Structure preserving control: reconciliation of passivity based and feedback linearization approaches

Alin Albu-Schäffer DLR, Institute of Robotics and Mechatronics Technical University Munich – Faculty of Informatics

ADL Festschrift Rome, January 9th, 2018

Knowledge for Tomorrow

ICRA 2007 Tutorial

Nonlinear Control of Flexible Joint Robots

Full Day Tutorial at 2007 IEEE International Conference on Robotics and Automation (ICRA'07)

Organizers:

Alin Albu-Schäffer German Aerospace Center (DLR) Institute of Robotics and Mechatronics http://www.robotic.dlr.de/Alin.Albu_Schaeffer/

Christian Ott German Aerospace Center (DLR) Institute of Robotics and Mechatronics http://www.robotic.dlr.de/Christian.Ott/

Alessandro De Luca Università di Roma "La Sapienza" Dipartimento di Informatica e Sistemistica "A. Ruberti" http://www.dis.uniroma1.it/~labrob/people/deluca/deluca.html

German Helmholtz Humboldt Research. Award 2005

The -PH-R- Projects Physical-Human-Robot

ICRA 2007 Tutorial

Time Schedule

Session 1: 8:30-10:20 Introduction Dynamic Modeling of Flexible Joint Robots [De Luca] Regulation Control II PD with/without gravity (compensation), Torque Feeback, State Feedback [Albu-Schäffer]

Coffee Break: 10:20-10:40

Session 2: 10:40-12:30 Regulation Control II: Compliance Control [Ott] Observer I: State Observer [De Luca] Observer II: Disturbance Observer [Albu-Schäffer]

Lunch Break: 12:30-14:00

Session 3: 14:00-15:50

Experiments with the DLR-KUKA arm Tracking Control I: Singular Perturbation Approach [Albu-Schäffer]

Coffee Break: 15:50-16:10

Session 4 · 16 · 10 - 18 · 00

Tracking Control II: Feedback Linearization [De Luca]

Tracking Control III: Decoupling, Backstepping, "Passivity-Based" Tracking [Ott] Summary and Discussion

- Modelling
- Position and compliance control
- Collision detection
- Friction Observer and Compensation

Compliant Robots: Under-actuated Systems

Compliant Robots: Under-actuated Systems

M nondiagonal (Tomei'91)

$$M(q) = \begin{bmatrix} B & S^{T}(q) \\ S(q) & M_{L1}(q) \end{bmatrix}$$

Dynamic state feedback linearizable (De Luca & Lucibello '98, ICRA Best Paper Award)

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + \frac{\partial U(q)}{\partial q} = \begin{bmatrix} \tau_m \\ 0 \end{bmatrix}$$

 $U = U_{\textit{elastic}} + U_{\textit{gravity}}$

M diagonal (Spong'87 simplification) $M(q) = \begin{bmatrix} B & 0 \\ 0 & M_{L2}(q) \end{bmatrix}$

static state feedback linearizable

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{bmatrix} \ddot{q} \\ \ddot{\theta} \end{bmatrix} + \begin{bmatrix} c(q, \dot{q}) \\ 0 \end{bmatrix} + \begin{bmatrix} g(q) \\ 0 \end{bmatrix} + \begin{bmatrix} \tau \\ -\tau \end{bmatrix} + d(\dot{x}) = \begin{bmatrix} \tau_{\text{ext}} \\ \tau_m \end{bmatrix}$$

Performance for Torque Controlled Robots

Vibration ON

https://www.youtube.com/watch?v=Z-ho7_sUkp0

Passivity based regulation controllers with feed-forward for tracking perform good enough on torque controlled HD robots

DLR Hand Arm System

Tendon driven

Anthropomorphic light weight robot:

- size, kinematics, force and dynamics of human arm and hand
- variable stiffness in all joints
- 53 degrees of freedom!
- 106 motors
 - 212 position sensors_{FSJ}

Antagonistic finger actuation

Variable stiffness arm actuators

Highly integrated electronics

biceps contracts
triceps relaxes

forearm is raised

flex

Decoupling Damping Control in Modal Coordinates

Generalization of passivity based flexible joint concepts to VIA robots

[Albu-Schäffer & al. ICRA 2010]

state feedback controller in modal coordinates, with diagonal gain matrices.

$$u = K_P \tilde{\theta} - K_D \dot{\theta} - K_T K^{-1} \tau - K_S K^{-1} \dot{\tau}$$

Minimalistic Link Side Damping

also VIA robots are state feedback
linearizable (Spong'87, De Luca '97), however purely
Passive controllers come to their limits

Approach:

• Use the linearizability to adjust only those features which really matter

(gravity compensation, damping, TCP-stiffness)

• For practical robustness, change the rest of the dynamics as little as possible!!!

So it's all about how to design the desired closed-loop dynamics!

Ott Springer 2008 De Luca & Flacco, CDC2010

Elastic Structure Preserving Control (ESP)

Achieve active damping by changing the plant properties as little as possible

Stability and Passivity Analysis

• Non-autonomous system: $\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x})$

$$\begin{split} \boldsymbol{M}(t,\tilde{\boldsymbol{q}})\ddot{\tilde{\boldsymbol{q}}} + \boldsymbol{C}(t,\tilde{\boldsymbol{q}},\dot{\tilde{\boldsymbol{q}}})\dot{\tilde{\boldsymbol{q}}} &= \boldsymbol{\psi}(\boldsymbol{\eta}-\tilde{\boldsymbol{q}}) - \boldsymbol{D}\dot{\tilde{\boldsymbol{q}}} + \boldsymbol{\tau}_{ext} \\ \boldsymbol{B}\ddot{\boldsymbol{\eta}} + \boldsymbol{\psi}(\boldsymbol{\eta}-\tilde{\boldsymbol{q}}) &= -\boldsymbol{K}_{P}\boldsymbol{\eta} - \boldsymbol{K}_{D}\dot{\boldsymbol{\eta}} \end{split}$$

• Passivity of closed-loop system ($\dot{\tilde{q}}^{T} \boldsymbol{\tau}_{ext}$) $S(t, \boldsymbol{\eta}, \dot{\boldsymbol{\eta}}, \tilde{\boldsymbol{q}}, \dot{\tilde{\boldsymbol{q}}}) := \frac{1}{2} \left(\dot{\tilde{\boldsymbol{q}}} \boldsymbol{M} \dot{\tilde{\boldsymbol{q}}} + \dot{\boldsymbol{\eta}}^{T} \boldsymbol{B}_{\boldsymbol{\eta}} \dot{\boldsymbol{\eta}} + \boldsymbol{\eta}^{T} \boldsymbol{K}_{P} \boldsymbol{\eta} \right) + U_{s}(\boldsymbol{\eta} - \tilde{\boldsymbol{q}})$

Global uniform asymptotic stability (Matrosov)

$$\lim_{t \to \infty} \tilde{q}(t) = \mathbf{0}$$
$$\lim_{t \to \infty} \dot{\tilde{q}}(t) = \mathbf{0}$$
$$\lim_{t \to \infty} \dot{\tilde{q}}(t) = \mathbf{0}$$

Active Link Side Damping, no Inertia and Stiffness Change

https://www.youtube.com/watch?v=PATvv47QfQs

DLR.de • Chart 16

Exploiting Elasticity for Robustness: Hammer-Drilling in a Concrete Plate

https://www.youtube.com/watch?v=JVdufPRK4NI&t=6s

DLR.de • Chart 18

Why Does it Work Better – a Discussion?

 $M_{min} = 0.01 \text{ kg m}^2$ $M_{max} = 1.1 \text{ kg m}^2$ $K_{min} = 40 \text{ Nm rad}^{-1}$ $K_{max} = 900 \text{ Nm rad}^{-1}$ $\boldsymbol{x} = \begin{bmatrix} q \ \dot{q} \ \ddot{q} \ q^{(3)} \end{bmatrix}$

Comparison of gains for feedback linearization with

- decoupled, constant error dynamics
- structure preserving error dynamics

In practice, gains are limited by unmodelled dynamics, actuator saturation, discretization,...

M. Keppler & al TRO, accepted for publication

DLR.de • Chart 19

Conclusion

- Robot control had a tremendous development over the last decades We even can in principle control an elephant to jump like a flea

- However, with age, one learns that sometimes less is more ...

Formalizing this concept for nonlinear systems would be a nice **joint challenge** for the next future!

Happy Anniversary Alessandro !!!