)
- Symbolic synthesis using NBT (Wallmeier-Hütten-Thomas 2003)

Why LTL synthesis is so hard?

- *NBW determinization is hard in practice:* from 9-state NBW to 1,059,057-state DRW (Althoff-Thomas-Wallmeier 2005)
- *NBW determinization is hard in practice:* no symbolic algorithms
- Parity games are hard in practice!

2EXPTIME: Need not be an insurmountable problem, but algorithmics is very challenging!
Solution 1: General Reactivity (1)

Piterman-Pnueli-Sa’ar, 2006: Limit LTL specification:

\[
(\text{AlwaysEventually } P) \rightarrow (\text{AlwaysEventually } Q)
\]

Pros:

- Cubic game solvability (wrt game size)
- Tools, e.g., *Slugs*
- Broad applicability – popular in robotics

Cons: low expressiveness!
Solution 2: LTL_f – Finite-Horizon LTL

Crux: [De Giacomo+V., 2013]
- Full syntax of LTL
- Interpreted over *finite* traces

Example: Always Eventually p – p must hold at last point of trace.

Algorithmic Ideas [De Giacomo+V., 2015]
- If φ is an LTL_f formula, then it can be translated (w. 2exp blow-up) to DFA.
- Synthesis via DFA games

Implementation [Zhu-Tabajara-Li-Pu-V., 2017]:
- Translate φ to FOL, and use MONA to translate to BDD-based *Symbolic DFA*.
- Solve DFA game symbolically
- Open Tool: *Syft*
Performance Comparison

![Graph showing performance comparison between Syft and Acacia+ for different lengths of the formula. The x-axis represents the length of the formula (1 to 5), and the y-axis represents the number of solved cases. The graph includes bars for both Syft and Acacia+ for each length of the formula.]
Discussion

Question: Can we hope to reduce a 2EXPTIME-complete approach to practice?

Answer:

- Worst-case analysis is pessimistic.
 - Mona solves nonelementary problems.
 - SAT-solvers solve huge NP-complete problems.
 - Model checkers solve PSPACE-complete problems.
 - Doubly exponential lower bound for program size.

- We need algorithms that blow up only on hard instances

- More algorithmic engineering is needed.
AI vs SE

Some Crossfertilization:

- From planning to verification: *bounded model checking*

- From verification to planning: *BDDs, temporal goals*

More collaboration needed!

- Where does one get comprehensive specification?
- Can system learn from experience?
- What about humans in the loop?