(0)

How I Combined State Estimation, Passivity and Trajectory Optimization thanks to the

ADLipedia

Dr. Paolo Robuffo Giordano

ADL Festschrift

January $9^{\text {th }}, 2018$
DIAG, Sapienza University of Rome

Some Personal History with ADL

1999: Controlli Automatici (Automatic Control)

(full first week about motion control of a washing machine motor...)

- 2000: Robotica Industriale (Robotics)

Some Personal History with ADL

- 2001: M.Sc. Thesis

Ínía

State Estimation

- State estimation is a classical problem in control theory and applications
- and Robotics is a good source of applications
- Partial (and noisy) knowledge of the environment from onboard sensors
- Need to recover the 'world state' in order to plan, act, reason, ...

- Typical closed-loop scheme for a dynamical system:
- known inputs $u(t)$
- model $\hat{\Sigma}$ of the real plant Σ
- known (measured) output $y(t)$
- some update rule \mathbb{O} which combines everything all together for producing a converging estimation $e(t)=x(t)-\hat{x}(t) \rightarrow 0$

(Active) Structure from Motion

- Vision (cameras): extremely powerful but also complex sensing modality

- Many challenges to exploit vision in real-world robotics contexts
- Scene understanding/classification
- Visual tracking
- Robust image processing (e.g., light conditions)
- ...
- sensor mapping (perspective projection) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}X / Z \\ Y / Z\end{array}\right]$ - nonlinear and non-injective

Structure from Motion

- In 2006 I start working on SfM from a "control" perspective (here a "modern" 2017 formulation)
- SfM problems can be shown to obey the following general form
$\left\{\begin{array}{rlrl}\dot{s} & =f_{m}(\boldsymbol{s}, \boldsymbol{\omega})+\boldsymbol{\Omega}^{T}(\boldsymbol{s}, \boldsymbol{v}) \chi & \boldsymbol{s} & \longrightarrow \text { measured visual features } \\ \dot{\chi} & =\boldsymbol{f}_{u}(\boldsymbol{s}, \boldsymbol{\chi}, \boldsymbol{u}) & (\boldsymbol{v}, \boldsymbol{\omega}) & \longrightarrow \text { unknown 3D structure } \\ \text { camera linear/angular vel }\end{array}\right.$
A general nonlinear observer for these systems can be built as

$$
\left\{\begin{array}{rlr}
\dot{\hat{\boldsymbol{s}}} & =\boldsymbol{f}_{m}(\boldsymbol{s}, \boldsymbol{\omega})+\boldsymbol{\Omega}^{T}(\boldsymbol{s}, \boldsymbol{v}) \hat{\boldsymbol{\chi}}+\boldsymbol{H} \boldsymbol{\xi} & \boldsymbol{\xi}=\boldsymbol{s}-\hat{\boldsymbol{s}} \longrightarrow \\
\dot{\hat{\chi}}=\boldsymbol{f}_{u}(\boldsymbol{s}, \hat{\boldsymbol{\chi}}, \boldsymbol{u})+\alpha \boldsymbol{\Omega}(\boldsymbol{s}, \boldsymbol{v}) \boldsymbol{\xi} & \boldsymbol{H}, \alpha \longrightarrow \text { "prediction" error } \\
\text { estimation gains }
\end{array}\right.
$$

- This yields the estimation error dynamics
$\left\{\begin{array}{lll}\dot{\boldsymbol{\xi}} & =-\boldsymbol{H} \boldsymbol{\xi}+\boldsymbol{\Omega}^{T}(\boldsymbol{s}, \boldsymbol{v}) \boldsymbol{z} & \boldsymbol{z}=\boldsymbol{\chi}-\hat{\chi} \longrightarrow \text { estimation error } \\ \dot{\boldsymbol{z}} & =-\alpha \boldsymbol{\Omega}(\boldsymbol{s}, \boldsymbol{v}) \boldsymbol{\xi}+\boldsymbol{g}(\boldsymbol{z}, t)\end{array} \longrightarrow\right.$ vanishing disturbance

$$
\boldsymbol{g}(\boldsymbol{z}, t)=\boldsymbol{f}_{u}(\boldsymbol{s}, \boldsymbol{\chi}, \boldsymbol{u})-\boldsymbol{f}_{u}(\boldsymbol{s}, \hat{\chi}, \boldsymbol{u})
$$

Structure from Motion

- Error dynamics

$$
\left\{\begin{align*}
\dot{\boldsymbol{\xi}} & =-\boldsymbol{H} \boldsymbol{\xi}+\boldsymbol{\Omega}^{T}(\boldsymbol{s}, \boldsymbol{v}) \boldsymbol{z} \tag{■}\\
\dot{\boldsymbol{z}} & =-\alpha \boldsymbol{\Omega}(\boldsymbol{s}, \boldsymbol{v}) \boldsymbol{\xi}+\boldsymbol{g}(\boldsymbol{z}, t)
\end{align*}\right.
$$

- If $\boldsymbol{g}=\mathbf{0}$ then ($\mathbf{\square})$ GAS if the PE condition holds $\int_{t}^{t+T} \boldsymbol{\Omega}(\tau) \boldsymbol{\Omega}^{T}(\tau) d \tau \geq \gamma \boldsymbol{I}>0$
- However, in most cases of interest $\boldsymbol{g} \neq \mathbf{0}$ (e.g., point features, image moments, plane parameters ...)
- Would need of an explicit Lyapunov function for ($\boldsymbol{\square}$) for characterizing stability when $\boldsymbol{g} \neq \mathbf{0}$
- ICRA 2007 deadline (September 15, 2016) is approaching fast
- I am not able to find any Lyapunov function
- ADL is busy (euphemism) with the preparations for ICRA 2007

- On September 14, 2016 (-1 day to ICRA 2007 deadline) I finally get an opening
- In a 10 -min break he looks at (■) and says something like "it should probably be something related to passivity considerations...", and then goes back to ICRA paperwork
- ..and I go back to my desk without any real clue of what to do

Structure from Motion

- 2013: 7 years later I get back to this issue together with a Ph.D. student (R. Spica)

- It turns out that with a simple change of coordinates $\tilde{\boldsymbol{z}}=\boldsymbol{z} / \sqrt{\alpha}$ the error dynamics can be put in a "port-Hamiltonian form"

$$
\left[\begin{array}{c}
\dot{\boldsymbol{\xi}} \\
\dot{\tilde{\boldsymbol{z}}}
\end{array}\right]=\left(\left[\begin{array}{cc}
\mathbf{0} & \sqrt{\alpha} \boldsymbol{\Omega}^{T} \\
-\sqrt{\alpha} \boldsymbol{\Omega} & \mathbf{0}
\end{array}\right]-\left[\begin{array}{cc}
\boldsymbol{H} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\right)\left[\begin{array}{l}
\boldsymbol{\xi} \\
\tilde{\boldsymbol{z}}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{0} \\
\tilde{\boldsymbol{g}}
\end{array}\right]
$$

and the Lyapunov function is just the total energy $\mathcal{H}(\boldsymbol{\xi}, \boldsymbol{z})=\frac{1}{2} \boldsymbol{\xi}^{T} \boldsymbol{\xi}+\frac{1}{2 \alpha} \boldsymbol{z}^{T} \boldsymbol{z}$

TOLD YA

- Matrix $\boldsymbol{\Omega}$ mediates the energy exchange between $\boldsymbol{\xi}$ (prediction error) and \boldsymbol{z} (estimation error)
- Matrix \boldsymbol{H} dissipates energy (on the "measurable" error $\boldsymbol{\xi}$)
- PE condition: keep the energy shuffling around (via $\boldsymbol{\Omega}$) so that \boldsymbol{H} can dissipate...

Structure from Motion

- Further consequences: the error system can be seen as a mass-spring-damper system

$$
\ddot{\boldsymbol{\eta}}=-\boldsymbol{D}_{1} \dot{\boldsymbol{\eta}}-\alpha \boldsymbol{S}^{2} \boldsymbol{\eta} \quad \boldsymbol{H}=\boldsymbol{V}\left[\begin{array}{cc}
\boldsymbol{D}_{1} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{D}_{2}
\end{array}\right] \boldsymbol{V}^{T} \quad \boldsymbol{\Omega}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}
$$

where \boldsymbol{D}_{1} is a desired damping term and $\boldsymbol{S}^{2}=\operatorname{diag}\left(\sigma_{i}^{2}\right)$ (eigenvalues of $\boldsymbol{\Omega} \boldsymbol{\Omega}^{T}$) is the "stiffness matrix"

- $\boldsymbol{\Omega}(t)=\boldsymbol{\Omega}(\boldsymbol{s}, \boldsymbol{v}) \longrightarrow \sigma_{i}^{2}(t)=\sigma^{2}(\boldsymbol{s}, \boldsymbol{v}):$ possibility to act on \boldsymbol{v} to control/assign a desired dynamics to the estimation error (like tuning the damping/stiffness in interaction control)
- For instance $\dot{\boldsymbol{v}}=\frac{k_{1} \boldsymbol{v}}{\|\boldsymbol{v}\|^{2}}\left(\left\|\boldsymbol{v}_{0}\right\|-\|\boldsymbol{v}\|\right)+k_{2}\left(\boldsymbol{I}_{3}-\frac{\boldsymbol{v} \boldsymbol{v}^{T}}{\|\boldsymbol{v}\|^{2}}\right) \nabla_{\boldsymbol{v}} \sigma_{1}^{2}$
- Optimize the camera motion direction while keeping a constant linear velocity norm

Active Visual State Estimation

point [CDC‘13, TRO‘14]

cylinder [ICRA'14, TRO‘14]

sphere [ICRA'14, TRO‘14]

plane [CDC'13, ICRA'14, ICRA'15]

Coupling with Visual Control

- Further developments: how to plug the active estimation in the execution of a visual task
- The camera should arrive at a desired location while following an "informative path" for concurrently reconstructing the 3D scene (which is used by the controller)

- Benefits:
- Better knowledge of the scene during task execution
\longrightarrow task convergence closer to ideality
- Better knowledge of the scene at the end of the task
\longrightarrow can be used for other purposes

Coupling with Visual Control

Cost function representative of the estimation excitation $\mathcal{V}=\mathcal{V}\left(\sigma_{i}^{2}(\boldsymbol{s}, \boldsymbol{v})\right)$ (to be maximized)

- Second-order redundancy resolution $\dot{\boldsymbol{s}}=\boldsymbol{L}_{s} \boldsymbol{u}$ \square $\ddot{s}=\boldsymbol{L}_{s} \dot{\boldsymbol{u}}+\dot{\boldsymbol{L}}_{s} \boldsymbol{u}$

$$
\dot{\boldsymbol{u}}=\boldsymbol{L}_{\boldsymbol{s}}^{\dagger}\left(-k_{v} \dot{\boldsymbol{e}}-k_{p} \boldsymbol{e}-\dot{\boldsymbol{L}}_{s} \boldsymbol{u}\right)+\left(\boldsymbol{I}-\boldsymbol{L}_{\boldsymbol{s}} \boldsymbol{L}_{\boldsymbol{s}}^{\dagger}\right) \nabla_{\boldsymbol{v}} \mathcal{V}
$$

$$
\text { (■) } \quad e=s-s_{d}
$$

- However, in any reasonable case $\left(\boldsymbol{I}-\boldsymbol{L}_{s} \boldsymbol{L}_{s}^{\dagger}\right) \nabla_{\boldsymbol{v}} \mathcal{V}=\mathbf{0}$ (no room for optimization of camera motion)
- Better results by choosing to regulate the norm of the task error $\nu=\|\boldsymbol{e}\| \quad \boldsymbol{L}_{\nu}=\frac{\boldsymbol{e}^{T} \boldsymbol{L}_{\boldsymbol{s}}}{\nu}$

$$
\dot{\boldsymbol{u}}=\boldsymbol{L}_{\nu}^{\dagger}\left(-k_{v} \dot{\boldsymbol{e}}-k_{p} \boldsymbol{e}-\dot{\boldsymbol{b}}_{\nu} \boldsymbol{u}\right)+\left(\boldsymbol{I}-\boldsymbol{L}_{\nu} \boldsymbol{L}_{\nu}^{\dagger}\right) \nabla_{\boldsymbol{v}} \mathcal{V}
$$

since in general $\left(\boldsymbol{I}-\boldsymbol{L}_{\nu} \boldsymbol{L}_{\nu}^{\dagger}\right.$

However, need to switch back to ($\rightarrow 0$
constrained

- Need of conditions when to switch to ($\mathbf{\square}$) and/or re-activate the norm controller
- Leverage again the explicit expression of the Lyapunov (storage) function

Coupling with Visual Control

ICRA 2014, IJRR 2017

Online Optimal Trajectory Planning

- Further developments: all the presented schemes are local/purely reactive
- It would be nicer to optimize over a longer time horizon
- But in an online fashion (for continuously refining the planned trajectory from the estimated state)
- Generic nonlinear dynamics with output noise $\quad \begin{aligned} & \dot{\boldsymbol{q}}(t)=\boldsymbol{f}(\boldsymbol{q}(t), \boldsymbol{u}(t)), \quad \boldsymbol{q}\left(t_{0}\right)=\boldsymbol{q}_{\mathbf{0}} \\ & \boldsymbol{z}(t)=\boldsymbol{h}(\boldsymbol{q}(t))+\boldsymbol{\nu}\end{aligned}$
- The Constructibility Gramian $\mathcal{G}_{\boldsymbol{c}}\left(t_{0}, t_{f}\right) \triangleq \int_{t_{0}}^{t_{f}} \boldsymbol{\Phi}\left(\tau, t_{f}\right)^{T} \boldsymbol{C}(\tau)^{T} \boldsymbol{W}(\tau) \boldsymbol{C}(\tau) \boldsymbol{\Phi}\left(\tau, t_{f}\right) \mathrm{d} \tau$

$$
\dot{\mathbf{\Phi}}\left(t, t_{0}\right)=\boldsymbol{A}(t) \mathbf{\Phi}\left(t, t_{0}\right), \quad \boldsymbol{\Phi}\left(t_{0}, t_{0}\right)=I
$$

captures the ability in reconstructing the state $\boldsymbol{q}\left(t_{f}\right)$ at the final time t_{f}

- One can show that $\boldsymbol{P}^{-1}(t)=\boldsymbol{\Phi}^{T}\left(t_{0}, t\right) \boldsymbol{P}_{0}^{-1} \boldsymbol{\Phi}\left(t_{0}, t\right)+\mathcal{G}_{\boldsymbol{c}}\left(t_{0}, t\right)$

$$
\boldsymbol{P}^{-1}(t)=\boldsymbol{\mathcal { G }}_{\boldsymbol{c}}(-\infty, t)
$$

P. Salaris R. Spica M. Cognetti

Online Optimal Trajectory Planning

- Natural optimization problem

$$
\begin{aligned}
\boldsymbol{u}^{*}(t) & =\arg \max _{\boldsymbol{u}}\left\|\mathcal{G}_{\boldsymbol{c}}\left(-\infty, t_{f}\right)\right\| \\
\text { s.t. } & \\
E\left(t_{0}, t_{f}\right) & =\int_{t_{0}}^{t_{f}} \sqrt{\boldsymbol{u}(\tau)^{T} \boldsymbol{M u}(\tau)} \mathrm{d} \tau=\bar{E}
\end{aligned}
$$

- However, all quantities depend on $\boldsymbol{q}(t), t \in\left[t_{0}, t_{f}\right]$ which is unknown
- An offline optimization at $t=t_{0}$ would be based on $\hat{\boldsymbol{q}}\left(t_{0}\right)$ and thus arbitrarily wrong
- On the other hand, during motion $\hat{\boldsymbol{q}}(t) \rightarrow \boldsymbol{q}(t)$ by using an observer (e.g., a EKF)
- Possible solution: continuously refine the optimized path based on the (converging) $\hat{\boldsymbol{q}}(t)$
- Useful decomposition $\mathcal{G}_{c}\left(-\infty, t_{f}\right)=\boldsymbol{\Phi}\left(t, t_{f}\right)^{T}\left(\mathcal{G}_{c}(-\infty, t)+\mathcal{G}_{o}\left(t, t_{f}\right)\right) \boldsymbol{\Phi}\left(t, t_{f}\right)$ TBO = To Be Optimized

TBO

Fixed

TBO

Online Optimal Trajectory Planning

- Simplifying assumptions
- 1) System $\begin{aligned} & \dot{\boldsymbol{q}}(t)=\boldsymbol{f}(\boldsymbol{q}(t), \boldsymbol{u}(t)), \quad \boldsymbol{q}\left(t_{0}\right)=\boldsymbol{q}_{\mathbf{0}} \\ & \boldsymbol{z}(t)=\boldsymbol{h}(\boldsymbol{q}(t))+\boldsymbol{\nu}\end{aligned}$ admits a set of flat outputs $\boldsymbol{\zeta}(\boldsymbol{q})$
\Longrightarrow no need to integrate the system dynamics for generating $\hat{\boldsymbol{q}}(\tau), \tau \in\left[t, t_{f}\right]$ from $\hat{\boldsymbol{q}}(t)$
- 2) the flat outputs $\boldsymbol{\zeta}(\boldsymbol{q})$ are parameterized by a parametric curve (B-Spline) $\gamma\left(\boldsymbol{x}_{c}, s\right)$
finite-dimensional optimization problem (the control points \boldsymbol{x}_{c})

- Reformulated optimization Problem

$$
\boldsymbol{x}_{c}^{*}(t)=\arg \max _{\boldsymbol{x}_{c}}\left\|\boldsymbol{\Phi}\left(\boldsymbol{x}_{c}(t), s_{t}, s_{f}\right)^{T}\left(\mathcal{G}_{\boldsymbol{c}}\left(-\infty, s_{t}\right)++\boldsymbol{\mathcal { G }}_{\boldsymbol{o}}\left(\boldsymbol{x}_{c}, s_{t}, s_{f}\right)\right) \boldsymbol{\Phi}\left(\boldsymbol{x}_{c}(t), s_{t}, s_{f}\right)\right\|_{\mu}
$$

Online Optimal Trajectory Planning

- Additional requirements

$\boldsymbol{x}_{c}^{*}(t)=\arg \max _{\boldsymbol{x}_{c}}\left\|\boldsymbol{\Phi}\left(\boldsymbol{x}_{c}(t), s_{t}, s_{f}\right)^{T}\left(\mathcal{G}_{\boldsymbol{c}}\left(-\infty, s_{t}\right)++\boldsymbol{\mathcal { G }}_{\boldsymbol{o}}\left(\boldsymbol{x}_{c}, s_{t}, s_{f}\right)\right) \boldsymbol{\Phi}\left(\boldsymbol{x}_{c}(t), s_{t}, s_{f}\right)\right\|_{\mu}$

1) $\hat{\boldsymbol{q}}(t)-\boldsymbol{q}_{\boldsymbol{\gamma}}\left(\boldsymbol{x}_{\boldsymbol{c}}(t), s_{t}\right) \equiv \mathbf{0}$,
2) $\mathbf{f}\left(\boldsymbol{x}_{c}(\tau), s_{\tau}\right) \neq \mathbf{0}, \forall \tau \in\left[t, t_{f}\right]$
3) $E\left(\boldsymbol{x}_{c}(t), s_{t}, s_{f}\right)=\bar{E}-E\left(s_{0}, s_{t}\right)$,
where

$$
E\left(s_{0}, s_{t}\right)=\int_{s_{0}}^{s_{t}} \sqrt{\boldsymbol{u}(\sigma)^{T} \boldsymbol{M} \boldsymbol{u}(\sigma)} \mathrm{d} \sigma
$$

- Use of (classical) Task Prioritization for taking into account the several requirements

$$
\boldsymbol{J}_{A, k}=\left(\begin{array}{llll}
\boldsymbol{J}_{1}^{T} & \boldsymbol{J}_{2}^{T} & \cdots & \boldsymbol{J}_{k}^{T}
\end{array}\right)^{T} \quad \begin{aligned}
& \boldsymbol{P}_{0}=\boldsymbol{I} \\
& \boldsymbol{P}_{k}=\boldsymbol{P}_{k-1}-\left(\boldsymbol{J}_{k} \boldsymbol{P}_{k-1}\right)^{\#} \boldsymbol{J}_{k} \boldsymbol{P}_{k-1}
\end{aligned}
$$

- Control points updated online by following the gradient of the cost in the null-space of the requirements

$$
\dot{\boldsymbol{x}}_{c}(t)=\boldsymbol{u}_{c}(t), \quad \boldsymbol{x}_{c}\left(t_{0}\right)=\boldsymbol{x}_{c, 0}
$$

Online Optimal Trajectory Planning

- Some results for a unicycle measuring two distances

Online Optimal Trajectory Planning

Some results

Evolution of the smallest eigenvalue of the inverse of the covariance matrix given by the EKF
(i.e. of the estimated CG)

Conclusions

- A small selection of how my scientific career was shaped by the interactions with ADL
- Like many others, I chose to work in robotics also inspired by ADL's teaching, passion, mentoring and guidance
- ...and he's still a source of inspiration nowadays (in particular his slides and notes ©)
- I can only thank the ADLipedia for being there!

(e) lagadic

