
Dr. Paolo Robuffo Giordano

How I Combined State Estimation, Passivity 
and Trajectory Optimization thanks to the 

ADLipedia

ADL Festschrift
January 9th, 2018

DIAG, Sapienza University of Rome



• 2000: Robotica Industriale (Robotics)

Some Personal History with ADL
• 1999: Controlli Automatici (Automatic Control)

2

(full first week about motion control of a washing machine motor…)



Some Personal History with ADL
• 2001: M.Sc. Thesis

• 2004 – 2007 PhD

3

Wheeled mobile robots 

  locally restricted mobility        NONHOLONOMIC constraints 

SuperMARIO   &   MagellanPro 
(DIS, Roma) 

Hilare 2-Bis (LAAS, Toulouse) 
with “off-hooked” trailer 

Robotics 1                    3 

Collision-checking is efficiently performed in the
cartesian space. The mobile robot SuperMARIO
used in our experiments is a two-wheel differen-
tially driven vehicle and its kinematics is equiva-
lent to that of a unicycle. However, feasible paths
may be generated also taking into account addi-
tional curvature constraints, i.e., assuming that
the robot cannot rotate on place and thus cover-
ing also the case of a vehicle with car-like kine-
matics [14]. Path smoothing is then performed
using clothoids [10] and a timing law is assigned
so as to comply with bounds on vehicle veloc-
ity and acceleration. The resulting trajectory is
passed to the robot controller, which is based
on the recently developed dynamic feedback lin-
earization technique [19], with the current robot
state measured through the fixed camera as in [8].

The paper is organized as follows. In the next sec-
tion we briefly describe our experimental setup,
including the robot and the vision system, and
the visual processing for obstacle localization and
robot feedback control. In Sect. 3, we present
the nonholonomic motion planner and compare
the performance with different heuristics on simu-
lated environments, both for unicycle and car-like
kinematics. In Sect. 4, we report on the experi-
mental results with SuperMARIO.

2 System setup

The mobile robot SuperMARIO is a two-wheel
differentially-driven vehicle (see Fig. 1). The
driving wheels have radius r = 9.93 cm and their
axle is of length d = 29 cm; a small passive off-
centered wheel (castor) is placed near the vehicle
front. Incremental encoders are mounted on the
two wheels’ motors. SuperMARIO communicates
via radiomodem with a 300Mhz PC Pentium II,
where a library of C++ control algorithms is in-
stalled. The vision system is made by a digital
1/2” camera with 768 × 576 pixels, fixed on the
laboratory ceiling at an height of 2.9 m, and a Ma-
trox Meteor frame grabber on the PC. The cam-
era output signal (RGB or CCIR) is sent to the
frame grabber with a 25 Hz frame rate in CCIR
mode. The vision area (i.e., the workspace) di-

mensions are 2.90 × 2.10 m. As a result, 1 pixel
≈ 3.7 mm. A more detailed description of the
whole system is given in [19].

Figure 1: The mobile robot SuperMARIO

2.1 Kinematic model

The kinematic model of nonholonomic robot Su-
perMARIO is

ẋ = v cos θ

ẏ = v sin θ (1)

θ̇ = ω,

where the robot reference point (x, y) is the carte-
sian position of the wheel axle midpoint, θ is the
vehicle orientation w.r.t. the x-axis, v and ω are,
respectively, the linear and angular robot veloc-
ity. The actual input commands are the angular
velocities (ωR,ωL) of the right and left wheels;
these are one-to-one related to (v,ω) by

v = r
ωR + ωL

2
, ω = r

ωR − ωL

d
. (2)

Although SuperMARIO can rotate on place, and
is thus kinematically equivalent to a unicycle, one
may impose a car-like behavior by introducing a
constraint on the inputs. This is related to the
maximum curvature value κ allowed for paths to
be followed by the robot reference point, i.e.,

|ω| ≤ κ |v|. (3)



State Estimation
§ State estimation is a classical problem in control theory and applications

§ and Robotics is a good source of applications

§ Partial (and noisy) knowledge of the environment from onboard sensors

§ Need to recover the ‘world state’ in order to plan, act, reason, …

§ Typical closed-loop scheme for a dynamical system:

§ known inputs 

§ model    of the real plant

§ known (measured) output

§ some update rule     which combines everything
all together for producing a converging estimation

⌃

⌃̂

x0

x̂0

u(t)

y(t)

ŷ(t)

x̂(t)
O

⌃

u(t)

⌃̂

y(t)

O

e(t) = x(t)� x̂(t) ! 0

4



(Active) Structure from Motion

5

• Vision (cameras): extremely powerful but also complex sensing modality

• Many challenges to exploit vision in real-world robotics contexts

• Scene understanding/classification

• Visual tracking

• Robust image processing (e.g., light conditions)

• …

• sensor mapping (perspective projection)

- nonlinear and non-injective

• Structure from Motion (SfM): recover the missing 3D structure from the observed images

• depth of points, distance of planes, size of objects, scale of multi-robot bearing formations

• Nonlinear estimation problem: performance/accuracy depend on the camera trajectory

[Yao, et al., CVPR 2012]


x
y

�
=


X/Z
Y/Z

�

[Petit et al, ICRA 2014] 
[Caron et al, RAS 2010]



Structure from Motion

6

• In 2006 I start working on SfM from a “control” perspective (here a “modern” 2017 formulation)

• SfM problems can be shown to obey the following general form

• A general nonlinear observer for these systems can be built as

• This yields the estimation error dynamics

4 The International Journal of Robotics Research XX(X)

dynamics (5–6), and yielding an estimation error with an
assignable convergence rate. The machinery of Spica et al.
(2014a) is here briefly summarized.

Let (ŝ , �̂) 2 Rm+p be an estimation of (s ,�), and
define ⇠ = s� ŝ as the ‘prediction error’ and z = �� �̂

as the 3-D structure estimation error. An estimation scheme
for system (5–6), meant to recover the unmeasurable �(t)
from the measured s(t) and known u(t), can be devised as

⇢
˙̂s = fm(s, !) +⌦T

(s, v)�̂+H⇠

˙̂� = fu(s, �̂, u) + ↵⌦(s, v)⇠
(7)

where H > 0 and ↵ > 0 are suitable gains.
By coupling observer (7) to (5–6), one obtains the

following error dynamics
⇢

⇠̇ = �H⇠ +⌦T
(s, v)z

ż = �↵⌦(s, v)⇠ + g(z, t)
(8)

with g(z, t) = fu(s, �, u)� fu(s, �̂, u) being a van-
ishing perturbation term (g(z, t) ! 0 as z(t) ! 0). As
discussed in Spica et al. (2014a), the error system (8) can
be proven to be semi-globally exponentially stable provided
the p⇥ p square matrix ⌦⌦T remains full rank during
motion (therefore, availability of m � p independent mea-
surements is needed). Furthermore, the unperturbed version
of (8) (i.e., with g = 0) enjoys a port-Hamiltonian structure
with the associated Hamiltonian (storage function)

H(⇠, z) =
1

2
⇠
T
⇠ +

1

2↵
z
T
z. (9)

These facts will be important for the developments of
Sect. 5.

Following Spica et al. (2014a), the transient response of
the SfM estimation error z(t) = �(t)� �̂(t) can be exactly
characterized and affected by acting online on the camera
linear velocity v. Indeed, the convergence rate of z(t) is
determined by the norm of the square matrix ↵⌦⌦T (in
particular by its smallest eigenvalue ↵�2

1) which plays the
role of an observability measure for system (5–6). For a
given choice of gain ↵ (a free parameter), the larger �2

1

the faster the error convergence with, in particular, �2
1 = 0

if v = 0 (as well-known, only a translating camera can
estimate the scene structure).

Since ⌦ = ⌦(s, v), one also has �2
1 = �2

1(s, v) and

˙
(�2

1) = J�v v̇ + J�s ṡ, (10)

where the Jacobian matrices J�v =
@�2

1
@v 2 R1⇥3 and

J�s =
@�2

1
@s 2 R1⇥m have a closed form expression

function of (s, v) (again, known quantities). It is then
possible to exploit relationship (10) for affecting online
�2
1(t) during motion in order to, e.g., maximize its value

and, as a consequence, increase the convergence rate of the
estimation error z(t).

To conclude, we detail the above machinery for the
particular case of point features considered in this paper.
Let s = p = (x, y) = (X/Z, Y/Z) be the perspective
projection of a 3-D point (X, Y, Z), and � = 1/Z with,
thus, m = 2 and p = 1 (note that m > p as required). From
Spica et al. (2014a) we have
8
><

>:

�2
1 = ⌦⌦T

= (xvz � vx)
2
+ (yvz � vy)

2

J�v = 2
⇥
vx � xvz vy � yvz (xvz � vx)x+ (yvz � vy) y

⇤

J�s = 2
⇥
(xvz � vx)vz (yvz � vy)vz

⇤
.

(11)

3 Plugging active sensing in Image-Based

Visual Servoing schemes

In the redundant case, the execution of a servoing task can
be naturally coupled with the (concurrent) optimization of
the estimation of vector � by exploiting vector r in (3) for
projecting any action aimed at maximizing �2

1 in the null-
space of the visual task. The expression (10) shows that
the optimization of �2

1(t) requires an action at the camera
acceleration level. In particular, since

ru�
2
1 =


J

T
�v

0

�
(12)

local maximization of �2
1 can be achieved by just following

its positive gradient via a camera acceleration vector

u̇� =


k�J

T
�v

0

�
, k� > 0. (13)

Being ė = Lsu and, thus, ë = Lsu̇+ L̇su, and by
formulating an optimization problem analogous to (2)
(Siciliano et al. 2009), one can show that the second-
order/acceleration level counterpart of the classical law (3)
for regulating the error vector e(t) to 0 is simply

u̇ = u̇e = L
†
s(�kvė� kpe� L̇su) + Pr (14)

with kp > 0 and kv > 0. Therefore, by setting r = u̇�

in (14), one would obtain the desired maximization of
�2
1 (i.e., of the convergence rate of the 3-D estimation

error) concurrently to the execution of the main visual
task. This straightforward strategy, although appealing for
its simplicity, is unfortunately not viable in most practical
situations because of the structural lack of redundancy
for implementing action (13) (or any equivalent one)
in (14). Indeed, in most visual servoing applications, the
feature set s is purposely designed to constrain all the
camera DOFs (i.e., rank(Ls) = 6), and, as a consequence,
no optimization of the camera linear velocity v can be
performed via the null-space projector operator P . This
fundamental limitation motivates the development of the
alternative strategy presented in the following section.

Prepared using sagej.cls

4 The International Journal of Robotics Research XX(X)

dynamics (5–6), and yielding an estimation error with an
assignable convergence rate. The machinery of Spica et al.
(2014a) is here briefly summarized.

Let (ŝ , �̂) 2 Rm+p be an estimation of (s ,�), and
define ⇠ = s� ŝ as the ‘prediction error’ and z = �� �̂

as the 3-D structure estimation error. An estimation scheme
for system (5–6), meant to recover the unmeasurable �(t)
from the measured s(t) and known u(t), can be devised as

⇢
˙̂s = fm(s, !) +⌦T

(s, v)�̂+H⇠

˙̂� = fu(s, �̂, u) + ↵⌦(s, v)⇠
(7)

where H > 0 and ↵ > 0 are suitable gains.
By coupling observer (7) to (5–6), one obtains the

following error dynamics
⇢

⇠̇ = �H⇠ +⌦T
(s, v)z

ż = �↵⌦(s, v)⇠ + g(z, t)
(8)

with g(z, t) = fu(s, �, u)� fu(s, �̂, u) being a van-
ishing perturbation term (g(z, t) ! 0 as z(t) ! 0). As
discussed in Spica et al. (2014a), the error system (8) can
be proven to be semi-globally exponentially stable provided
the p⇥ p square matrix ⌦⌦T remains full rank during
motion (therefore, availability of m � p independent mea-
surements is needed). Furthermore, the unperturbed version
of (8) (i.e., with g = 0) enjoys a port-Hamiltonian structure
with the associated Hamiltonian (storage function)

H(⇠, z) =
1

2
⇠
T
⇠ +

1

2↵
z
T
z. (9)

These facts will be important for the developments of
Sect. 5.

Following Spica et al. (2014a), the transient response of
the SfM estimation error z(t) = �(t)� �̂(t) can be exactly
characterized and affected by acting online on the camera
linear velocity v. Indeed, the convergence rate of z(t) is
determined by the norm of the square matrix ↵⌦⌦T (in
particular by its smallest eigenvalue ↵�2

1) which plays the
role of an observability measure for system (5–6). For a
given choice of gain ↵ (a free parameter), the larger �2

1

the faster the error convergence with, in particular, �2
1 = 0

if v = 0 (as well-known, only a translating camera can
estimate the scene structure).

Since ⌦ = ⌦(s, v), one also has �2
1 = �2

1(s, v) and

˙
(�2

1) = J�v v̇ + J�s ṡ, (10)

where the Jacobian matrices J�v =
@�2

1
@v 2 R1⇥3 and

J�s =
@�2

1
@s 2 R1⇥m have a closed form expression

function of (s, v) (again, known quantities). It is then
possible to exploit relationship (10) for affecting online
�2
1(t) during motion in order to, e.g., maximize its value

and, as a consequence, increase the convergence rate of the
estimation error z(t).

To conclude, we detail the above machinery for the
particular case of point features considered in this paper.
Let s = p = (x, y) = (X/Z, Y/Z) be the perspective
projection of a 3-D point (X, Y, Z), and � = 1/Z with,
thus, m = 2 and p = 1 (note that m > p as required). From
Spica et al. (2014a) we have
8
><

>:

�2
1 = ⌦⌦T

= (xvz � vx)
2
+ (yvz � vy)

2

J�v = 2
⇥
vx � xvz vy � yvz (xvz � vx)x+ (yvz � vy) y

⇤

J�s = 2
⇥
(xvz � vx)vz (yvz � vy)vz

⇤
.

(11)

3 Plugging active sensing in Image-Based

Visual Servoing schemes

In the redundant case, the execution of a servoing task can
be naturally coupled with the (concurrent) optimization of
the estimation of vector � by exploiting vector r in (3) for
projecting any action aimed at maximizing �2

1 in the null-
space of the visual task. The expression (10) shows that
the optimization of �2

1(t) requires an action at the camera
acceleration level. In particular, since

ru�
2
1 =


J

T
�v

0

�
(12)

local maximization of �2
1 can be achieved by just following

its positive gradient via a camera acceleration vector

u̇� =


k�J

T
�v

0

�
, k� > 0. (13)

Being ė = Lsu and, thus, ë = Lsu̇+ L̇su, and by
formulating an optimization problem analogous to (2)
(Siciliano et al. 2009), one can show that the second-
order/acceleration level counterpart of the classical law (3)
for regulating the error vector e(t) to 0 is simply

u̇ = u̇e = L
†
s(�kvė� kpe� L̇su) + Pr (14)

with kp > 0 and kv > 0. Therefore, by setting r = u̇�

in (14), one would obtain the desired maximization of
�2
1 (i.e., of the convergence rate of the 3-D estimation

error) concurrently to the execution of the main visual
task. This straightforward strategy, although appealing for
its simplicity, is unfortunately not viable in most practical
situations because of the structural lack of redundancy
for implementing action (13) (or any equivalent one)
in (14). Indeed, in most visual servoing applications, the
feature set s is purposely designed to constrain all the
camera DOFs (i.e., rank(Ls) = 6), and, as a consequence,
no optimization of the camera linear velocity v can be
performed via the null-space projector operator P . This
fundamental limitation motivates the development of the
alternative strategy presented in the following section.

Prepared using sagej.cls

s
�

measured visual features
unknown 3D structure
camera linear/angular vel(v, !)

Chapter VIII

Because of the role played by the camera trajectory for the convergence of SfM algorithms, it is then

meaningful to study how to optimize the camera motion in order to maximize (some measure of) the

SfM performance. An online solution to this problem has been proposed in [C51] by detailing a general

strategy able to actively impose to the SfM estimation error a desired convergence behavior equivalent

to that of a reference linear second-order system with desired/assigned poles. The main sketch of the

idea is as follows: let s 2 Rm the set of measured visual features (e.g., the x and y coordinates of a point

feature), � 2 Rp the vector of unmeasurable 3D quantities associated to s (e.g., the depth Z for a point

feature), and (v, !) the camera linear/angular velocities in the camera frame. It is possible to show that

the dynamics of s and � obeys the following general form

(
ṡ = fm(s, !) + ⌦T (s, v)�

�̇ = fu(s, �, u)
(VIII.1)

that exhibits, in particular, linearity of the unknown � (the 3D quantities to be estimated) w.r.t. the

dynamics of s. As a consequence, matrix ⌦T (s, v) (which represents the ‘sensitivity’ of ṡ w.r.t. �)

results a function of only known quantities (the measured s and the camera linear velocity v), and it

becomes possible to act on v in order to increase the conditioning of the ‘sensitivity’ ⌦T (s, v) during

the camera motion.

This insight has been exploited in [C51] for proposing an active SfM scheme built upon the dynam-

ics (VIII.1) and yielding an estimation error with assignable convergence rate (by suitably acting on

the camera linear velocity v and estimation gains). By letting z(t) = �(t) � �̂(t) represent the SfM

estimation error, the convergence rate of z(t) results dictated by the norm of the square matrix ↵⌦⌦T

(in particular by its smallest eigenvalue ↵�2
1) which then plays the role of an observability measure for

system (VIII.1). For a given choice of gain ↵ (a free parameter of the SfM scheme), the larger �2
1 the

faster the error convergence, with in particular �2
1 = 0 if v = 0 (as well-known, only a translating camera

can estimate the scene structure). Furthermore, the eigenvalue �2
1 and its Jacobian w.r.t. the camera

linear velocity v, i.e., Jv = @�2
1/@v, have a closed form expression function of (s, v) (known quantities).

It is then possible to optimize online the camera linear velocity v in order to, e.g., maximize the value of

�2
1 by following its positive gradient Jv and, as a consequence, increase the convergence rate of the esti-

mation error z(t). This online optimization of v represents the active component of the SfM algorithm

and it brings several added values compared to more classical inactive estimation strategies: for instance,

it allows obtaining the ‘best’ estimation error convergence when subject to real-world constraints such

as limited camera velocity or upper bounds on the estimation gains due to noise, discretization, or other

typical non-idealities. Furthermore, from a more theoretical perspective, one can also get insights into the

optimal camera trajectories needed to estimate the scene structure for particular classes of SfM problems

(e.g., when dealing with point features or specific 3D geometrical primitives).

In this respect, the general active SfM machinery introduced in [C51] has then been applied to several

case studies and application scenarios. For instance, in [J17, C54] a number of successful experimental

results have been obtained by considering the case of a eye-in-hand camera tracking a point feature

(with an unknown depth Z to be estimated), and a sphere and a cylinder (with an unknown radius R

to be estimated). Figures VIII.1 report some snapshots of the experiments, while Figs. VIII.2 show the

optimized camera trajectories vs. the non-optimized ones. All cases showed a very good match between

the theoretical analysis and obtained experimental results (in terms of predicted/assigned convergence

rate to the estimation error z(t)).

116

⇠ = s� ŝ “prediction” error

H, ↵ estimation gains

vanishing disturbance

z = �� �̂ estimation error

g(z, t) = fu(s, �, u)� fu(s, �̂, u)



Structure from Motion

7

• Error dynamics                                                                          (■)

• If then (■) GAS if the PE condition holds

• However, in most cases of interest             (e.g., point features, image moments, plane 
parameters …)

• Would need of an explicit Lyapunov function for (■) for characterizing stability when 

• ICRA 2007 deadline (September 15, 2016) is approaching fast 

• I am not able to find any Lyapunov function

• ADL is busy (euphemism) with the preparations for ICRA 2007

4 The International Journal of Robotics Research XX(X)

dynamics (5–6), and yielding an estimation error with an
assignable convergence rate. The machinery of Spica et al.
(2014a) is here briefly summarized.

Let (ŝ , �̂) 2 Rm+p be an estimation of (s ,�), and
define ⇠ = s� ŝ as the ‘prediction error’ and z = �� �̂

as the 3-D structure estimation error. An estimation scheme
for system (5–6), meant to recover the unmeasurable �(t)
from the measured s(t) and known u(t), can be devised as

⇢
˙̂s = fm(s, !) +⌦T

(s, v)�̂+H⇠

˙̂� = fu(s, �̂, u) + ↵⌦(s, v)⇠
(7)

where H > 0 and ↵ > 0 are suitable gains.
By coupling observer (7) to (5–6), one obtains the

following error dynamics
⇢

⇠̇ = �H⇠ +⌦T
(s, v)z

ż = �↵⌦(s, v)⇠ + g(z, t)
(8)

with g(z, t) = fu(s, �, u)� fu(s, �̂, u) being a van-
ishing perturbation term (g(z, t) ! 0 as z(t) ! 0). As
discussed in Spica et al. (2014a), the error system (8) can
be proven to be semi-globally exponentially stable provided
the p⇥ p square matrix ⌦⌦T remains full rank during
motion (therefore, availability of m � p independent mea-
surements is needed). Furthermore, the unperturbed version
of (8) (i.e., with g = 0) enjoys a port-Hamiltonian structure
with the associated Hamiltonian (storage function)

H(⇠, z) =
1

2
⇠
T
⇠ +

1

2↵
z
T
z. (9)

These facts will be important for the developments of
Sect. 5.

Following Spica et al. (2014a), the transient response of
the SfM estimation error z(t) = �(t)� �̂(t) can be exactly
characterized and affected by acting online on the camera
linear velocity v. Indeed, the convergence rate of z(t) is
determined by the norm of the square matrix ↵⌦⌦T (in
particular by its smallest eigenvalue ↵�2

1) which plays the
role of an observability measure for system (5–6). For a
given choice of gain ↵ (a free parameter), the larger �2

1

the faster the error convergence with, in particular, �2
1 = 0

if v = 0 (as well-known, only a translating camera can
estimate the scene structure).

Since ⌦ = ⌦(s, v), one also has �2
1 = �2

1(s, v) and

˙
(�2

1) = J�v v̇ + J�s ṡ, (10)

where the Jacobian matrices J�v =
@�2

1
@v 2 R1⇥3 and

J�s =
@�2

1
@s 2 R1⇥m have a closed form expression

function of (s, v) (again, known quantities). It is then
possible to exploit relationship (10) for affecting online
�2
1(t) during motion in order to, e.g., maximize its value

and, as a consequence, increase the convergence rate of the
estimation error z(t).

To conclude, we detail the above machinery for the
particular case of point features considered in this paper.
Let s = p = (x, y) = (X/Z, Y/Z) be the perspective
projection of a 3-D point (X, Y, Z), and � = 1/Z with,
thus, m = 2 and p = 1 (note that m > p as required). From
Spica et al. (2014a) we have
8
><

>:

�2
1 = ⌦⌦T

= (xvz � vx)
2
+ (yvz � vy)

2

J�v = 2
⇥
vx � xvz vy � yvz (xvz � vx)x+ (yvz � vy) y

⇤

J�s = 2
⇥
(xvz � vx)vz (yvz � vy)vz

⇤
.

(11)

3 Plugging active sensing in Image-Based

Visual Servoing schemes

In the redundant case, the execution of a servoing task can
be naturally coupled with the (concurrent) optimization of
the estimation of vector � by exploiting vector r in (3) for
projecting any action aimed at maximizing �2

1 in the null-
space of the visual task. The expression (10) shows that
the optimization of �2

1(t) requires an action at the camera
acceleration level. In particular, since

ru�
2
1 =


J

T
�v

0

�
(12)

local maximization of �2
1 can be achieved by just following

its positive gradient via a camera acceleration vector

u̇� =


k�J

T
�v

0

�
, k� > 0. (13)

Being ė = Lsu and, thus, ë = Lsu̇+ L̇su, and by
formulating an optimization problem analogous to (2)
(Siciliano et al. 2009), one can show that the second-
order/acceleration level counterpart of the classical law (3)
for regulating the error vector e(t) to 0 is simply

u̇ = u̇e = L
†
s(�kvė� kpe� L̇su) + Pr (14)

with kp > 0 and kv > 0. Therefore, by setting r = u̇�

in (14), one would obtain the desired maximization of
�2
1 (i.e., of the convergence rate of the 3-D estimation

error) concurrently to the execution of the main visual
task. This straightforward strategy, although appealing for
its simplicity, is unfortunately not viable in most practical
situations because of the structural lack of redundancy
for implementing action (13) (or any equivalent one)
in (14). Indeed, in most visual servoing applications, the
feature set s is purposely designed to constrain all the
camera DOFs (i.e., rank(Ls) = 6), and, as a consequence,
no optimization of the camera linear velocity v can be
performed via the null-space projector operator P . This
fundamental limitation motivates the development of the
alternative strategy presented in the following section.

Prepared using sagej.cls

II. A NONLINEAR OBSERVATION SCHEME
Let x = [xT

m x
T
u ]

T 2 Rm+p be the state of a dynamical
system in the form

⇢
ẋm = fm(xm, u, t) +⌦T (t)xu

ẋu = fu(xm, xu, u, t)
(1)

with vector xm representing a measurable component of the
state, vector xu an unmeasurable component, u 2 Rv the
system input vector, ⌦(t) 2 Rp⇥m a generic but known
time-varying quantity, and fm(·), fu(·) sufficiently smooth
functions w.r.t. their arguments1. Note that xu is assumed to
appear linearly in the dynamics of xm.

When dealing with this class of nonlinear systems, a
possible estimation scheme for retrieving the (unmeasurable)
value of xu can be devised as follows: let x̂ 2 Rm+p be the
estimated state, ⇠ = xm� x̂m, z = xu� x̂u, e = [⇠T z

T ]T

the total error vector, and consider the following observer
⇢

˙̂xm = fm(xm, u, t) +⌦T (t)x̂u +H⇠

˙̂xu = fu(xm, x̂u, u, t) +⇤⌦(t)P ⇠
(2)

with H > 0, ⇤ = ⇤T > 0, and P = P
T > 0. The

corresponding error dynamics takes the expression
8
<

:

⇠̇ = �H⇠ +⌦T (t) z
ż = �⇤⌦ (t)P ⇠ + (fu(xm, xu u, t)� fu(xm, x̂u u, t))

= �⇤⌦ (t)P ⇠ + g(e, t)
(3)

with g(e, t) being a vanishing term w.r.t. the error vector e,
i.e., such that g(0, t) = 0, 8t.

The stability of the error system (3) can be characterized
by exploiting the following classical result from the adap-
tive control literature known as the persistecy of excitation
Lemma, see, e.g., [10]:

Lemma 1 (Persistency of Excitation): Consider the sys-
tem: (

⇠̇ = �H⇠ +⌦T (t) z

ż = �⇤⌦ (t)P ⇠
(4)

where ⇠ 2 Rm, z 2 Rp, H > 0, P = P
T > 0 such that

H
T
P + P

T
H = Q, with Q > 0, (5)

and ⇤ = ⇤T > 0. If k⌦ (t)k and
���⌦̇ (t)

��� are uniformly
bounded and the persistency of excitation condition is satis-
fied, that is, there exists a T > 0 and � > 0 such that

Z t+T

t
⌦ (⌧)⌦T (⌧) d⌧ � �I > 0, 8t � t0, (6)

then (⇠, z) = (0, 0) is a globally exponentially stable
equilibrium point.

We note that the only difference among the actual error
dynamics (3) and the ‘unperturbed nominal system’ (4) is
the term g(e, t) which, as explained, acts as a vanishing
disturbance. It is then typically possible to conclude local
exponential stability of (3) owing to the properties of g(e, t)

1Despite their explicit time dependency, we also assume fm(·) to be
a function of only known quantities and similarly for fu(·) apart, in this
case, from the unknown value of xu.

and to the global exponential conrvergence of the unper-
turbed system (4) (see [1], [2] for some examples in this
sense exploiting bounds on kgk and on ke(t0)k).

The PE condition (6) plays the role of an observability
criterium: convergence of the estimation error e(t) ! 0 is
possible iff the square matrix ⌦ (t)⌦T (t) 2 Rp⇥p keeps
being full rank in the integral sense of (6). We note that
if m � p, that is, if more measurements xm are available
than the number of estimated quantities xu, it is in principle
possible to instantaneously satisfy (6) by enforcing

⌦ (t)⌦T (t) � �

T
I, 8t. (7)

On the other hand, if m < p then det(⌦ (t)⌦T (t)) ⌘ 0 by
construction. Nevertheless, in this case it could still be pos-
sible to satisfy (6) in an integral sense if the r�dimensional
range space of ⌦ (t)⌦T (t) (r  m) can span Rp during
the period T . In this work, however, we will only consider
the first situation m � p and thus aim at fulfilling the
(more restrictive) condition (7). Finally, we note that in the
special situation ẋu = 0 one obviously has g(e, t) ⌘ 0,
thus resulting in a perfect match among (3) and (4): in case
of an unknown but constant xu, the estimation convergence
becomes global2.

We now perform some manipulations of system (3) in
order to slightly simplify its structure and highlight some
important features exploited in the next Sections. Being
symmetric and positive-definite, we can let P = P

1
2P

1
2

and ⇤ = ⇤
1
2⇤

1
2 , with P

1
2 = P

1
2T > 0 and ⇤

1
2 = ⇤

1
2T >

0, and analogously for P
�1 and ⇤�1. Consider then the

following invertible change of coordinates
(
⇠̃ = P

1
2 ⇠

z̃ = ⇤� 1
2 z

. (8)

In the new coordinates, system (3) takes the form
 
˙̃
⇠

˙̃z

!
=

" 
0 ⌦̃

T
(t)

�⌦̃ (t) 0

!
�
✓
H̃ 0
0 0

◆#✓
⇠̃

z̃

◆
+

✓
0
g̃

◆
,

(9)
with H̃ = P

1
2HP

� 1
2 , ⌦̃(t) = ⇤

1
2⌦ (t)P

1
2 , and g̃ =

⇤� 1
2 g. We can then note the following facts: system (9)

has an evident port-Hamiltonian structure which is, again,
perfectly recovered in the unperturbed case (g̃ ⌘ 0). The
Hamiltonian (storage function) for (9) is the lower-bounded
scalar function

H(⇠̃, z̃) =
1

2
⇠̃
T
⇠̃ +

1

2
z̃
T
z̃ =

1

2
⇠
T
P ⇠ +

1

2
z
T⇤�1

z � 0.

Furthermore, the gain matrices P and ⇤, free design param-
eters, can be suitably exploited to fulfill two independent
objectives. First, since

Ḣ = �⇠̃
T
H̃s⇠̃ + z̃

T
g̃ = �⇠̃

T
H̃s⇠̃ + z

T⇤�1
g,

one can conclude that, for a bounded disturbance kgk 
M , it is always possible to attenuate at will its (possibly

2We stress, however, that in this work we are not interested in the iden-
tification of unknown constant plant parameters, but in a state observation
problem in which the unknown xu obeys the (non-negligible) dynamics (1).

g = 0

g 6= 0

g 6= 0

• On September 14, 2016 (-1 day to ICRA 2007 deadline) I finally get an opening
• In a 10-min break he looks at (■) and says something like ”it should probably be something
related to passivity considerations…”, and then goes back to ICRA paperwork
• ..and I go back to my desk without any real clue of what to do



Structure from Motion

8

• 2013: 7 years later I get back to this issue together with a Ph.D. student (R. Spica)

• It turns out that with a simple change of coordinates the error dynamics can be put 
in a “port-Hamiltonian form”

and the Lyapunov function is just the total energy

• Matrix     mediates the energy exchange between    (prediction error) and    (estimation error)

• Matrix      dissipates energy (on the “measurable” error    )

• PE condition: keep the energy shuffling around (via     ) so that      can dissipate…

4 The International Journal of Robotics Research XX(X)

dynamics (5–6), and yielding an estimation error with an
assignable convergence rate. The machinery of Spica et al.
(2014a) is here briefly summarized.

Let (ŝ , �̂) 2 Rm+p be an estimation of (s ,�), and
define ⇠ = s� ŝ as the ‘prediction error’ and z = �� �̂

as the 3-D structure estimation error. An estimation scheme
for system (5–6), meant to recover the unmeasurable �(t)
from the measured s(t) and known u(t), can be devised as

⇢
˙̂s = fm(s, !) +⌦T

(s, v)�̂+H⇠

˙̂� = fu(s, �̂, u) + ↵⌦(s, v)⇠
(7)

where H > 0 and ↵ > 0 are suitable gains.
By coupling observer (7) to (5–6), one obtains the

following error dynamics
⇢

⇠̇ = �H⇠ +⌦T
(s, v)z

ż = �↵⌦(s, v)⇠ + g(z, t)
(8)

with g(z, t) = fu(s, �, u)� fu(s, �̂, u) being a van-
ishing perturbation term (g(z, t) ! 0 as z(t) ! 0). As
discussed in Spica et al. (2014a), the error system (8) can
be proven to be semi-globally exponentially stable provided
the p⇥ p square matrix ⌦⌦T remains full rank during
motion (therefore, availability of m � p independent mea-
surements is needed). Furthermore, the unperturbed version
of (8) (i.e., with g = 0) enjoys a port-Hamiltonian structure
with the associated Hamiltonian (storage function)

H(⇠, z) =
1

2
⇠
T
⇠ +

1

2↵
z
T
z. (9)

These facts will be important for the developments of
Sect. 5.

Following Spica et al. (2014a), the transient response of
the SfM estimation error z(t) = �(t)� �̂(t) can be exactly
characterized and affected by acting online on the camera
linear velocity v. Indeed, the convergence rate of z(t) is
determined by the norm of the square matrix ↵⌦⌦T (in
particular by its smallest eigenvalue ↵�2

1) which plays the
role of an observability measure for system (5–6). For a
given choice of gain ↵ (a free parameter), the larger �2

1

the faster the error convergence with, in particular, �2
1 = 0

if v = 0 (as well-known, only a translating camera can
estimate the scene structure).

Since ⌦ = ⌦(s, v), one also has �2
1 = �2

1(s, v) and

˙
(�2

1) = J�v v̇ + J�s ṡ, (10)

where the Jacobian matrices J�v =
@�2

1
@v 2 R1⇥3 and

J�s =
@�2

1
@s 2 R1⇥m have a closed form expression

function of (s, v) (again, known quantities). It is then
possible to exploit relationship (10) for affecting online
�2
1(t) during motion in order to, e.g., maximize its value

and, as a consequence, increase the convergence rate of the
estimation error z(t).

To conclude, we detail the above machinery for the
particular case of point features considered in this paper.
Let s = p = (x, y) = (X/Z, Y/Z) be the perspective
projection of a 3-D point (X, Y, Z), and � = 1/Z with,
thus, m = 2 and p = 1 (note that m > p as required). From
Spica et al. (2014a) we have
8
><

>:

�2
1 = ⌦⌦T

= (xvz � vx)
2
+ (yvz � vy)

2

J�v = 2
⇥
vx � xvz vy � yvz (xvz � vx)x+ (yvz � vy) y

⇤

J�s = 2
⇥
(xvz � vx)vz (yvz � vy)vz

⇤
.

(11)

3 Plugging active sensing in Image-Based

Visual Servoing schemes

In the redundant case, the execution of a servoing task can
be naturally coupled with the (concurrent) optimization of
the estimation of vector � by exploiting vector r in (3) for
projecting any action aimed at maximizing �2

1 in the null-
space of the visual task. The expression (10) shows that
the optimization of �2

1(t) requires an action at the camera
acceleration level. In particular, since

ru�
2
1 =


J

T
�v

0

�
(12)

local maximization of �2
1 can be achieved by just following

its positive gradient via a camera acceleration vector

u̇� =


k�J

T
�v

0

�
, k� > 0. (13)

Being ė = Lsu and, thus, ë = Lsu̇+ L̇su, and by
formulating an optimization problem analogous to (2)
(Siciliano et al. 2009), one can show that the second-
order/acceleration level counterpart of the classical law (3)
for regulating the error vector e(t) to 0 is simply

u̇ = u̇e = L
†
s(�kvė� kpe� L̇su) + Pr (14)

with kp > 0 and kv > 0. Therefore, by setting r = u̇�

in (14), one would obtain the desired maximization of
�2
1 (i.e., of the convergence rate of the 3-D estimation

error) concurrently to the execution of the main visual
task. This straightforward strategy, although appealing for
its simplicity, is unfortunately not viable in most practical
situations because of the structural lack of redundancy
for implementing action (13) (or any equivalent one)
in (14). Indeed, in most visual servoing applications, the
feature set s is purposely designed to constrain all the
camera DOFs (i.e., rank(Ls) = 6), and, as a consequence,
no optimization of the camera linear velocity v can be
performed via the null-space projector operator P . This
fundamental limitation motivates the development of the
alternative strategy presented in the following section.

Prepared using sagej.cls

z̃ = z/
p
↵

⌦

H

"
⇠̇

˙̃z

#
=

✓
0

p
↵⌦T

�
p
↵⌦ 0

�
�


H 0
0 0

�◆"
⇠

z̃

#
+


0
g̃

�

⇠ z

⇠

H

TOLD YA

⌦



Structure from Motion

9

• Further consequences: the error system can be seen as a mass-spring-damper system

where       is a desired damping term and                           (eigenvalues of          ) is the “stiffness 
matrix”

• : possibility to act on     to control/assign a desired 
dynamics to the estimation error (like tuning the damping/stiffness in interaction control)

• For instance

• Optimize the camera motion direction while keeping a constant linear velocity norm

SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 3

for some T > 0 and � > 0, with In representing the n ⇥ n
identity matrix2.

Remark II.1. We note that the local stability properties of the
error dynamics (3) are due to the perturbation term g(e, t)
which affects an otherwise globally exponentially stable error
system. Indeed, in the special case �̇ = 0 (unknown but
constant parameters), one has g(e, t) ⌘ 0 and global ex-
ponential convergence for the error system (3). This is, for
instance, the case of the structure estimation problems for
spherical and cylindrical objects considered in Sects. III-B
and III-C. We stress, however, that the estimation scheme (2)
is not restricted to this particular situation but can be applied
(with, in this case, only local convergence guarantees) to the
more general case of state observation problems in which
the unknown � is subject to a non-negligible dynamics as
in (1). The depth estimation for a point feature discussed in
the following Sect. III-A falls in this class.

The PE condition (4) plays the role of an observability
criterium: convergence of the estimation error e(t) ! 0 is
possible iff the square matrix ⌦ (t)⌦T (t) 2 Rp⇥p remains
full rank in the integral sense of (4). We note that if m � p,
that is, if the number of independent measurements s is larger
or equal to the number of estimated quantities �, then it is
possible to instantaneously satisfy (4) by enforcing

⌦ (t)⌦T (t) �
�

T
Ip, 8t. (5)

In the rest of this work we will only consider this (more
restrictive) observability condition.

B. An active estimation strategy
As clear from (4) and (5) (some measure of) the norm

of matrix ⌦⌦T determines the convergence properties of
the error system (3). Furthermore, since in the SfM case it
is ⌦(t) = ⌦(s(t), v(t)), it is meaningful to study how to
optimize the camera linear velocity v in order to affect matrix
⌦⌦T and, as a consequence, to shape the transient response
of the error vector e(t). The active strategy developed in [20]
and summarized hereafter shows how to achieve this goal.

Let U⌃V
T = ⌦ be the singular value decomposition of

matrix ⌦, where ⌃ = [S 0], S = diag(�i) 2 Rp⇥p, and
0  �1  . . .  �p are the p singular values of ⌦. Let also
Q = ↵Im and ⇤ = �Ip, with ↵ > 0, � > 0 (scalar gain
matrices). By designing the gain matrix H in (2) as

H = V


D1 0
0 D2

�
V

T (6)

with D1 2 Rp⇥p > 0, D2 2 R(m�p)⇥(m�p) > 0, it is
possible to show that, under the change of coordinates

⌘ =
1

p
↵�

S
�1

U
T
z (7)

2The stability proof requires some additional technical assumptions on the
regularity of the vanishing disturbance g (locally Lipschitz in a neighbourhood
of the origin), on its growth bound w.r.t. kek (which, since g(·) ! 0 if
(v, !) ! 0, can always be made small enough by limiting (v, !)), and on
the norm of the initial error ke(t0)k. The interested reader can find in [9] a
detailed derivation of the proof.

and in the approximation S
�1

U
T

⇡ const, the behavior of
vector ⌘ (and hence of the estimation error z = � � �̂)
is governed by the following linear (and almost diagonal)
dynamics

⌘̈ = (⇧ � D1)⌘̇ � ↵�S
2
⌘. (8)

System (8) can be interpreted as a (unit-)mass-spring-damper
system with diagonal stiffness matrix ↵�S

2 and damping
matrix D1, together with an additional ‘perturbing’ term ⇧
whose full expression can be found in [20].

The convergence rate of (8) is then related to its slowest
mode dictated by the ‘stiffness value’ ↵��2

1 , with �2
1 being

the smallest eigenvalue of the square matrix ⌦⌦T . Therefore,
for the sake of imposing a desired transient response to vector
⌘(t) (i.e., to the estimation error z(t) = �(t) � �̂(t)), one
can ‘place the poles’ of (8) by (i) shaping the damping
factor D1 in (6) (a free parameter), (ii) regulating the value
of the smallest eigenvalue �2

1 by acting upon vector v, and
(iii) suitably choosing the gain ↵� (a free parameter).

For what concerns the design of matrix D1, we first note
that, as explained in [20], matrix ⇧ in (8) can be regarded as a
second-order perturbation term affecting the dissipative action
induced by D1. Therefore, neglecting the effects of matrix
⇧ and choosing D1 = diag(ci), ci > 0, allows obtaining a
completely decoupled transient behavior for (8)

⌘̈i + ci⌘̇i + ↵��2
i ⌘i = 0, i = 1 . . . p. (9)

One can then take, for instance, ci = c⇤i = 2
p
↵��i in order

to impose a critically damped evolution to the estimation error
(coincident eigenvalues for (9)).

As for the regulation of �1(t), being ⌦ = ⌦(s, v), it is
˙(�2
i ) = Jv,iv̇ + Js,iṡ (10)

where the Jacobian matrices Jv,i 2 R1⇥v and Js,i 2 R1⇥n

can be computed in closed form, see [20] for all the details. By
inverting the differential mapping (10), vector v̇ can then be
exploited so as to, e.g., asymptotically enforce �2

1(t) ! �2
1,des

for some desired value �2
1,des > 0. We note that ensuring

�2
1(t) ! �2

1,des > 0 also automatically satisfies the observ-
ability condition (5).

Finally, the following considerations hold for the choice of
gain ↵� in (8). In the SfM context, the norm of matrix ⌦⌦T

is strongly related to the norm of the camera linear velocity
v. Roughly speaking, the ‘faster’ the motion (⇠ larger kvk),
the ‘larger’ the value of �2

1 (⇠ larger k⌦⌦T
k). Therefore, in

order to maximize the estimation convergence speed of (8)
(dictated by ↵��2

1), one can equivalently (i) travel at a larger
speed kvk for a given gain ↵�, or (ii) increase the gain ↵� for
a given kvk. While increasing the gain ↵� may always appear
more convenient in terms of reduced control effort, practical
issues such as noise, discretization or quantization errors, may
impose an upper limit on the possible value of ↵�, thus
necessarily requiring a larger kvk for obtaining the desired
convergence speed. Furthermore, as in all SfM problems, a
kvk 6= 0 is also mandatorily required for guaranteeing �2

1 > 0
(a non-translating camera cannot estimate the scene structure).

Remark II.2. We note that the proposed strategy is an active
one since, in the general case, inversion of (10) will result

⌘̈ = �D1⌘̇ � ↵S2⌘

S2 = diag(�2
i ) ⌦⌦T

⌦ = USV T

D1

⌦(t) = ⌦(s, v) �2
i (t) = �2(s, v) v



10

point [CDC‘13, TRO‘14] sphere [ICRA‘14, TRO‘14]

cylinder [ICRA‘14, TRO‘14] plane [CDC‘13, ICRA‘14, ICRA‘15]

Active Visual State Estimation

CDC 2013, ICRA 2014,
ICRA 2015, TRO 2014



Coupling with Visual Control

11

• Further developments: how to plug the active estimation in the execution of a visual task

• The camera should arrive at a desired location while following an “informative path” for 
concurrently reconstructing the 3D scene (which is used by the controller)

• Benefits:

• Better knowledge of the scene during task execution
task convergence closer to ideality

• Better knowledge of the scene at the end of the task
can be used for other purposes

goal

start



Coupling with Visual Control

12

• Cost function representative of the estimation excitation (to be maximized)

• Second-order redundancy resolution

(■)

• However, in any reasonable case                                        (no room for optimization of camera 
motion)

• Better results by choosing to regulate the norm of the task error

since in general 

• However, need to switch back to (■) when

• Need of conditions when to switch to (■) and/or re-activate the norm controller

• Leverage again the explicit expression of the Lyapunov (storage) function

start

goal

ṡ = Lsu

V = V(�2
i (s, v))

s̈ = Lsu̇+ L̇su

u̇ = L†
s(�kvė� kpe� L̇su) + (I �LsL

†
s)rvV

(I �LsL
†
s)rvV = 0

e = s� sd

⌫ = kek L⌫ =
eTLs

⌫
u̇ = L†

⌫(�kvė� kpe� L̇⌫u) + (I �L⌫L
†
⌫)rvV

(I �L⌫L
†
⌫)rvV 6= 0

⌫ ! 0
constrainedredundancy



13ICRA 2014, IJRR 2017

Coupling with Visual Control



Online Optimal Trajectory Planning

14

• Further developments: all the presented schemes are local/purely reactive

• It would be nicer to optimize over a longer time horizon

• But in an online fashion (for continuously refining the planned trajectory from the estimated 
state)

• Generic nonlinear dynamics with output noise

• The Constructibility Gramian

captures the ability in reconstructing the state           at the final time

• One can show that 

the Empirical observability Gramian is a possible, widely used,
alternative [9]:

Wo =
1

4✏2

Z T

0

2

64
�zT

1 (t)
...

�zT
n (t)

3

75
⇥
�z1(t) . . . �zn(t)

⇤
dt

where �zi = z+i�z�i and z±i is the simulated measurement
when the state xi is perturbed by a small value ±✏. However,
by letting ✏ ! 0, this approximation basically replaces the
actual state transition matrix with the identity matrix. This, of
course, is a rough approximation since it eliminates any effect
on the OG caused by states that do not appear directly in the
sensor model.

In [3] an improved approximation, named Expanded em-
pirical observability Gramian, is introduced by incorporating
higher order Lie derivatives that are included in the observ-
ability matrix [5]. This makes it possible to capture input-
output dependencies that do not directly appear in the sensor
model. However, despite the clear improvement, this measure
still remains an approximation of the real transition matrix
and, hence, of the real OG.

With respect to this previous literature, the contribution
of this paper is to propose an online trajectory optimization
framework for solving the active sensing/perception problem
without resorting to special approximations of the transition
matrix. Since our goal is to minimize the maximum estimation
uncertainty about the current state of the robot, we adopt the
smallest eigenvalue of the Constructibility Gramian (CG) (in
place of the more popular Observability Gramian (OG)) as the
most suitable metric. Indeed, we can show that optimization
of the OG (which is the typical choice in many previous
works) actually improves the performance in estimating the
initial state of the robot, while the optimization of the CG
improves the performance in estimating the current state,
which is obviously the state of interest for the sake of motion
control/task execution. We then combine an online gradient-
descent optimization strategy with a concurrent estimation
scheme (an Extended Kalman Filter in our case) for recovering
an estimation of the true (but unknown) state during motion
(as opposed to the typical offline nature of most of the existing
active perception schemes). The need for an online solution is
motivated by the fact that, for a nonlinear system, the CG is a
function of the state trajectories, that, in a real scenario, are not
assumed directly measurable. By using an offline optimization
method that relies on an initial estimation of the state (as done
in most prior literature, e.g., all the abovementioned works),
the resulting optimized trajectory would most likely result in
a sub-optimal one – e.g., in a worst-case scenario of a system
that admits singular inputs, the optimal trajectory from the
estimated initial position could be very close to a singular
one. Finally, in order to make the online optimization problem
tractable, we restrict our attention to the case of non-linear
differentially flat systems [13], which allows representing the
flat outputs (and, as a consequence, also the whole state and
inputs of the considered system) with a family of parametric

curves (B-Spline) function of a finite number of parameters
(which become our optimization variables).

In [14], a preliminary version of this work to solve
the active sensing control problem has been proposed.
However, the maximization of the smallest eigenvalue of
OG was considered rather than the one of CG, while in
this paper we shown (see Section II) that the CG better
captures the accuracy in estimating the state at the current
or final time1. Furthermore, in [14] the transition matrix
was assumed to be known in closed-form, which is only
possible for simple dynamics (e.g., linear time-invariant
systems, or specific cases such as the unicycle). In the
general case, a closed-form expression for this matrix is
indeed not available since finding it is as complex as finding
a closed-form solution to the differential equations of the
nonlinear system. Therefore, another contribution of this
paper is also to extend the strategy in [14] to the general
case of a transition matrix not available in closed-form.
Finally, in order to verify the effectiveness of our method,
we have considered a much larger number of tests and
scenarios for a comprehensive validation of the method.

The rest paper is structured as follows. In Sect. II, after
having introduced basic concept of observability for a nonlin-
ear systems, the Constructibility Gramian (CG) is introduced,
and its link with the EKF is shown. Section III details
our constrained optimization problem for a differentially flat
systems, where the optimization variables are the control
points that define the shape of the B-Spline parametrizing the
trajectories of the flat outputs. In Sect. IV an online gradient-
based solution is presented, while in Sect. V a number of
simulation results are reported for showing the effectiveness
of our method. The paper ends with some conclusions and
future works.

II. PRELIMINARIES
Let us consider a generic nonlinear system with noisy

nonlinear outputs

q̇(t) = f(q(t),u(t)), q(t0) = q0 (1)
z(t) = h(q(t)) + ⌫ (2)

where q(t) 2 Rn represents the state of the system, u(t) 2
Rm is the control input, z(t) 2 Rp is the sensor output
(the measurements available through sensors), f(·) and h(·)
are smooth functions, and ⌫ ⇠ N (0,R(t)) is a normally-
distributed Gaussian output noise with zero mean and covari-
ance matrix R(t).

The chosen formulation is (purposely) kept quite general for
covering a broad class of practical cases. For instance, the state
q can include the pose of a mobile robot, its linear/angular
velocity (in case the vehicle dynamics is taken into account),
disturbances, as well as the environment (e.g. locations of
landmarks) and/or calibration parameters (e.g. the focal length

1In the simple case studies considered in [14] the transition matrix was
equal to the identity matrix and, hence, as it will be clear in next sections, the
OG was equal to the CG. Of course, in more general situations this identity
does not hold.

of a camera, sensor biases or physical/geometrical parameters).
Likewise the inputs u can represent velocity or force/torque
commands, and the measurements z can include typical sensor
readings such as distances, bearing angles, forces, and so on.

The goal of this work is to enhance the estimation perfor-
mance, i.e. precision, accuracy and convergence rate of the em-
ployed observer, in order to recover at best the (unmeasurable)
state q(t) by processing the collected (noisy) sensor readings
z(t) and applied inputs u(t) over an interval t 2 [t0, tf ]. We
therefore need a suitable metric for capturing the information
content of candidate trajectories q(t) over [t0, tf ]. Towards
this end, we now briefly summarize some known concepts
of nonlinear observability for arriving at the metric used in
this work (which, as explained in the previous section, is the
Constructibility Gramian (CG)).

The ability of determining the initial state q0 = q(t0)
from knowledge of present and future system output z(t) and
input u(t) over a time interval t 2 [t0, tf ] revolves around
the notion of Observability [15]. The initial state q0 can be
retrieved if one can distinguish, from the output measurements
z(t), various initial states in a small neighborhood of q0

without going too far from q0, or equivalently, if one can-
not locally admit indistinguishable states. When this holds,
system (1)–(2) is called locally weakly observable. A well-
known observability criterion to check this property for a
nonlinear system in the form (1)–(2) is the Observability Rank
Condition (ORC) [5]. However, the ORC can only provide
a “binary answer” about the local weak observability of the
system, i.e. whether there exists (or not) at least one input, and
hence one state trajectory, for (1)–(2) that allows recovering
the initial state q0. An alternative more quantitative criterium,
and hence more amenable to be used as performance index
for quantifying the amount of information collected along a
trajectory, is instead the so-called Observability Gramian (OG)
(see [15], [16]) Go(t0, tf ) 2 IRn⇥n defined as

Go(t0, tf ) ,
Z tf

t0

�(⌧, t0)
TC(⌧)TW (⌧)C(⌧)�(⌧, t0) d⌧

(3)
where C(⌧) = @h(q(⌧))

@q(⌧) , W (⌧) 2 Rp⇥p is a symmetric pos-
itive definite weight matrix (a design parameter), and matrix
�(t, t0) 2 Rn⇥n is the state transition matrix of the linear
time-varying system obtained after linearizing the nonlinear
system (1)–(2) around a trajectory. This matrix, also known as

sensitivity matrix [16], is formally defined as �(t, t0) =
@q(t)

@q0
and obeys the following differential equation

�̇(t, t0) = A(t)�(t, t0) , �(t0, t0) = I , (4)

where A(t) , @f(q(t),u(t))
@q(t) . If the (symmetric and semi-

positive definite) OG Go is full rank over the time interval
[t0, tf ], then system (1)–(2) is locally weakly observable [6].
Unlike linear systems, in the nonlinear case the OG is a func-
tion of the specific state trajectory q(t) followed during the
time interval [t0, tf ]: therefore, one can attempt optimization
of (some norm of) the OG w.r.t. the state trajectory q(t) for

determining the input u(t) that can maximize the information
about the initial state q0 contained in the collected output z(t)
(see, e.g., [16], [14]).

Most robotics applications are, however, more concerned
about the performance in reconstructing the current state q(t)
rather than observing the initial state q0, since knowledge
of q(t) is needed at runtime for implementing the required
control action. The ability of determining the current state q(t)
(rather than the initial one) from knowledge of the present and
past system output z(t) and input u(t) over [t0, t] is instead
captured by the so-called Constructibility Gramian [15], [16],
which appears to be a less popular choice than the OG in
the existing robotics literature on active sensing/perception.
By letting qf = q(tf ) (where tf can be considered as either
a fixed final time or as the current running time), the CG is
defined as

Gc(t0, tf ) ,
Z tf

t0

�(⌧, tf )
TC(⌧)TW (⌧)C(⌧)�(⌧, tf ) d⌧.

(5)
Exploiting the semigroup property �(t0, tf ) =
�(t0, ⌧)�(⌧, tf ) = ��1(⌧, t0)�(⌧, tf ), one has
�(⌧, tf ) = �(⌧, t0)�(t0, tf ): this can be used to show
that the CG is related to the OG by

Gc(t0, tf ) = �T (t0, tf )Go(t0, tf )�(t0, tf ). (6)

Since �(tf , t0) is always nonsingular for continuous-time
systems, it follows that rank(Go(t0, tf )) = rank(Gc(t0, tf )):
if a state trajectory q(t) allows for recovering q0 (full-rankness
of Go), it also allows for recovering qf (full-rankness of Gc)
and vice-versa. However, optimization of the CG w.r.t. q(t)
will result in a state trajectory that maximizes the performance
in reconstructing the current state qf rather than observing
the initial state q0. It is also worth noting the role of matrix
�(t0, tf ) in (6): its pre/post multiplication shifts at time tf

the information content of Go at time t0 about the initial state
q0. This temporal shifting action will be often exploited in the
following developments. Notice that, as �(t0, tf ) depends in
general on the trajectory, the information content of Go may be
shifted at time tf in different manners. This is why in general
the optimization of OG is not equivalent to the optimization
of CG (see also Remark 1).

Remark 1 Despite their similar definitions, the OG and the
CG may give rise to two very different optimization objectives
and hence optimal trajectories. Consider, for instance, a unicy-
cle vehicle measuring its planar position in a global reference
frame and needing to estimate its heading: in [12], the authors
show that the maximization of the smallest eigenvalue of OG
results in an optimal path that is barycentric w.r.t. the origin
(by considering the path as a continuous uniform distribution
of unitary mass). Of course, since the only difference between
the OG and the CG is the use of �T (t, t0) instead of �T (t, tf )
in their definitions, it is straightforward to show that, when
optimizing the CG, the optimal path would result barycentric
w.r.t. the final position. Therefore, the optimal paths w.r.t. the

of a camera, sensor biases or physical/geometrical parameters).
Likewise the inputs u can represent velocity or force/torque
commands, and the measurements z can include typical sensor
readings such as distances, bearing angles, forces, and so on.

The goal of this work is to enhance the estimation perfor-
mance, i.e. precision, accuracy and convergence rate of the em-
ployed observer, in order to recover at best the (unmeasurable)
state q(t) by processing the collected (noisy) sensor readings
z(t) and applied inputs u(t) over an interval t 2 [t0, tf ]. We
therefore need a suitable metric for capturing the information
content of candidate trajectories q(t) over [t0, tf ]. Towards
this end, we now briefly summarize some known concepts
of nonlinear observability for arriving at the metric used in
this work (which, as explained in the previous section, is the
Constructibility Gramian (CG)).

The ability of determining the initial state q0 = q(t0)
from knowledge of present and future system output z(t) and
input u(t) over a time interval t 2 [t0, tf ] revolves around
the notion of Observability [15]. The initial state q0 can be
retrieved if one can distinguish, from the output measurements
z(t), various initial states in a small neighborhood of q0

without going too far from q0, or equivalently, if one can-
not locally admit indistinguishable states. When this holds,
system (1)–(2) is called locally weakly observable. A well-
known observability criterion to check this property for a
nonlinear system in the form (1)–(2) is the Observability Rank
Condition (ORC) [5]. However, the ORC can only provide
a “binary answer” about the local weak observability of the
system, i.e. whether there exists (or not) at least one input, and
hence one state trajectory, for (1)–(2) that allows recovering
the initial state q0. An alternative more quantitative criterium,
and hence more amenable to be used as performance index
for quantifying the amount of information collected along a
trajectory, is instead the so-called Observability Gramian (OG)
(see [15], [16]) Go(t0, tf ) 2 IRn⇥n defined as

Go(t0, tf ) ,
Z tf

t0

�(⌧, t0)
TC(⌧)TW (⌧)C(⌧)�(⌧, t0) d⌧

(3)
where C(⌧) = @h(q(⌧))

@q(⌧) , W (⌧) 2 Rp⇥p is a symmetric pos-
itive definite weight matrix (a design parameter), and matrix
�(t, t0) 2 Rn⇥n is the state transition matrix of the linear
time-varying system obtained after linearizing the nonlinear
system (1)–(2) around a trajectory. This matrix, also known as

sensitivity matrix [16], is formally defined as �(t, t0) =
@q(t)

@q0
and obeys the following differential equation

�̇(t, t0) = A(t)�(t, t0) , �(t0, t0) = I , (4)

where A(t) , @f(q(t),u(t))
@q(t) . If the (symmetric and semi-

positive definite) OG Go is full rank over the time interval
[t0, tf ], then system (1)–(2) is locally weakly observable [6].
Unlike linear systems, in the nonlinear case the OG is a func-
tion of the specific state trajectory q(t) followed during the
time interval [t0, tf ]: therefore, one can attempt optimization
of (some norm of) the OG w.r.t. the state trajectory q(t) for

determining the input u(t) that can maximize the information
about the initial state q0 contained in the collected output z(t)
(see, e.g., [16], [14]).

Most robotics applications are, however, more concerned
about the performance in reconstructing the current state q(t)
rather than observing the initial state q0, since knowledge
of q(t) is needed at runtime for implementing the required
control action. The ability of determining the current state q(t)
(rather than the initial one) from knowledge of the present and
past system output z(t) and input u(t) over [t0, t] is instead
captured by the so-called Constructibility Gramian [15], [16],
which appears to be a less popular choice than the OG in
the existing robotics literature on active sensing/perception.
By letting qf = q(tf ) (where tf can be considered as either
a fixed final time or as the current running time), the CG is
defined as

Gc(t0, tf ) ,
Z tf

t0

�(⌧, tf )
TC(⌧)TW (⌧)C(⌧)�(⌧, tf ) d⌧.

(5)
Exploiting the semigroup property �(t0, tf ) =
�(t0, ⌧)�(⌧, tf ) = ��1(⌧, t0)�(⌧, tf ), one has
�(⌧, tf ) = �(⌧, t0)�(t0, tf ): this can be used to show
that the CG is related to the OG by

Gc(t0, tf ) = �T (t0, tf )Go(t0, tf )�(t0, tf ). (6)

Since �(tf , t0) is always nonsingular for continuous-time
systems, it follows that rank(Go(t0, tf )) = rank(Gc(t0, tf )):
if a state trajectory q(t) allows for recovering q0 (full-rankness
of Go), it also allows for recovering qf (full-rankness of Gc)
and vice-versa. However, optimization of the CG w.r.t. q(t)
will result in a state trajectory that maximizes the performance
in reconstructing the current state qf rather than observing
the initial state q0. It is also worth noting the role of matrix
�(t0, tf ) in (6): its pre/post multiplication shifts at time tf

the information content of Go at time t0 about the initial state
q0. This temporal shifting action will be often exploited in the
following developments. Notice that, as �(t0, tf ) depends in
general on the trajectory, the information content of Go may be
shifted at time tf in different manners. This is why in general
the optimization of OG is not equivalent to the optimization
of CG (see also Remark 1).

Remark 1 Despite their similar definitions, the OG and the
CG may give rise to two very different optimization objectives
and hence optimal trajectories. Consider, for instance, a unicy-
cle vehicle measuring its planar position in a global reference
frame and needing to estimate its heading: in [12], the authors
show that the maximization of the smallest eigenvalue of OG
results in an optimal path that is barycentric w.r.t. the origin
(by considering the path as a continuous uniform distribution
of unitary mass). Of course, since the only difference between
the OG and the CG is the use of �T (t, t0) instead of �T (t, tf )
in their definitions, it is straightforward to show that, when
optimizing the CG, the optimal path would result barycentric
w.r.t. the final position. Therefore, the optimal paths w.r.t. the

OG and the CG are completely different since they optimize
two different (indeed opposite in this case) objectives.

We conclude by showing an important link between the CG
and the optimal error covariance matrix P for the linearization
of system (1)–(2). Consider the linear time-varying system

q̇(t) = A(t) q(t) +B(t)u(t), q(t0) = q0

z(t) = C(t) q(t) + ⌫
(7)

where A(t) = @f(q,u)
@q , B(t) = @f(q,u)

@u and C(t) = @h(q)
@q ,

that is, the linearization of (1)–(2) around a nominal trajectory
q(t). In the absence of process noise, the optimal covariance
matrix P (t) for the estimation error is governed by the
continuous Riccati equation (CRE) [17]

Ṗ (t) = A(t)P (t)+P (t)AT (t)�P (t)C(t)TR�1C(t)P (t) ,

which, exploiting the matrix identity Ṗ
�1

= �P�1ṖP�1,
can be rewritten as

Ṗ
�1

(t) = �P�1(t)A(t)�AT (t)P�1(t)+CT (t)R�1C(t) .
(8)

Considering the initial condition P (t0) = P0, the solution
of (8) is (see [18], [19])

P�1(t) = �T (t0, t)P0
�1�(t0, t)+

+

Z t

t0

�T (⌧, t)CT (⌧)R�1(⌧)C(⌧)�(⌧, t)d⌧ .
(9)

Since the second term of (9) is exactly the Constructibility
Gramian Gc(t0, t) when W (t) = R�1(t), one has

P�1(t) = �T (t0, t)P
�1
0 �(t0, t) + Gc(t0, t). (10)

This expression can be interpreted as follows: the first term
represents the contribution of the a priori information P0

available at time t0 but shifted at time t by the operator
�(t0, t), while the second term is the contribution of the
information actually collected during the interval [t0, t].

Interestingly, the expression (10) can also be reformulated
in terms of the sole CG: let Gc(�1, t) represent the CG
computed over the (infinite) interval [�1, t], and consider
the partition

Gc(�1, t) =

Z t0

�1
�T (⌧, t)CT (⌧)R�1(⌧)C(⌧)�(⌧, t)d⌧+

+

Z t

t0

�T (⌧, t)CT (⌧)R�1(⌧)C(⌧)�(⌧, t)d⌧.

(11)
Since �(⌧, t) = �(⌧, t0)�(t0, t), one has

Gc(�1, t) = �T (t0, t)Gc(�1, t0)�(t0, t)+Gc(t0, t). (12)

By comparing (10) with (12), and by interpreting the a priori
information P�1

0 as the information encoded by the CG over
the interval [�1, t0], it follows that

P�1(t) = Gc(�1, t). (13)

We can then conclude that maximization of (some norm of)
Gc(�1, t) is equivalent to minimization of (some norm of)

the estimation error covariance P (t). Maximization of some
norm of CG is then expected to produce a state trajectory q(t)
that results in an estimated state with minimum uncertainty
and maximum precision as well as an increased convergence
rate of the employed estimation scheme (a EKF in our
case) [20].

III. PROBLEM FORMULATION

We now detail the optimal sensing control problem ad-
dressed in this paper. Let us consider the particular class of
nonlinear dynamics (1)–(2) such that f(q,0) = 0 (i.e. without
drift), a time window [t0, tf ], tf > t0, and a EKF built on
system (1)–(2) for recovering an estimation q̂(t) of the true
(but unknown) state q(t) during motion. The goal of the paper
is to propose an online optimization strategy for continuously
solving, at each time t, the following optimal sensing control
problem.

Problem 1 (Optimal Sensing Control) For all t 2 [t0, tf ],
find the optimal control strategy

u⇤(t) = argmax
u

kGc(�1, tf )k , (14)

s.t.

E(t0, tf ) =

Z tf

t0

q
u(⌧)TMu(⌧) d⌧ = Ē (15)

where k ·k is a suitable norm for the CG (discussed in the next
section), E(t0, tf ) represents a measure of the “control effort”
(or energy) needed for moving along the trajectory from t0 to
tf , and M > 0 and Ē > 0 are design parameters. Note that, in
our context, the final time tf is not treated as a fixed parameter
but, rather, as the time needed for spending the whole available
energy Ē during the robot motion.

Remark 2 It is important to note that, in general,
kGc(�1, tf )k could be unbounded w.r.t. the terminal time tf

and/or the state q(t). For nonlinear dynamic systems without
drift, constraint (15) ensures well-posedness of Problem 1. Of
course, in case of drift, the state and/or the terminal time might
indefinitely grow even if constraint (15) is satisfied. Future
works will be hence dedicated to ensure well-posedness of the
optimization problem also in case of drift (as, e.g., for UAVs
or dynamic model of car-like vehicles).

As explained, the need of an online solution is motivated by
the fact that the Gramian Gc is a function of the state trajectory
q(t) which is not assumed available. On the other hand, during
the robot motion, it is possible to exploit a state estimation
algorithm, such as a EKF, for improving online the current
estimation q̂(t) of the true state q(t), with q̂(t) ! q(t) in the
limit. A converging state estimation q̂(t) makes it possible to
continuously refine (online) the previously optimized future
path by exploiting the newly acquired information during
motion.

We now proceed to better detail the structure of Problem 1
and of the proposed optimization strategy.

OG and the CG are completely different since they optimize
two different (indeed opposite in this case) objectives.

We conclude by showing an important link between the CG
and the optimal error covariance matrix P for the linearization
of system (1)–(2). Consider the linear time-varying system

q̇(t) = A(t) q(t) +B(t)u(t), q(t0) = q0

z(t) = C(t) q(t) + ⌫
(7)

where A(t) = @f(q,u)
@q , B(t) = @f(q,u)

@u and C(t) = @h(q)
@q ,

that is, the linearization of (1)–(2) around a nominal trajectory
q(t). In the absence of process noise, the optimal covariance
matrix P (t) for the estimation error is governed by the
continuous Riccati equation (CRE) [17]

Ṗ (t) = A(t)P (t)+P (t)AT (t)�P (t)C(t)TR�1C(t)P (t) ,

which, exploiting the matrix identity Ṗ
�1

= �P�1ṖP�1,
can be rewritten as

Ṗ
�1

(t) = �P�1(t)A(t)�AT (t)P�1(t)+CT (t)R�1C(t) .
(8)

Considering the initial condition P (t0) = P0, the solution
of (8) is (see [18], [19])

P�1(t) = �T (t0, t)P0
�1�(t0, t)+

+

Z t

t0

�T (⌧, t)CT (⌧)R�1(⌧)C(⌧)�(⌧, t)d⌧ .
(9)

Since the second term of (9) is exactly the Constructibility
Gramian Gc(t0, t) when W (t) = R�1(t), one has

P�1(t) = �T (t0, t)P
�1
0 �(t0, t) + Gc(t0, t). (10)

This expression can be interpreted as follows: the first term
represents the contribution of the a priori information P0

available at time t0 but shifted at time t by the operator
�(t0, t), while the second term is the contribution of the
information actually collected during the interval [t0, t].

Interestingly, the expression (10) can also be reformulated
in terms of the sole CG: let Gc(�1, t) represent the CG
computed over the (infinite) interval [�1, t], and consider
the partition

Gc(�1, t) =

Z t0

�1
�T (⌧, t)CT (⌧)R�1(⌧)C(⌧)�(⌧, t)d⌧+

+

Z t

t0

�T (⌧, t)CT (⌧)R�1(⌧)C(⌧)�(⌧, t)d⌧.

(11)
Since �(⌧, t) = �(⌧, t0)�(t0, t), one has

Gc(�1, t) = �T (t0, t)Gc(�1, t0)�(t0, t)+Gc(t0, t). (12)

By comparing (10) with (12), and by interpreting the a priori
information P�1

0 as the information encoded by the CG over
the interval [�1, t0], it follows that

P�1(t) = Gc(�1, t). (13)

We can then conclude that maximization of (some norm of)
Gc(�1, t) is equivalent to minimization of (some norm of)

the estimation error covariance P (t). Maximization of some
norm of CG is then expected to produce a state trajectory q(t)
that results in an estimated state with minimum uncertainty
and maximum precision as well as an increased convergence
rate of the employed estimation scheme (a EKF in our
case) [20].

III. PROBLEM FORMULATION

We now detail the optimal sensing control problem ad-
dressed in this paper. Let us consider the particular class of
nonlinear dynamics (1)–(2) such that f(q,0) = 0 (i.e. without
drift), a time window [t0, tf ], tf > t0, and a EKF built on
system (1)–(2) for recovering an estimation q̂(t) of the true
(but unknown) state q(t) during motion. The goal of the paper
is to propose an online optimization strategy for continuously
solving, at each time t, the following optimal sensing control
problem.

Problem 1 (Optimal Sensing Control) For all t 2 [t0, tf ],
find the optimal control strategy

u⇤(t) = argmax
u

kGc(�1, tf )k , (14)

s.t.

E(t0, tf ) =

Z tf

t0

q
u(⌧)TMu(⌧) d⌧ = Ē (15)

where k ·k is a suitable norm for the CG (discussed in the next
section), E(t0, tf ) represents a measure of the “control effort”
(or energy) needed for moving along the trajectory from t0 to
tf , and M > 0 and Ē > 0 are design parameters. Note that, in
our context, the final time tf is not treated as a fixed parameter
but, rather, as the time needed for spending the whole available
energy Ē during the robot motion.

Remark 2 It is important to note that, in general,
kGc(�1, tf )k could be unbounded w.r.t. the terminal time tf

and/or the state q(t). For nonlinear dynamic systems without
drift, constraint (15) ensures well-posedness of Problem 1. Of
course, in case of drift, the state and/or the terminal time might
indefinitely grow even if constraint (15) is satisfied. Future
works will be hence dedicated to ensure well-posedness of the
optimization problem also in case of drift (as, e.g., for UAVs
or dynamic model of car-like vehicles).

As explained, the need of an online solution is motivated by
the fact that the Gramian Gc is a function of the state trajectory
q(t) which is not assumed available. On the other hand, during
the robot motion, it is possible to exploit a state estimation
algorithm, such as a EKF, for improving online the current
estimation q̂(t) of the true state q(t), with q̂(t) ! q(t) in the
limit. A converging state estimation q̂(t) makes it possible to
continuously refine (online) the previously optimized future
path by exploiting the newly acquired information during
motion.

We now proceed to better detail the structure of Problem 1
and of the proposed optimization strategy.

P. Salaris R. Spica

tf

ICRA 2017, ICRA 2018

q(tf )

M. Cognetti



Online Optimal Trajectory Planning

15

• Natural optimization problem

• However, all quantities depend on                              which is unknown

• An offline optimization at            would be based on           and thus arbitrarily wrong

• On the other hand, during motion                       by using an observer (e.g., a EKF)

• Possible solution: continuously refine the optimized path based on the (converging)

• Useful decomposition

q(t), t 2 [t0, tf ]

t = t0 q̂(t0)

q̂(t) ! q(t)

q̂(t)

FixedTBO TBO TBOTBO = To Be Optimized

OG and the CG are completely different since they optimize
two different (indeed opposite in this case) objectives.

We conclude by showing an important link between the CG
and the optimal error covariance matrix P for the linearization
of system (1)–(2). Consider the linear time-varying system

q̇(t) = A(t) q(t) +B(t)u(t), q(t0) = q0

z(t) = C(t) q(t) + ⌫
(7)

where A(t) = @f(q,u)
@q , B(t) = @f(q,u)

@u and C(t) = @h(q)
@q ,

that is, the linearization of (1)–(2) around a nominal trajectory
q(t). In the absence of process noise, the optimal covariance
matrix P (t) for the estimation error is governed by the
continuous Riccati equation (CRE) [17]

Ṗ (t) = A(t)P (t)+P (t)AT (t)�P (t)C(t)TR�1C(t)P (t) ,

which, exploiting the matrix identity Ṗ
�1

= �P�1ṖP�1,
can be rewritten as

Ṗ
�1

(t) = �P�1(t)A(t)�AT (t)P�1(t)+CT (t)R�1C(t) .
(8)

Considering the initial condition P (t0) = P0, the solution
of (8) is (see [18], [19])

P�1(t) = �T (t0, t)P0
�1�(t0, t)+

+

Z t

t0

�T (⌧, t)CT (⌧)R�1(⌧)C(⌧)�(⌧, t)d⌧ .
(9)

Since the second term of (9) is exactly the Constructibility
Gramian Gc(t0, t) when W (t) = R�1(t), one has

P�1(t) = �T (t0, t)P
�1
0 �(t0, t) + Gc(t0, t). (10)

This expression can be interpreted as follows: the first term
represents the contribution of the a priori information P0

available at time t0 but shifted at time t by the operator
�(t0, t), while the second term is the contribution of the
information actually collected during the interval [t0, t].

Interestingly, the expression (10) can also be reformulated
in terms of the sole CG: let Gc(�1, t) represent the CG
computed over the (infinite) interval [�1, t], and consider
the partition

Gc(�1, t) =

Z t0

�1
�T (⌧, t)CT (⌧)R�1(⌧)C(⌧)�(⌧, t)d⌧+

+

Z t

t0

�T (⌧, t)CT (⌧)R�1(⌧)C(⌧)�(⌧, t)d⌧.

(11)
Since �(⌧, t) = �(⌧, t0)�(t0, t), one has

Gc(�1, t) = �T (t0, t)Gc(�1, t0)�(t0, t)+Gc(t0, t). (12)

By comparing (10) with (12), and by interpreting the a priori
information P�1

0 as the information encoded by the CG over
the interval [�1, t0], it follows that

P�1(t) = Gc(�1, t). (13)

We can then conclude that maximization of (some norm of)
Gc(�1, t) is equivalent to minimization of (some norm of)

the estimation error covariance P (t). Maximization of some
norm of CG is then expected to produce a state trajectory q(t)
that results in an estimated state with minimum uncertainty
and maximum precision as well as an increased convergence
rate of the employed estimation scheme (a EKF in our
case) [20].

III. PROBLEM FORMULATION

We now detail the optimal sensing control problem ad-
dressed in this paper. Let us consider the particular class of
nonlinear dynamics (1)–(2) such that f(q,0) = 0 (i.e. without
drift), a time window [t0, tf ], tf > t0, and a EKF built on
system (1)–(2) for recovering an estimation q̂(t) of the true
(but unknown) state q(t) during motion. The goal of the paper
is to propose an online optimization strategy for continuously
solving, at each time t, the following optimal sensing control
problem.

Problem 1 (Optimal Sensing Control) For all t 2 [t0, tf ],
find the optimal control strategy

u⇤(t) = argmax
u

kGc(�1, tf )k , (14)

s.t.

E(t0, tf ) =

Z tf

t0

q
u(⌧)TMu(⌧) d⌧ = Ē (15)

where k ·k is a suitable norm for the CG (discussed in the next
section), E(t0, tf ) represents a measure of the “control effort”
(or energy) needed for moving along the trajectory from t0 to
tf , and M > 0 and Ē > 0 are design parameters. Note that, in
our context, the final time tf is not treated as a fixed parameter
but, rather, as the time needed for spending the whole available
energy Ē during the robot motion.

Remark 2 It is important to note that, in general,
kGc(�1, tf )k could be unbounded w.r.t. the terminal time tf

and/or the state q(t). For nonlinear dynamic systems without
drift, constraint (15) ensures well-posedness of Problem 1. Of
course, in case of drift, the state and/or the terminal time might
indefinitely grow even if constraint (15) is satisfied. Future
works will be hence dedicated to ensure well-posedness of the
optimization problem also in case of drift (as, e.g., for UAVs
or dynamic model of car-like vehicles).

As explained, the need of an online solution is motivated by
the fact that the Gramian Gc is a function of the state trajectory
q(t) which is not assumed available. On the other hand, during
the robot motion, it is possible to exploit a state estimation
algorithm, such as a EKF, for improving online the current
estimation q̂(t) of the true state q(t), with q̂(t) ! q(t) in the
limit. A converging state estimation q̂(t) makes it possible to
continuously refine (online) the previously optimized future
path by exploiting the newly acquired information during
motion.

We now proceed to better detail the structure of Problem 1
and of the proposed optimization strategy.

Gc(�1, tf ) = �(t, tf )
T (Gc(�1, t) + Go(t, tf ))�(t, tf )



Online Optimal Trajectory Planning

16

• Simplifying assumptions

• 1) System                                                            admits a set of flat outputs

no need to integrate the system dynamics for generating                              from

• 2) the flat outputs         are parameterized by a parametric curve (B-Spline)

finite-dimensional optimization problem (the control points      )

• Reformulated optimization Problem

the Empirical observability Gramian is a possible, widely used,
alternative [9]:

Wo =
1

4✏2

Z T

0

2

64
�zT

1 (t)
...

�zT
n (t)

3

75
⇥
�z1(t) . . . �zn(t)

⇤
dt

where �zi = z+i�z�i and z±i is the simulated measurement
when the state xi is perturbed by a small value ±✏. However,
by letting ✏ ! 0, this approximation basically replaces the
actual state transition matrix with the identity matrix. This, of
course, is a rough approximation since it eliminates any effect
on the OG caused by states that do not appear directly in the
sensor model.

In [3] an improved approximation, named Expanded em-
pirical observability Gramian, is introduced by incorporating
higher order Lie derivatives that are included in the observ-
ability matrix [5]. This makes it possible to capture input-
output dependencies that do not directly appear in the sensor
model. However, despite the clear improvement, this measure
still remains an approximation of the real transition matrix
and, hence, of the real OG.

With respect to this previous literature, the contribution
of this paper is to propose an online trajectory optimization
framework for solving the active sensing/perception problem
without resorting to special approximations of the transition
matrix. Since our goal is to minimize the maximum estimation
uncertainty about the current state of the robot, we adopt the
smallest eigenvalue of the Constructibility Gramian (CG) (in
place of the more popular Observability Gramian (OG)) as the
most suitable metric. Indeed, we can show that optimization
of the OG (which is the typical choice in many previous
works) actually improves the performance in estimating the
initial state of the robot, while the optimization of the CG
improves the performance in estimating the current state,
which is obviously the state of interest for the sake of motion
control/task execution. We then combine an online gradient-
descent optimization strategy with a concurrent estimation
scheme (an Extended Kalman Filter in our case) for recovering
an estimation of the true (but unknown) state during motion
(as opposed to the typical offline nature of most of the existing
active perception schemes). The need for an online solution is
motivated by the fact that, for a nonlinear system, the CG is a
function of the state trajectories, that, in a real scenario, are not
assumed directly measurable. By using an offline optimization
method that relies on an initial estimation of the state (as done
in most prior literature, e.g., all the abovementioned works),
the resulting optimized trajectory would most likely result in
a sub-optimal one – e.g., in a worst-case scenario of a system
that admits singular inputs, the optimal trajectory from the
estimated initial position could be very close to a singular
one. Finally, in order to make the online optimization problem
tractable, we restrict our attention to the case of non-linear
differentially flat systems [13], which allows representing the
flat outputs (and, as a consequence, also the whole state and
inputs of the considered system) with a family of parametric

curves (B-Spline) function of a finite number of parameters
(which become our optimization variables).

In [14], a preliminary version of this work to solve
the active sensing control problem has been proposed.
However, the maximization of the smallest eigenvalue of
OG was considered rather than the one of CG, while in
this paper we shown (see Section II) that the CG better
captures the accuracy in estimating the state at the current
or final time1. Furthermore, in [14] the transition matrix
was assumed to be known in closed-form, which is only
possible for simple dynamics (e.g., linear time-invariant
systems, or specific cases such as the unicycle). In the
general case, a closed-form expression for this matrix is
indeed not available since finding it is as complex as finding
a closed-form solution to the differential equations of the
nonlinear system. Therefore, another contribution of this
paper is also to extend the strategy in [14] to the general
case of a transition matrix not available in closed-form.
Finally, in order to verify the effectiveness of our method,
we have considered a much larger number of tests and
scenarios for a comprehensive validation of the method.

The rest paper is structured as follows. In Sect. II, after
having introduced basic concept of observability for a nonlin-
ear systems, the Constructibility Gramian (CG) is introduced,
and its link with the EKF is shown. Section III details
our constrained optimization problem for a differentially flat
systems, where the optimization variables are the control
points that define the shape of the B-Spline parametrizing the
trajectories of the flat outputs. In Sect. IV an online gradient-
based solution is presented, while in Sect. V a number of
simulation results are reported for showing the effectiveness
of our method. The paper ends with some conclusions and
future works.

II. PRELIMINARIES
Let us consider a generic nonlinear system with noisy

nonlinear outputs

q̇(t) = f(q(t),u(t)), q(t0) = q0 (1)
z(t) = h(q(t)) + ⌫ (2)

where q(t) 2 Rn represents the state of the system, u(t) 2
Rm is the control input, z(t) 2 Rp is the sensor output
(the measurements available through sensors), f(·) and h(·)
are smooth functions, and ⌫ ⇠ N (0,R(t)) is a normally-
distributed Gaussian output noise with zero mean and covari-
ance matrix R(t).

The chosen formulation is (purposely) kept quite general for
covering a broad class of practical cases. For instance, the state
q can include the pose of a mobile robot, its linear/angular
velocity (in case the vehicle dynamics is taken into account),
disturbances, as well as the environment (e.g. locations of
landmarks) and/or calibration parameters (e.g. the focal length

1In the simple case studies considered in [14] the transition matrix was
equal to the identity matrix and, hence, as it will be clear in next sections, the
OG was equal to the CG. Of course, in more general situations this identity
does not hold.

to find a set of outputs ⇣(q) 2 R, named flat, such that the
state q and inputs u of the original system can be algebraically
expressed in terms of the outputs ⇣ and of a finite number of
their time derivatives. In our context, the flatness assumption
for system (1) allows avoiding any numerical integration of
the nonlinear dynamics (1) for generating the state evolution
q̂(⌧), ⌧ 2 [t, tf ], from the current estimated state q̂(t) by
applying the planned inputs u(t). It is important to stress here
that, in order to always express q and u in terms of ⇣ and of a
finite number of their time derivatives, intrinsic and apparent
singularities in flat differential systems (see e.g. [23], [24])
must be avoided along the planned path. In Section III-D we
will show how this requirement can be achieved.

Second, we choose to parameterize the flat outputs ⇣(q)
(and, as a consequence, the state and inputs as well) by a
family of curves function of a finite number of parameters.
This choice further reduces the complexity of our optimization
problem from an infinite-dimensional to a finite-dimensional
one. Among the many possible parametric curves, we con-
sider the class of B-Splines [25]. B-Spline curves are linear
combinations, through a finite number N of control points
xc = (xT

c,1, xT
c,2, . . . , xT

c,N )T 2 R·N , of basis functions
B

↵
j : S ! R for j = 1, . . . , N . Each B-Spline is given as

�(xc, ·) :S ! R

s 7!
NX

j=1

xc,j B
↵
j (s, s) = Bs(s)xc

(19)

where S is a compact subset of R and Bs(s) 2 R⇥N . The
degree ↵ > 0 and knots s = (s1, s2, . . . , s`) are constant
parameters3, Bs(s) is the set of basis functions and B

↵
j is

the j-th basis function evaluated in s, obtained by using the
Cox-de Boor recursion formula [25].

The use of B-Splines is motivated by their generality and
versatility. Indeed, they can be used to represent or approxi-
mate a wide range of curves. Moreover, the relation between
the (few) parameters (the control points xc) of the B-Spline
and the shape of the corresponding trajectory is easy to manage
and allows generalizing the approach presented in this paper
to include other possible constraints (i.e. limited field-of-view,
obstacles avoidance, and so on).

By parameterizing the flat outputs ⇣(q) with a B-Spline
curve �(xc, s), and by exploiting the differential flatness
assumption, it follows that all quantities involved in Problem 1
(states q, inputs u, and, thus, any quantity needed for the CG
computation) can be expressed as a function of the parameter
s (the position along the spline) and of the control points xc.
The latter will be then the (sole) optimization variables
for Problem 1. In the following we will then let q�(xc, s)
and u�(xc, s) represent the state q and inputs u determined

3 The relation between `, ↵ and N is ` = N � ↵ + 1. ↵ is chosen
in order to guarantee the continuity of all the state variables that, in turns,
depend on the flat outputs and a finite number of their derivatives. Once this
property is guaranteed, both ↵ and N can be chosen as a trade-off between
the computational cost and the possibility of obtaining a better trajectory
(increasing the value of the smallest eigenvalue of the CG).

(via the flatness relationships) by the planned B-Spline path
�(xc, s). Comment: I didn’t remove variables q� since are
used in the next subsection and Section IV.A and Problem
2. Maybe, u� is never used...to be checked!
D. Additional requirements

In addition to the ‘bounded energy’ constraint (15) (neces-
sary for ensuring well-posedness of Problem 1), in this work
we also consider two additional requirements of interest for
the optimal solution: state coherency and flatness regularity.

1) State coherency: when solving Problem 1 online,
it is important to guarantee that, at the current time t,
q�(xc(t), s(t)) = q̂(t), where q̂(t) is the current estimation
of the true state q(t) provided by the employed observer
(a EKF in our case)4. This requirement then translates into
some continuity constraints on the planned flat output path
�(xc(t), s(t)) (and on some of its derivatives) at the current
time t which, in turn, imposes some constraints on the motion
of the B-Spline control points xc.

2) Flatness regularity: in order to always express q and u
in terms of ⇣ and of a finite number of their time derivatives,
intrinsic and apparent singularities in flat differential systems
(see [23], [24] for more details) must be avoided. While
apparent singularities can be avoided by adopting a different
set of flat outputs and different state space representations,
intrinsic singularities must be handled by guaranteeing some
constraints along the planned trajectories. Generally speak-
ing, any intrinsic singularity can be expressed as a set of
equalities fl(q,u) = 0 and hence, in the contest of this work,
as fl(xc, s) = 0. The flatness regularity requirement is then
equivalent to move the control points in order to prevent all
the functions fl(xc, s) to be zero along the future planned
path5.

E. Online Optimal Sensing Control
Exploiting (18) and letting s0 = s(t0), sf = s(tf ) and, in

general, s(t) = st, we can then reformulate Problem 1 as

Problem 2 (Online Optimal Sensing Control) For all t 2
[t0, tf ], find the optimal location of the control points

x⇤
c(t) = argmax

xc

k�(xc(t), st, sf )
T
�
Gc(�1, st)+

+ Go(xc, st, sf )
�
�(xc(t), st, sf )kµ ,

s.t.

1) q̂(t)� q�(xc(t), st) ⌘ 0 ,

2) fl(xc(⌧), s⌧ ) 6= 0 , 8 ⌧ 2 [t, tf ]

3) E(xc(t), st, sf ) = Ē � E(s0, st) ,

where
E(s0, st) =

Z st

s0

q
u(�)TMu(�) d�

4We note that this constraint is formally needed while the estimated state
q̂(t) has not yet converged to the true one q(t) since, after convergence, the
requirement q�(xc(t), s(t)) = q̂(t) would be trivially met.

5In our previous work [14], flatness regularity was not tackled because of
the particularly simple case study which had neither apparent nor intrinsic
singularities. This, however, does not translate to more realistic case studies
such as the ones presented in this work.

q̂(⌧), ⌧ 2 [t, tf ] q̂(t)

to find a set of outputs ⇣(q) 2 R, named flat, such that the
state q and inputs u of the original system can be algebraically
expressed in terms of the outputs ⇣ and of a finite number of
their time derivatives. In our context, the flatness assumption
for system (1) allows avoiding any numerical integration of
the nonlinear dynamics (1) for generating the state evolution
q̂(⌧), ⌧ 2 [t, tf ], from the current estimated state q̂(t) by
applying the planned inputs u(t). It is important to stress here
that, in order to always express q and u in terms of ⇣ and of a
finite number of their time derivatives, intrinsic and apparent
singularities in flat differential systems (see e.g. [23], [24])
must be avoided along the planned path. In Section III-D we
will show how this requirement can be achieved.

Second, we choose to parameterize the flat outputs ⇣(q)
(and, as a consequence, the state and inputs as well) by a
family of curves function of a finite number of parameters.
This choice further reduces the complexity of our optimization
problem from an infinite-dimensional to a finite-dimensional
one. Among the many possible parametric curves, we con-
sider the class of B-Splines [25]. B-Spline curves are linear
combinations, through a finite number N of control points
xc = (xT

c,1, xT
c,2, . . . , xT

c,N )T 2 R·N , of basis functions
B

↵
j : S ! R for j = 1, . . . , N . Each B-Spline is given as

�(xc, ·) :S ! R

s 7!
NX

j=1

xc,j B
↵
j (s, s) = Bs(s)xc

(19)

where S is a compact subset of R and Bs(s) 2 R⇥N . The
degree ↵ > 0 and knots s = (s1, s2, . . . , s`) are constant
parameters3, Bs(s) is the set of basis functions and B

↵
j is

the j-th basis function evaluated in s, obtained by using the
Cox-de Boor recursion formula [25].

The use of B-Splines is motivated by their generality and
versatility. Indeed, they can be used to represent or approxi-
mate a wide range of curves. Moreover, the relation between
the (few) parameters (the control points xc) of the B-Spline
and the shape of the corresponding trajectory is easy to manage
and allows generalizing the approach presented in this paper
to include other possible constraints (i.e. limited field-of-view,
obstacles avoidance, and so on).

By parameterizing the flat outputs ⇣(q) with a B-Spline
curve �(xc, s), and by exploiting the differential flatness
assumption, it follows that all quantities involved in Problem 1
(states q, inputs u, and, thus, any quantity needed for the CG
computation) can be expressed as a function of the parameter
s (the position along the spline) and of the control points xc.
The latter will be then the (sole) optimization variables
for Problem 1. In the following we will then let q�(xc, s)
and u�(xc, s) represent the state q and inputs u determined

3 The relation between `, ↵ and N is ` = N � ↵ + 1. ↵ is chosen
in order to guarantee the continuity of all the state variables that, in turns,
depend on the flat outputs and a finite number of their derivatives. Once this
property is guaranteed, both ↵ and N can be chosen as a trade-off between
the computational cost and the possibility of obtaining a better trajectory
(increasing the value of the smallest eigenvalue of the CG).

(via the flatness relationships) by the planned B-Spline path
�(xc, s). Comment: I didn’t remove variables q� since are
used in the next subsection and Section IV.A and Problem
2. Maybe, u� is never used...to be checked!
D. Additional requirements

In addition to the ‘bounded energy’ constraint (15) (neces-
sary for ensuring well-posedness of Problem 1), in this work
we also consider two additional requirements of interest for
the optimal solution: state coherency and flatness regularity.

1) State coherency: when solving Problem 1 online,
it is important to guarantee that, at the current time t,
q�(xc(t), s(t)) = q̂(t), where q̂(t) is the current estimation
of the true state q(t) provided by the employed observer
(a EKF in our case)4. This requirement then translates into
some continuity constraints on the planned flat output path
�(xc(t), s(t)) (and on some of its derivatives) at the current
time t which, in turn, imposes some constraints on the motion
of the B-Spline control points xc.

2) Flatness regularity: in order to always express q and u
in terms of ⇣ and of a finite number of their time derivatives,
intrinsic and apparent singularities in flat differential systems
(see [23], [24] for more details) must be avoided. While
apparent singularities can be avoided by adopting a different
set of flat outputs and different state space representations,
intrinsic singularities must be handled by guaranteeing some
constraints along the planned trajectories. Generally speak-
ing, any intrinsic singularity can be expressed as a set of
equalities fl(q,u) = 0 and hence, in the contest of this work,
as fl(xc, s) = 0. The flatness regularity requirement is then
equivalent to move the control points in order to prevent all
the functions fl(xc, s) to be zero along the future planned
path5.

E. Online Optimal Sensing Control
Exploiting (18) and letting s0 = s(t0), sf = s(tf ) and, in

general, s(t) = st, we can then reformulate Problem 1 as

Problem 2 (Online Optimal Sensing Control) For all t 2
[t0, tf ], find the optimal location of the control points

x⇤
c(t) = argmax

xc

k�(xc(t), st, sf )
T
�
Gc(�1, st)+

+ Go(xc, st, sf )
�
�(xc(t), st, sf )kµ ,

s.t.

1) q̂(t)� q�(xc(t), st) ⌘ 0 ,

2) fl(xc(⌧), s⌧ ) 6= 0 , 8 ⌧ 2 [t, tf ]

3) E(xc(t), st, sf ) = Ē � E(s0, st) ,

where
E(s0, st) =

Z st

s0

q
u(�)TMu(�) d�

4We note that this constraint is formally needed while the estimated state
q̂(t) has not yet converged to the true one q(t) since, after convergence, the
requirement q�(xc(t), s(t)) = q̂(t) would be trivially met.

5In our previous work [14], flatness regularity was not tackled because of
the particularly simple case study which had neither apparent nor intrinsic
singularities. This, however, does not translate to more realistic case studies
such as the ones presented in this work.

to find a set of outputs ⇣(q) 2 R, named flat, such that the
state q and inputs u of the original system can be algebraically
expressed in terms of the outputs ⇣ and of a finite number of
their time derivatives. In our context, the flatness assumption
for system (1) allows avoiding any numerical integration of
the nonlinear dynamics (1) for generating the state evolution
q̂(⌧), ⌧ 2 [t, tf ], from the current estimated state q̂(t) by
applying the planned inputs u(t). It is important to stress here
that, in order to always express q and u in terms of ⇣ and of a
finite number of their time derivatives, intrinsic and apparent
singularities in flat differential systems (see e.g. [23], [24])
must be avoided along the planned path. In Section III-D we
will show how this requirement can be achieved.

Second, we choose to parameterize the flat outputs ⇣(q)
(and, as a consequence, the state and inputs as well) by a
family of curves function of a finite number of parameters.
This choice further reduces the complexity of our optimization
problem from an infinite-dimensional to a finite-dimensional
one. Among the many possible parametric curves, we con-
sider the class of B-Splines [25]. B-Spline curves are linear
combinations, through a finite number N of control points
xc = (xT

c,1, xT
c,2, . . . , xT

c,N )T 2 R·N , of basis functions
B

↵
j : S ! R for j = 1, . . . , N . Each B-Spline is given as

�(xc, ·) :S ! R

s 7!
NX

j=1

xc,j B
↵
j (s, s) = Bs(s)xc

(19)

where S is a compact subset of R and Bs(s) 2 R⇥N . The
degree ↵ > 0 and knots s = (s1, s2, . . . , s`) are constant
parameters3, Bs(s) is the set of basis functions and B

↵
j is

the j-th basis function evaluated in s, obtained by using the
Cox-de Boor recursion formula [25].

The use of B-Splines is motivated by their generality and
versatility. Indeed, they can be used to represent or approxi-
mate a wide range of curves. Moreover, the relation between
the (few) parameters (the control points xc) of the B-Spline
and the shape of the corresponding trajectory is easy to manage
and allows generalizing the approach presented in this paper
to include other possible constraints (i.e. limited field-of-view,
obstacles avoidance, and so on).

By parameterizing the flat outputs ⇣(q) with a B-Spline
curve �(xc, s), and by exploiting the differential flatness
assumption, it follows that all quantities involved in Problem 1
(states q, inputs u, and, thus, any quantity needed for the CG
computation) can be expressed as a function of the parameter
s (the position along the spline) and of the control points xc.
The latter will be then the (sole) optimization variables
for Problem 1. In the following we will then let q�(xc, s)
and u�(xc, s) represent the state q and inputs u determined

3 The relation between `, ↵ and N is ` = N � ↵ + 1. ↵ is chosen
in order to guarantee the continuity of all the state variables that, in turns,
depend on the flat outputs and a finite number of their derivatives. Once this
property is guaranteed, both ↵ and N can be chosen as a trade-off between
the computational cost and the possibility of obtaining a better trajectory
(increasing the value of the smallest eigenvalue of the CG).

(via the flatness relationships) by the planned B-Spline path
�(xc, s). Comment: I didn’t remove variables q� since are
used in the next subsection and Section IV.A and Problem
2. Maybe, u� is never used...to be checked!
D. Additional requirements

In addition to the ‘bounded energy’ constraint (15) (neces-
sary for ensuring well-posedness of Problem 1), in this work
we also consider two additional requirements of interest for
the optimal solution: state coherency and flatness regularity.

1) State coherency: when solving Problem 1 online,
it is important to guarantee that, at the current time t,
q�(xc(t), s(t)) = q̂(t), where q̂(t) is the current estimation
of the true state q(t) provided by the employed observer
(a EKF in our case)4. This requirement then translates into
some continuity constraints on the planned flat output path
�(xc(t), s(t)) (and on some of its derivatives) at the current
time t which, in turn, imposes some constraints on the motion
of the B-Spline control points xc.

2) Flatness regularity: in order to always express q and u
in terms of ⇣ and of a finite number of their time derivatives,
intrinsic and apparent singularities in flat differential systems
(see [23], [24] for more details) must be avoided. While
apparent singularities can be avoided by adopting a different
set of flat outputs and different state space representations,
intrinsic singularities must be handled by guaranteeing some
constraints along the planned trajectories. Generally speak-
ing, any intrinsic singularity can be expressed as a set of
equalities fl(q,u) = 0 and hence, in the contest of this work,
as fl(xc, s) = 0. The flatness regularity requirement is then
equivalent to move the control points in order to prevent all
the functions fl(xc, s) to be zero along the future planned
path5.

E. Online Optimal Sensing Control
Exploiting (18) and letting s0 = s(t0), sf = s(tf ) and, in

general, s(t) = st, we can then reformulate Problem 1 as

Problem 2 (Online Optimal Sensing Control) For all t 2
[t0, tf ], find the optimal location of the control points

x⇤
c(t) = argmax

xc

k�(xc(t), st, sf )
T
�
Gc(�1, st)+

+ Go(xc, st, sf )
�
�(xc(t), st, sf )kµ ,

s.t.

1) q̂(t)� q�(xc(t), st) ⌘ 0 ,

2) fl(xc(⌧), s⌧ ) 6= 0 , 8 ⌧ 2 [t, tf ]

3) E(xc(t), st, sf ) = Ē � E(s0, st) ,

where
E(s0, st) =

Z st

s0

q
u(�)TMu(�) d�

4We note that this constraint is formally needed while the estimated state
q̂(t) has not yet converged to the true one q(t) since, after convergence, the
requirement q�(xc(t), s(t)) = q̂(t) would be trivially met.

5In our previous work [14], flatness regularity was not tackled because of
the particularly simple case study which had neither apparent nor intrinsic
singularities. This, however, does not translate to more realistic case studies
such as the ones presented in this work.

xc

x⇤
c(t) = argmax

xc

k�(xc(t), st, sf )
T
�
Gc(�1, st) + +Go(xc, st, sf )

�
�(xc(t), st, sf )kµ



Online Optimal Trajectory Planning

17

• Additional requirements

• Use of (classical) Task Prioritization for taking into account the several requirements

• Control points updated online by following the gradient of the cost in the null-space of the 
requirements

to find a set of outputs ⇣(q) 2 R, named flat, such that the
state q and inputs u of the original system can be algebraically
expressed in terms of the outputs ⇣ and of a finite number of
their time derivatives. In our context, the flatness assumption
for system (1) allows avoiding any numerical integration of
the nonlinear dynamics (1) for generating the state evolution
q̂(⌧), ⌧ 2 [t, tf ], from the current estimated state q̂(t) by
applying the planned inputs u(t). It is important to stress here
that, in order to always express q and u in terms of ⇣ and of a
finite number of their time derivatives, intrinsic and apparent
singularities in flat differential systems (see e.g. [23], [24])
must be avoided along the planned path. In Section III-D we
will show how this requirement can be achieved.

Second, we choose to parameterize the flat outputs ⇣(q)
(and, as a consequence, the state and inputs as well) by a
family of curves function of a finite number of parameters.
This choice further reduces the complexity of our optimization
problem from an infinite-dimensional to a finite-dimensional
one. Among the many possible parametric curves, we con-
sider the class of B-Splines [25]. B-Spline curves are linear
combinations, through a finite number N of control points
xc = (xT

c,1, xT
c,2, . . . , xT

c,N )T 2 R·N , of basis functions
B

↵
j : S ! R for j = 1, . . . , N . Each B-Spline is given as

�(xc, ·) :S ! R

s 7!
NX

j=1

xc,j B
↵
j (s, s) = Bs(s)xc

(19)

where S is a compact subset of R and Bs(s) 2 R⇥N . The
degree ↵ > 0 and knots s = (s1, s2, . . . , s`) are constant
parameters3, Bs(s) is the set of basis functions and B

↵
j is

the j-th basis function evaluated in s, obtained by using the
Cox-de Boor recursion formula [25].

The use of B-Splines is motivated by their generality and
versatility. Indeed, they can be used to represent or approxi-
mate a wide range of curves. Moreover, the relation between
the (few) parameters (the control points xc) of the B-Spline
and the shape of the corresponding trajectory is easy to manage
and allows generalizing the approach presented in this paper
to include other possible constraints (i.e. limited field-of-view,
obstacles avoidance, and so on).

By parameterizing the flat outputs ⇣(q) with a B-Spline
curve �(xc, s), and by exploiting the differential flatness
assumption, it follows that all quantities involved in Problem 1
(states q, inputs u, and, thus, any quantity needed for the CG
computation) can be expressed as a function of the parameter
s (the position along the spline) and of the control points xc.
The latter will be then the (sole) optimization variables
for Problem 1. In the following we will then let q�(xc, s)
and u�(xc, s) represent the state q and inputs u determined

3 The relation between `, ↵ and N is ` = N � ↵ + 1. ↵ is chosen
in order to guarantee the continuity of all the state variables that, in turns,
depend on the flat outputs and a finite number of their derivatives. Once this
property is guaranteed, both ↵ and N can be chosen as a trade-off between
the computational cost and the possibility of obtaining a better trajectory
(increasing the value of the smallest eigenvalue of the CG).

(via the flatness relationships) by the planned B-Spline path
�(xc, s). Comment: I didn’t remove variables q� since are
used in the next subsection and Section IV.A and Problem
2. Maybe, u� is never used...to be checked!
D. Additional requirements

In addition to the ‘bounded energy’ constraint (15) (neces-
sary for ensuring well-posedness of Problem 1), in this work
we also consider two additional requirements of interest for
the optimal solution: state coherency and flatness regularity.

1) State coherency: when solving Problem 1 online,
it is important to guarantee that, at the current time t,
q�(xc(t), s(t)) = q̂(t), where q̂(t) is the current estimation
of the true state q(t) provided by the employed observer
(a EKF in our case)4. This requirement then translates into
some continuity constraints on the planned flat output path
�(xc(t), s(t)) (and on some of its derivatives) at the current
time t which, in turn, imposes some constraints on the motion
of the B-Spline control points xc.

2) Flatness regularity: in order to always express q and u
in terms of ⇣ and of a finite number of their time derivatives,
intrinsic and apparent singularities in flat differential systems
(see [23], [24] for more details) must be avoided. While
apparent singularities can be avoided by adopting a different
set of flat outputs and different state space representations,
intrinsic singularities must be handled by guaranteeing some
constraints along the planned trajectories. Generally speak-
ing, any intrinsic singularity can be expressed as a set of
equalities fl(q,u) = 0 and hence, in the contest of this work,
as fl(xc, s) = 0. The flatness regularity requirement is then
equivalent to move the control points in order to prevent all
the functions fl(xc, s) to be zero along the future planned
path5.

E. Online Optimal Sensing Control
Exploiting (18) and letting s0 = s(t0), sf = s(tf ) and, in

general, s(t) = st, we can then reformulate Problem 1 as

Problem 2 (Online Optimal Sensing Control) For all t 2
[t0, tf ], find the optimal location of the control points

x⇤
c(t) = argmax

xc

k�(xc(t), st, sf )
T
�
Gc(�1, st)+

+ Go(xc, st, sf )
�
�(xc(t), st, sf )kµ ,

s.t.

1) q̂(t)� q�(xc(t), st) ⌘ 0 ,

2) fl(xc(⌧), s⌧ ) 6= 0 , 8 ⌧ 2 [t, tf ]

3) E(xc(t), st, sf ) = Ē � E(s0, st) ,

where
E(s0, st) =

Z st

s0

q
u(�)TMu(�) d�

4We note that this constraint is formally needed while the estimated state
q̂(t) has not yet converged to the true one q(t) since, after convergence, the
requirement q�(xc(t), s(t)) = q̂(t) would be trivially met.

5In our previous work [14], flatness regularity was not tackled because of
the particularly simple case study which had neither apparent nor intrinsic
singularities. This, however, does not translate to more realistic case studies
such as the ones presented in this work.

x⇤
c(t) = argmax

xc

k�(xc(t), st, sf )
T
�
Gc(�1, st) + +Go(xc, st, sf )

�
�(xc(t), st, sf )kµ ,

same previous set of hard joint constraints. In doing so,
we follow the idea of preemptive prioritization: A higher
priority task should use all the feasible robot capabilities it
needs, while a lower priority task must preserve the execution
of high priority tasks using only the residual capabilities
not used by all tasks of higher priority. This reasonable
requirement is very well addressed by our solution method.
As a matter of fact, the SNS algorithm typically ends up
with using a smaller number of saturated commands after
satisfying each task in the priority scale and this leaves more
room for the additional satisfaction of lower priority tasks.
Moreover, automatic scaling of task(s) is again seamlessly
embedded in the algorithm only when needed.

The considered problem can also be recast and tackled as
a constrained minimization of a quadratic objective function
under linear equality/inequality constraints with different
priorities, as done in [15], [16]. However, and in contrast to
these works, the inequality constraints imposed at the joint
level (including those on the commands) cannot and will
never be violated in our approach. These constraints, which
define what we call robot capabilities, are handled separately
and do not need to be allocated in the stack of prioritized
tasks. To guarantee feasibility, we include instead the possi-
bility of task scaling, which is not considered in [15], [16].
Moreover, the inequality constraints in our problem have the
form of elementary bounds (box constraints). This problem
structure, as well as the activation of one joint constraints at
the time in the SNS algorithm, is exploited so as to lead to
a computationally efficient numerical solution.

The paper is organized as follows. The redundancy for-
malism used throughout the paper is introduced in Sect. II.
Section III presents a simple motivating example where
the effects of joint acceleration saturation in a multi-task
scenario are correctly handled by our method. Section IV
recalls the SNS algorithm proposed in [14] for a single task.
This method is extended to multiple tasks in Sect. V. The
special case of (lower priority) tasks specified in the whole
configuration space of the robot is presented in Sect. VI. The
effectiveness of the SNS algorithm is shown by MatlabTM

simulations and experiments on a 7-dof KUKA LWR IV
robot, respectively in Sect. VII and Sect. VIII.

II. NOTATION AND BACKGROUND

Let q ∈ Rn be the vector of generalized (joint) coordinates
of a robot, x ∈ Rm the vector of variables describing a
generic m-dimensional task, with m < n, and J(q) the
associated m × n task Jacobian matrix. At a given (q, q̇),
the direct second-order differential relation and its (minimum
norm) inverse are

ẍ = J(q)q̈ + J̇(q)q̇, q̈ = J#(q)
(
ẍ − J̇(q)q̇

)
, (1)

where (·)# denotes pseudoinversion.

Consider l acceleration tasks ẍk, k = 1 . . . l, each of
dimension mk < n and ordered by priority, i.e., task i has
a higher priority than task j if i < j. The multi-task motion
control with priority can be described using the recursive

approach proposed in [1]. We have (dropping dependencies):

q̈0 = 0

q̈k = q̈k−1 + ak

= q̈k−1 + (JkP k−1)
#

(
ẍk − J̇kq̇ − Jkq̈k−1

)
,

(2)

In (2), Jk is the Jacobian associated to task k and P k is
the projector operator in the null space of the (augmented)
Jacobian of the first k tasks

JA,k =
(

JT
1 JT

2 · · · JT
k

)T
.

The generalized joint acceleration q̈k performs the first k
tasks with the given priority, while ak is the modification of
the acceleration needed to perform also task k, starting from
a solution for the first k − 1 tasks. The joint acceleration
addressing all l tasks is q̈ = q̈l.

The following recursive formula, useful for obtaining
the projector P k without recomputing the null space of
the augmented Jacobian for each additional task, has been
proposed in [13]:

P 0 = I

P k = P k−1 − (JkP k−1)
#

JkP k−1,
(3)

where I is the n × n identity matrix. To deal with singu-
larities, it is customary to use damped pseudoinversion, with
a selective damping on the lowest singular values (e.g., the
numerical filtering method of [17]).

III. ILLUSTRATIVE EXAMPLE

Consider a planar 4R manipulator with equal links of
unitary length performing a primary task specified by a
desired acceleration ẍ1 ∈ R2 (m1 = 2) for its end-effector
and commanded by the joint acceleration q̈ ∈ R4 (n = 4).
The degree of redundancy for this task is n−m = 2. Without
loss of generality assume the robot at rest, i.e., q̇ = 0.
Suppose that the joint accelerations are bounded as |q̈i| ≤ Ai,
i = 1, . . . , 4, with A1 = A2 = 2, A3 = A4 = 4 [rad/s2].

The 2 × 4 Jacobian J1(q) in the differential map (1)

evaluated at q =
(

π/2 −π/2 π/2 −π/2
)T

is

J1 =

(
−2 −1 −1 0
2 2 1 1

)
.

For a desired task acceleration ẍ1 =
(
−3 −1.5

)T
, the

minimum norm joint acceleration solution is

q̈1 = J#
1 ẍ1 =

(
1.9091 −1.7727 0.9545 −2.7273

)T
,

which is within the joint acceleration bounds and thus
executable by the robot.

Consider a secondary scalar task (m2 = 1) specified by a
desired acceleration ẍ2 = 1 along the y direction for the tip
of the second link. At the given configuration q, the 1 × 4
Jacobian J2 associated to this secondary task is

J2 =
(

1 1 0 0
)
.

same previous set of hard joint constraints. In doing so,
we follow the idea of preemptive prioritization: A higher
priority task should use all the feasible robot capabilities it
needs, while a lower priority task must preserve the execution
of high priority tasks using only the residual capabilities
not used by all tasks of higher priority. This reasonable
requirement is very well addressed by our solution method.
As a matter of fact, the SNS algorithm typically ends up
with using a smaller number of saturated commands after
satisfying each task in the priority scale and this leaves more
room for the additional satisfaction of lower priority tasks.
Moreover, automatic scaling of task(s) is again seamlessly
embedded in the algorithm only when needed.

The considered problem can also be recast and tackled as
a constrained minimization of a quadratic objective function
under linear equality/inequality constraints with different
priorities, as done in [15], [16]. However, and in contrast to
these works, the inequality constraints imposed at the joint
level (including those on the commands) cannot and will
never be violated in our approach. These constraints, which
define what we call robot capabilities, are handled separately
and do not need to be allocated in the stack of prioritized
tasks. To guarantee feasibility, we include instead the possi-
bility of task scaling, which is not considered in [15], [16].
Moreover, the inequality constraints in our problem have the
form of elementary bounds (box constraints). This problem
structure, as well as the activation of one joint constraints at
the time in the SNS algorithm, is exploited so as to lead to
a computationally efficient numerical solution.

The paper is organized as follows. The redundancy for-
malism used throughout the paper is introduced in Sect. II.
Section III presents a simple motivating example where
the effects of joint acceleration saturation in a multi-task
scenario are correctly handled by our method. Section IV
recalls the SNS algorithm proposed in [14] for a single task.
This method is extended to multiple tasks in Sect. V. The
special case of (lower priority) tasks specified in the whole
configuration space of the robot is presented in Sect. VI. The
effectiveness of the SNS algorithm is shown by MatlabTM

simulations and experiments on a 7-dof KUKA LWR IV
robot, respectively in Sect. VII and Sect. VIII.

II. NOTATION AND BACKGROUND

Let q ∈ Rn be the vector of generalized (joint) coordinates
of a robot, x ∈ Rm the vector of variables describing a
generic m-dimensional task, with m < n, and J(q) the
associated m × n task Jacobian matrix. At a given (q, q̇),
the direct second-order differential relation and its (minimum
norm) inverse are

ẍ = J(q)q̈ + J̇(q)q̇, q̈ = J#(q)
(
ẍ − J̇(q)q̇

)
, (1)

where (·)# denotes pseudoinversion.

Consider l acceleration tasks ẍk, k = 1 . . . l, each of
dimension mk < n and ordered by priority, i.e., task i has
a higher priority than task j if i < j. The multi-task motion
control with priority can be described using the recursive

approach proposed in [1]. We have (dropping dependencies):

q̈0 = 0

q̈k = q̈k−1 + ak

= q̈k−1 + (JkP k−1)
#

(
ẍk − J̇kq̇ − Jkq̈k−1

)
,

(2)

In (2), Jk is the Jacobian associated to task k and P k is
the projector operator in the null space of the (augmented)
Jacobian of the first k tasks

JA,k =
(

JT
1 JT

2 · · · JT
k

)T
.

The generalized joint acceleration q̈k performs the first k
tasks with the given priority, while ak is the modification of
the acceleration needed to perform also task k, starting from
a solution for the first k − 1 tasks. The joint acceleration
addressing all l tasks is q̈ = q̈l.

The following recursive formula, useful for obtaining
the projector P k without recomputing the null space of
the augmented Jacobian for each additional task, has been
proposed in [13]:

P 0 = I

P k = P k−1 − (JkP k−1)
#

JkP k−1,
(3)

where I is the n × n identity matrix. To deal with singu-
larities, it is customary to use damped pseudoinversion, with
a selective damping on the lowest singular values (e.g., the
numerical filtering method of [17]).

III. ILLUSTRATIVE EXAMPLE

Consider a planar 4R manipulator with equal links of
unitary length performing a primary task specified by a
desired acceleration ẍ1 ∈ R2 (m1 = 2) for its end-effector
and commanded by the joint acceleration q̈ ∈ R4 (n = 4).
The degree of redundancy for this task is n−m = 2. Without
loss of generality assume the robot at rest, i.e., q̇ = 0.
Suppose that the joint accelerations are bounded as |q̈i| ≤ Ai,
i = 1, . . . , 4, with A1 = A2 = 2, A3 = A4 = 4 [rad/s2].

The 2 × 4 Jacobian J1(q) in the differential map (1)

evaluated at q =
(

π/2 −π/2 π/2 −π/2
)T

is

J1 =

(
−2 −1 −1 0
2 2 1 1

)
.

For a desired task acceleration ẍ1 =
(
−3 −1.5

)T
, the

minimum norm joint acceleration solution is

q̈1 = J#
1 ẍ1 =

(
1.9091 −1.7727 0.9545 −2.7273

)T
,

which is within the joint acceleration bounds and thus
executable by the robot.

Consider a secondary scalar task (m2 = 1) specified by a
desired acceleration ẍ2 = 1 along the y direction for the tip
of the second link. At the given configuration q, the 1 × 4
Jacobian J2 associated to this secondary task is

J2 =
(

1 1 0 0
)
.

represents the control effort/energy already spent on the pre-
vious interval [t0, t] (and, analogously, E(xc(t), st, sf ) the
control effort/energy to be spent on the future interval [st, sf ]).

The next section will be dedicated to detail the chosen
optimization strategy for solving Problem 2.

IV. AN ONLINE GRADIENT-BASED SOLUTION TO
ACTIVE SENSING CONTROL

(Maybe we can add in this section the figure that we have
about the general scheme of our approach.)

We solve Problem 2 by an online constrained gradient
descent action affecting the location of the control points xc,
and thus the overall shape of the trajectory followed by the
robot. For this reason, we let

ẋc(t) = uc(t), xc(t0) = xc,0 , (20)

where uc(t) 2 R ⇥ N is the optimization action to be
designed, and xc,0 the control points of a starting path (initial
guess for the optimization problem).

Since Problem 2 involves optimization of the CG
Gc(�1, tf ) subject to multiple constraints, we design uc by
resorting to the well-known general framework for managing
multiple objectives (or tasks) at different priorities [26]. In
short, let io(xc) be a generic objective (or task/constraint)
characterized by the differential kinematic equation iȯ =
Ji(xc) iẋc, where Ji(xc) is the associated Jacobian ma-
trix. Let also (J1, . . . ,Jr) be the stack of the Jacobians
associated to r objectives ordered with decreasing priori-
ties. Algorithm [26] allows computing the contributions of
each task in the stack in a recursive way where AP i�1,
the projector into the null space of the augmented Jacobian
AJ i = (J1, . . . ,J i), has the (iterative) expression AP i =
AP i�1 � (J i

AP i�1)†(J i
AP i�1) and AP 0 = I .

Considering Problem 2, we then choose the following
priority list: the state coherency requirement should be the
highest priority task, followed by the regularity constraint and
then by the bounded energy constraint. Optimization of the
CG is finally taken as the lowest priority task (thus projected
in the null-space of all the previous constraints). This choice
is motivated by the fact that the planned path � should always
be synchronized with the current estimated state q̂ (state
coherency) in order to generate the optimal path from the best
available estimation of the true state. The generated optimal
path should then avoid intrinsic flatness singularities (flatness
regularity). Once these two basic requirements are satisfied,
the bounded energy requirement must be also satisfied and
maintained while the information metric is maximized. Dif-
ferent prioritizations are also clearly possible and additional
requirements can be also included in order to, e.g., avoid
obstacles or reach a particular state value at tf . We then now
detail the various steps of this prioritized optimization.

A. State coherency
Let 1o(t) = q�(xc(t), s(t)) � q̂(t) represent the first

task/requirement (state coherency), so that
1ȯ(t) = J1

1uc(t) + Jsṡ� ˙̂q(t) (21)

where Js =
@q�

@s
, the Jacobian J1 =

@q�

@xc
has expression

J1 =
@q�

@�

@�

@xc
,

and matrix � =
h
�(xc(t), st),

@�(xc(t),st)
@s , . . . ,

@(k)�(xc(t),st)
@s(k)

i

for a suitable k 2 N. Here, the order of derivative k is strictly
related to the flatness expressions for the considered system:
indeed, k is the maximum number of derivatives of the
flat outputs needed for recovering the whole state and
system inputs. The term ˙̂qq(t) is, instead, the dynamics of the
particular state estimation algorithm used to recover the state
estimate q̂(t) (e.g., a EKF). By choosing in (21)

1uc = �J†
1(k1

1o(t)� ˙̂q(t) + Jsṡ), (22)

one obtains exact exponential regulation of the highest priority
task 1o(t) with rate k1. The projector into the null space of
this (first) task is just AP 1 = AP 0 � (J1

AP 0)†(J1
AP 0)

with AP 0 = IN⇥N . Notice that other requirements should
be imposed along the path, such as a desired configuration of
the robot at the end of the path or avoiding obstacles. These
additional requirements can be easily included at this level of
priority.

B. Flatness regularity
The second constraint for Problem 2 consists in preserving

flatness regularity along the path �(xc(t), s(t)) by avoiding
intrinsic singularities, i.e., by avoiding that the control points
xc make the flatness singularity functions fl(xc, s) to vanish.
We tackle this requirement by designing a repulsive potential
acting on the control points when �i(xc, s) = kfli(xc, s)k2 is
close to zero over some intervals S

⇤
i . Let us define a potential

function Ui(�i) growing unbounded for �i ! �min and van-
ishing (with vanishing slope) for �i ! �MAX , where �min and
�MAX > �min represent minimum and maximum thresholds
for the potential. The total repulsive potential associated to the
i-th interval S⇤

i is

Ui(xc, s(t)) =

Z

S⇤
i

Ui(�i(xc,�)) d� . (23)

where S
⇤
i = Si \ [st, sf ] (indeed, the integral (23) is only

evaluated on the future path) and, as a consequence,

U(xc, s(t)) =
X

i

Z

S⇤
i

Ui(�i(xc,�)) d� (24)

represents the repulsive potential for all N control points xc,i.
The task here is to minimize the potential (24), i.e., 2

o(t) =
U(xc, s(t)). The time derivative of this task is

2ȯ(t) = J2
1uc(t) (25)

By choosing
2uc =

1uc � (J2
AN1)

†(k2
2o(t) + J2

1uc), (26)

with J2 = @U/@xc, one obtains exact exponential regula-
tion of task 2o(t) with rate k2 while still guaranteeing the
accomplishment of the highest task 1o(t). The projector into



Online Optimal Trajectory Planning

18

• Some results for a unicycle measuring two distances

-12 -10 -8 -6 -4 -2 0 2 4 6 8
x [m]

-12

-10

-8

-6

-4

-2

0

2

4

y 
[m

]

FL

FR

(a)

-10 -8 -6 -4 -2 0 2
x [m]

-6

-5

-4

-3

-2

-1

0

1

2

3

y 
[m

]

FL

FR

(b)

Fig. 2. Some of the 200 generated random path (a) and the optimal ones
obtained after applying our optimization method (b).

The performance was also compared in terms of the
individual components of the final estimation errors, and
of its Root Mean Squared (RMS), as well as in terms of the
time of convergence of the estimation errors, defined here
as the time needed to attain the same amount of estimation
error at the end of the path. For instance, assuming the
EKF performs better in the optimal case (as expected),
the convergence time is defined as the time needed by
the optimal strategy to reach the estimation error norm
attained at the end of the corresponding random path
(which served as initial guess). This definition of the
convergence rate makes possible to assess whether with our
method the same final estimation error (in the example,
the one at the end of the random path) can be obtained
in a shorter time. Similarly, the corresponding energy
consumption, hereafter called energy of convergence, was
also computed.

Statistical differences were evaluated using classic tools,

TABLE I
MEAN VALUES OF THE MAXIMUM AND AVERAGE ESTIMATION

UNCERTAINTY AS WELL AS OF THE SHAPE AND VOLUME OF THE
ESTIMATION UNCERTAINTY WITH THEIR STANDARD DEVIATIONS.

STATISTICAL DIFFERENCES BETWEEN RANDOM AND OPTIMAL PATHS ARE
CONFIRMED BY A ZERO P-VALUE. The percentage average improvement

is also reported in the last column

Random Path Optimal Path p-value % decrease
�MAX 4.97e�3 ± 2.47e�3 8.78e�4 ± 6.03e�5 0 ⇠ 82%
trace 5.72e�3 ± 2.37e�3 1.57e�3 ± 1.15e�4 0 ⇠ 72%
 5.14e2 ± 2.37e�3 2.07e1 ± 1.15e�4 0 ⇠ 96%
det 7.35e�11 ± 6.81e�11 2.46e�11 ± 4.29e�12 0 ⇠ 67%

after having tested the normality and homogeneity of vari-
ances assumption on samples (through Lilliefors’ composite
goodness-of-fit test and Levene’s test, respectively). In partic-
ular, a non-parametric test was adopted for the comparison
(Wilcoxon rank sum test) as, in our case, the normality hy-
pothesis always failed on our samples. A significance level of
5% was assumed and p-values less than 10�4 were considered
to be equal to zero.

In Table I, the average values of �MAX(P (tf )), tr(P (tf )),
(P (tf )), and det(P (tf )) with their corresponding standard
deviations are reported for both the random and the optimal
paths. The p-values are also reported, showing that in terms
of uncertainty, the proposed optimization method is able to
find more informative paths according to all the considered
metrics besides �MAX(P (tf )) (which, again, is the quantity
directly optimized by the proposed algorithm). Furthermore,
Fig. 3(a) shows the average absolute estimation error for each
state component and the RMS of the whole state estimation
error, obtained by the EKF at the end of both the random and
the optimal paths. Their corresponding standard deviations are
also reported. Wilcoxon rank sum test confirms that there is
statistical difference in the average absolute estimation errors
for all the state variables and its RMS. As a consequence, the
average absolute estimation error of x and y is much less along
the optimal paths than along the random ones (p-value: 0).
However, for ✓ the average absolute estimation error is slightly
smaller along the random paths than along the optimal ones
(p-value: 6.4e�4). This result can be explained by recalling
that our objective is to minimize the maximum estimation
uncertainty, i.e. maximize the smallest eigenvalue of CG.
However, starting from the random path as initial guess for
optimization, the largest eigenvalues may decrease while
the smallest is increased by the optimization procedure.
Indeed, while the estimate along the optimal path of x

and y, which are much more affected by the increase of
the smallest eigenvalue of CG, improves w.r.t. the random
path, the estimate of ✓, which is more affected by the
reduction of the other eigenvalues, does not improve.
However, the RMS of the whole state estimation error
at the end of the optimal path is, on average, two times
smaller than that at the end of the random path (reduction
of about 54%), thus showing that, overall, the estimation
performance was significantly better in the optimized case.

Fig. 3(b) shows, for each state variable and for the

-12 -10 -8 -6 -4 -2 0 2 4 6 8
x [m]

-12

-10

-8

-6

-4

-2

0

2

4

y 
[m

]

FL

FR

(a)

-10 -8 -6 -4 -2 0 2
x [m]

-6

-5

-4

-3

-2

-1

0

1

2

3

y 
[m

]

FL

FR

(b)

Fig. 2. Some of the 200 generated random path (a) and the optimal ones
obtained after applying our optimization method (b).

The performance was also compared in terms of the
individual components of the final estimation errors, and
of its Root Mean Squared (RMS), as well as in terms of the
time of convergence of the estimation errors, defined here
as the time needed to attain the same amount of estimation
error at the end of the path. For instance, assuming the
EKF performs better in the optimal case (as expected),
the convergence time is defined as the time needed by
the optimal strategy to reach the estimation error norm
attained at the end of the corresponding random path
(which served as initial guess). This definition of the
convergence rate makes possible to assess whether with our
method the same final estimation error (in the example,
the one at the end of the random path) can be obtained
in a shorter time. Similarly, the corresponding energy
consumption, hereafter called energy of convergence, was
also computed.

Statistical differences were evaluated using classic tools,

TABLE I
MEAN VALUES OF THE MAXIMUM AND AVERAGE ESTIMATION

UNCERTAINTY AS WELL AS OF THE SHAPE AND VOLUME OF THE
ESTIMATION UNCERTAINTY WITH THEIR STANDARD DEVIATIONS.

STATISTICAL DIFFERENCES BETWEEN RANDOM AND OPTIMAL PATHS ARE
CONFIRMED BY A ZERO P-VALUE. The percentage average improvement

is also reported in the last column

Random Path Optimal Path p-value % decrease
�MAX 4.97e�3 ± 2.47e�3 8.78e�4 ± 6.03e�5 0 ⇠ 82%
trace 5.72e�3 ± 2.37e�3 1.57e�3 ± 1.15e�4 0 ⇠ 72%
 5.14e2 ± 2.37e�3 2.07e1 ± 1.15e�4 0 ⇠ 96%
det 7.35e�11 ± 6.81e�11 2.46e�11 ± 4.29e�12 0 ⇠ 67%

after having tested the normality and homogeneity of vari-
ances assumption on samples (through Lilliefors’ composite
goodness-of-fit test and Levene’s test, respectively). In partic-
ular, a non-parametric test was adopted for the comparison
(Wilcoxon rank sum test) as, in our case, the normality hy-
pothesis always failed on our samples. A significance level of
5% was assumed and p-values less than 10�4 were considered
to be equal to zero.

In Table I, the average values of �MAX(P (tf )), tr(P (tf )),
(P (tf )), and det(P (tf )) with their corresponding standard
deviations are reported for both the random and the optimal
paths. The p-values are also reported, showing that in terms
of uncertainty, the proposed optimization method is able to
find more informative paths according to all the considered
metrics besides �MAX(P (tf )) (which, again, is the quantity
directly optimized by the proposed algorithm). Furthermore,
Fig. 3(a) shows the average absolute estimation error for each
state component and the RMS of the whole state estimation
error, obtained by the EKF at the end of both the random and
the optimal paths. Their corresponding standard deviations are
also reported. Wilcoxon rank sum test confirms that there is
statistical difference in the average absolute estimation errors
for all the state variables and its RMS. As a consequence, the
average absolute estimation error of x and y is much less along
the optimal paths than along the random ones (p-value: 0).
However, for ✓ the average absolute estimation error is slightly
smaller along the random paths than along the optimal ones
(p-value: 6.4e�4). This result can be explained by recalling
that our objective is to minimize the maximum estimation
uncertainty, i.e. maximize the smallest eigenvalue of CG.
However, starting from the random path as initial guess for
optimization, the largest eigenvalues may decrease while
the smallest is increased by the optimization procedure.
Indeed, while the estimate along the optimal path of x

and y, which are much more affected by the increase of
the smallest eigenvalue of CG, improves w.r.t. the random
path, the estimate of ✓, which is more affected by the
reduction of the other eigenvalues, does not improve.
However, the RMS of the whole state estimation error
at the end of the optimal path is, on average, two times
smaller than that at the end of the random path (reduction
of about 54%), thus showing that, overall, the estimation
performance was significantly better in the optimized case.

Fig. 3(b) shows, for each state variable and for the

where r and b are the wheels radius and the axle length,

respectively, so that v(t) =
r(!R(t) + !L(t))

2
and !(t) =

r(!R(t)� !L(t))

2b
represent the robot linear and angular ve-

locities.

YW

XW

OW

FR

FL

ω

ν

zL

zRωL

ωR2b

r

θ

x

y

α d

Fig. 1. Mobile robots and system coordinates. The robot’s task is to localize
itself with the smallest maximum estimation uncertainty by maximizing the
information collected along the path through the outputs (i.e. squared distances
w.r.t. landmarks FR and FL).

We also assume that the vehicle is equipped with a sensor
able to provide the distances from two landmarks in the
environment, in our case supposed located at the doorposts of
a door on the motion plane of the sensor. We then denote the
two landmarks by FL and FR (superscripts R and L indicate
the “Right” and “Left” doorposts). Without loss of generality,
we assume that the cartesian coordinates of these two points
w.r.t. hW i are FR = (xR, hR, yR) and FL = (xL, hL, yL),
and that the landmarks are on the plane of motion of the sensor.
By letting d and ↵, which represent the doorway width and
the orientation of the door, respectively, the outputs can be
expressed as (see also Fig. 1)

zL =

✓
x� d

2
sin↵

◆2

+

✓
y +

d

2
cos↵

◆2

zR =

✓
x+

d

2
sin↵

◆2

+

✓
y � d

2
cos↵

◆2

.

(31)

In the following, we will assume that the nominal values of
parameters r and b are 0.1 m and 0.25 m, respectively, while
the position of the landmarks are such that d = 4 m and
↵ = 0 rad.

The flat outputs for the unicycle vehicle are ⇣ = [⇣1, ⇣2]T =
[x, y]T and all the state and inputs of the robot can be
expressed in terms of the flat outputs and a finite number of
derivatives:

x = ⇣1, y = ⇣2, ✓ = arctan

 
⇣̇2

⇣̇1

!

v =
q

⇣̇21 + ⇣̇22 , ! =
⇣̈2⇣̇1 � ⇣̈1⇣̇2

⇣̇21 + ⇣̇22

.

As a consequence, by parametrizing ⇣ with B-Splines, all
the state and inputs can be expressed in terms of B-Spline

where the control points xc 2 R2·N become the optimization
variables. The value s(t) of the parameter s corresponding to
a particular time t, i.e. the parametrization imposed by the
current B-Spline, can be changed depending on the desired
timing law chosen for traveling along the path. Without loss
of generality, we will assume that the robot moves at constant
velocity along the path �(xc, s) with, thus, s(t) representing
the arc length parametrization. This new parametrization can
be simply obtained by forward integrating

ṡ =

����
@�(xc, s)

@s

����
�1

2

, s(t0) = 0. (32)

The next subsections are dedicated to evaluate the improve-
ment in performance in estimating the state (which may also
include self-calibration and environment parameters) via a
EKF when maximizing the smallest eigenvalue of CG.

B. Estimation of the unicycle state

Starting from a given initial configuration q0 of the vehicle
and an initial estimation q̂0 with uncertainty P 0, we generated
200 random paths with the same energy E(t0, tf ) = Ē = 15,
which were then optimized by using our methodology. In this
section, the parameters r and b, as well as the landmarks
parameters d and ↵, are assumed constant and equal to their
nominal values, i.e., r = 0.1 m, b = 0.25 m, d = 4 m,
↵ = 0 rad. We assume a normally-distributed Gaussian output
noise with zero mean and identity covariance matrix R = I .
Fig. 2(a) shows a selection of the 200 random paths, and
Fig. 2(b) the resulting optimal ones (after the optimization
has converged). We note that, due to the local nature of our
method, the optimization converges to two distinct locally
optimal paths depending on the particular initial guess. The
smallest eigenvalue of the CG attains its largest value along
the path on the left w.r.t. the initial forward direction of the
vehicle. Nonetheless, both paths are locally optimal and reduce
the estimation uncertainty w.r.t. the corresponding random one
which served as initial guess.

We also note that the path followed by the vehicle will be
slightly different from those showed in Fig. 2(b), which are
obtained offline by relying on the initial estimated configura-
tion of the vehicle q̂0. Indeed, as already explained, during
motion the employed EKF improves the current estimation
q̂(t), making it possible to continuously refine (online) the
previously optimized future path by exploiting the newly
acquired information during motion.

We then compared the estimation performances of the EKF
during the robot motion along each random path and its
corresponding optimized one in order to show the expected
benefits in terms of estimation performance. For the sake of
completeness, we performed a comparison not only in terms
of the maximum estimation uncertainty, i.e., �MAX(P (tf )) ⌘
�
�1
min(Gc(t0, tf )) (which is the metric actually optimized by

our algorithm), but also in terms of the average, the volume
and the shape of the estimation uncertainty, i.e., tr(P (tf )),
det(P (tf )), and (P (tf )) =

�MAX(P (tf ))
�min(P (tf ))

, respectively.



Online Optimal Trajectory Planning

19

• Some results



Conclusions

20

• A small selection of how my scientific career was shaped by the interactions with ADL

• Like many others, I chose to work in robotics also inspired by ADL’s teaching, passion, 
mentoring and guidance

• …and he’s still a source of inspiration nowadays (in particular his slides and notes J )

• I can only thank the ADLipedia for being there !


