
Motion Planning for Mobile Manipulators

along Given End-effector Paths

Giuseppe Oriolo Christian Mongillo

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Eudossiana 18, 00184 Roma, Italy

oriolo@dis.uniroma1.it, chrismongillo@infinito.it

Abstract—We consider the problem of planning collision-
free motions for a mobile manipulator whose end-effector
must travel along a given path. Algorithmic solutions are
devised by adapting a technique developed for fixed-base re-
dundant robots. In particular, we exploit the natural partition
of generalized coordinates between the manipulator and the
mobile base, whose nonholonomy is accounted for at the
planning stage. The approach is based on the randomized
generation of configurations that are compatible with the end-
effector path constraint. The performance of the proposed
algorithms is illustrated by several planning experiments.
Index Terms—Mobile manipulators, probabilistic motion

planning.

I. INTRODUCTION

Mobile manipulators combine the two archetypes of

robotic systems, i.e., articulated arms and mobile platforms:

hence, they exhibit the dexterity and grasping capability

of the former and the sensor-based mobility of the latter.

Several prototypes of mobile manipulators already exist;

see [1-2] for some examples. However, many research as-

pects still need to be addressed in order to fully exploit the

potential of these mechanisms. In fact, the arm and the mo-

bile platform are often treated as distinct entities, neglecting

their kinematic and dynamic interaction, whereas their most

effective use is expected to rely on the coordinated use of

locomotion and manipulation functions [3].

Planning collision-free motions under task constraints

is a typical problem where whole-system coordination is

crucial. In many applications, the mobile manipulator is

required to move the end-effector along a given path in

order to realize the task specified by a higher-level module

(e.g., for inspection missions with an in-hand camera, or in

pick and place operations). A lower-level planner is then in

charge of generating joint paths that realize the desired end-

effector motion while guaranteeing that the robot avoids

collisions with obstacles or with itself. We call this problem

Motion Planning along End-effector Paths (MPEP).

Since mobile manipulators are kinematically redundant

with respect to end-effector tasks, the MPEP problem can

be attacked as an optimal redundancy resolution problem,

with the additional difficulty that the mobile platform is

often subject to nonholonomic constraints; one possibility

is therefore to adapt kinematic [4] or optimal [5] control

schemes. However, none of the above solutions is satisfac-

tory when the objective is obstacle avoidance. For example,

the optimal control formulation of the MPEP problem for

mobile manipulators proposed in [6] leads to a nonlinear

TPBVP whose solution can only be sought numerically,

without any guarantee of success.

The objective of this paper is to present a family of prob-

abilistic planners for solving the MPEP problem in mobile

manipulators by extending our previous work dealing with

the same problem in fixed-base redundant manipulators [7].

We exploit the natural partition of generalized coordinates

between the manipulator and the mobile platform, and

take into account the presence of nonholonomic constraints

at the planning stage. All the planners rely on the same

mechanism for generating random configurations that are

compatible with the end-effector constraint.

The paper is organized as follows. In the next section, we

give a precise formulation of the MPEP problem for mobile

manipulators and clarify what we consider to be a solution.

The procedure for generating random configurations is then

presented, and the various proposed planners are described.

Results for problems of increasing complexity are finally

presented to illustrate the performance of the algorithms.

II. MPEP PROBLEM FOR MOBILE MANIPULATORS

In this section, we generalize our formulation of the

MPEP problem [7] so as to apply to the mobile manipulator

case. With respect to fixed-base manipulators, the essential

features of mobile manipulators are the natural partition of

generalized coordinates (mobile platform/manipulator) and

the nonholonomy due to the rolling wheels.

Consider a mobile manipulator whose task is to move the

end-effector along a given path in a workspace populated

by obstacles. The direct kinematics is expressed as

p = f(q) = f

(
qp

qm

)
, (1)

where p ∈ IRM is the end-effector pose (position and/or

orientation) and q ∈ IRN is the system configuration1,

consisting of the platform configuration qp∈IRNp and the

manipulator configuration qm∈IRNm , with Np+Nm = N .
While the manipulator subsystem is holonomic (i.e., arbi-

trary motions are possible for the manipulator configuration

qm), the motion of the platform is generated as

q̇p = G(qp)u, (2)

1We consider euclidean spaces for simplicity, but our developments
apply to the case in which p, qp and qm are defined over manifolds.

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 2166

where u ∈ IRP are pseudovelocities (typically, linear and

angular platform velocities), while the columns of G(qp)
span the null space of the nonholonomic constraint matrix.

An end-effector path p(σ) is assigned, with σ ∈ [0, 1]
the path parameter. For the problem to be well-posed, we

assume that ∀σ∈ [0, 1], p(σ)∈T , where T ⊂ IRM is the

dextrous task space, defined as the set of end-effector poses

that can be realized by ∞N−M configurations2.

Assume that the mobile manipulator is kinematically

redundant with respect to the given task, i.e., N > M .

Then, the MPEP problem is to find a configuration path

q(σ) = (qp(σ), qm(σ)) such that:
1) p(σ) = f(q(σ)), ∀σ∈ [0, 1];
2) the robot does not collide with obstacles or itself;

3) the path is feasible w.r.t. the kinematic constraints

that may exist (e.g., manipulator joint limits);

4) the path is feasible w.r.t. the nonholonomic con-

straints, i.e., qp(σ) is a solution of eq. (2).
Depending on the application, an initial joint configura-

tion q(0) such that p(0) = f(q(0)) may or not be assigned.
The first version of the problem is more constrained (and

thus possibly easier to solve) than the second.

We seek a solution to the MPEP problem in the form of

a sequence of configurations:

{q(σ0), q(σ1), . . . , q(σs−1), q(σs)}, σ0 = 0,σs = 1,

with the σi’s equispaced and p(σi) = f(q(σi)). The integer
s is called path sampling. A continuous path will be derived
from this sequence by joining successive configurations by

a local planner; this may use simple linear interpolation3

for qm, while the mobile platform nonholonomy must be

taken into account when joining successive values of qp.

III. GENERATION OF RANDOM CONFIGURATIONS

The algorithms we have developed for solving the MPEP

problem share the same basic tool, i.e., a procedure which

performs random sampling of self-motion manifolds. The

mechanism proposed in [7] for generating N -dimensional
random configurations compatible with the M -dimensional

task constraint is based on a partition of q into M base

and N − M redundant variables; the value of the latter is

first randomly generated, and the value of base variables is

then computed by inverse kinematics in such a way that the

resulting configuration places the end-effector at a certain

point of its assigned path4. In this section, we show how

this basic strategy can be adapted to mobile manipulators.

Assume for illustration that the platform is a unicycle,

described by coordinates x, y, θ (position and orientation)
and controlled by pseudovelocities v,ω (linear and angular
velocity), while the manipulator is a spatial three-dof arm

with rotational joints (Fig. 1). Hence, we have qp ∈ IR3,

qm ∈ IR3, and q ∈ IR6. The end-effector task is specified

2T does not contain its boundary, which includes the unavoidable
singularities realized by a single configuration.
3This will lead to an path error between successive poses, whose entity

can however be reduced at will by increasing the sampling s.
4This sampling mechanism is similar to the one used in [8] for

guaranteeing the closure constraint.

Fig. 1. The mobile manipulator considered in this paper

at the position level, i.e., p ∈ IR3. The extension to the

case where orientation is also specified is straightforward

(provided that the manipulator has sufficient dof’s).

As the configuration q is naturally split between platform
variables qp and manipulator variables qm, it is reasonable

to choose the base/redundant partition accordingly. Since

in our case M = 3 and N = 6, we must select three
variables as redundant, and generate their values randomly.

Throughout the paper, we use the platform variables for

this purpose. Other possibilities (e.g., using the manipulator

variables or a mixed set) are not discussed here.

With the assumptions of Sect. II, each pose p(σi)∈T
along the given end-effector path can be realized by

∞N−M = ∞3 configurations of the mobile manipulator,

which represent the so-called self-motion manifold 5. As-

sume that the configuration qp
i of the platform is randomly

chosen. For each value of pi = p(σi), i = 0, . . . , s, there
exist a finite number (up to 4, in our case) of manipulator

configurations qm
i = qm(pi, q

p
i) such that pi = f(qp

i , qm
i),

computed by inverting the kinematic map (1) with qp = qp
i .

Depending on the value of qp
i , it may happen that no value

of qm
i is compatible with the end-effector pose pi.

According to the above strategy, the procedure generat-

ing a random sample of the self-motion manifold corre-

sponding to pi is described in pseudocode as follows:

RAND CONF(pi, qbias)
qp

i ← RAND PLATFORM(qp
bias)

qm
i ← INV KIN(pi, q

p
i , qm

bias)
if INV KIN FAIL
Return RAND CONF FAIL

else Return qi ← (qm
i , qp

i)

RAND PLATFORM(qp
bias)

ui ← RAND INP(qbias)
qp

i ← MOVE(qp
bias, ui)

Return qp
i

The effect of the optional argument qbias, which appears

in both procedures, is to bias the distribution characterizing

the randomly generated samples. When qbias is present,

RAND CONF returns (if successful) a configuration qi

such that (i) there is a simple feasible path connecting qp
bias

to qp
i , (ii) pi = f(qi), and (iii) ‖qm

i −qm
bias‖∞ < d, where d

is a maximum allowed joint displacement. The first of these

properties is guaranteed by RAND PLATFORM, which

generates a random pseudovelocity vector ui and then

computes (by forward integration of eq. (2)) the platform

5To be precise, the inverse image of any point p ∈ T is in general a
finite number of disjoint manifolds.

2167

configuration qp
i reached from qp

bias by applying ui over a

sampling interval. The last two properties are enforced by

INV KIN, which takes as inputs pi and qp
i and seeks an

inverse solution qm
i for the manipulator joints which also

satisfies the displacement constraint. If no such solution

exists (either because no inverse solution exists for the

chosen qp
i or because all solutions violate the displacement

constraint) the boolean INV KIN FAIL becomes true.

If qbias is absent, RAND PLATFORM simply generates

a random configuration qp
i ; hence, the self-motion mani-

fold sample computed by RAND CONF is not biased by

any configuration. Finally, when RAND CONF is invoked

with no argument, a completely random configuration (not

belonging to any self-motion manifold) is produced.

The reason for biasing the random generation of qi with

qbias is that all the algorithms to be presented work in an

incremental fashion, trying to build a connectivity roadmap

from the initial end-effector pose. When a sample qi

has been randomly generated on the self-motion manifold

corresponding to pi, it is used as qbias for the next self-

motion manifold in order to guarantee that (i) qp
i and qp

i+1

are connected by a feasible path, and (ii) qm
i+1 will be

sufficiently close to qm
i . The latter fact will ensure that

the end-effector constraint violation between qi and qi+1

due to the use of linear interpolation for qm is reduced.

We now give more details about two important issues.

A. The Compatible Platform Region

Given an end-effector pose pi, it would be inefficient to

generate the random sample qp
i (i.e., the mobile platform

configuration) in the whole configuration space. The con-

dition for the existence of an inverse kinematic solution

qm
i for the manipulator is that qp

i ‘places’ the manipulator

workspace so as to contain pi. We could also say that qp
i

must ‘belong’ to the self-motion manifold of pi.

For simplicity, we shall use a coarse estimation of this

manifold, based on the geometric argument in Fig. 2. With

the manipulator in full extension (elbow singularity), a

circle is drawn with the center at pi and passing through the

platform center. Such circle (shown in gray) identifies the

platform positions that we consider to be compatible with

the end-effector constraint. Therefore, randomly generated

qp
i ’s placing the platform outside this region are discarded.

Note that, even if qp
i is such that the platform position

lies in the circle, there is no guarantee that an inverse

kinematic solution qm
i exists. This will depend on the orien-

tation component of qp
i as well as on the vertical component

of pi. However, the number of failures of INV KIN using

the above approximation of the self-motion manifold was

found to be very low and therefore acceptable6.

If RAND PLATFORM is called without a qbias, the po-

sition part of qp
i is directly generated inside the compatible

region. Finally, if RAND PLATFORM is called without

any argument (i.e., without a particular end-effector pose

pi), the compatible region is assumed to be the union of

all the circles centered on the given end-effector path.

6A more accurate computation is possible following the ideas in [9].

mobile platform

pi

manipulator in
elbow singularity

compatible
region

Fig. 2. Construction of the compatible platform region

B. Generation of Random Pseudovelocities

In practice, the pseudovelocities of the platform will be

bounded. Let U = V×Ω = [vmin, vmax]× [ωmin,ωmax] be
the set of admissible pseudovelocities.

The procedure RAND INP for generating random pseu-

dovelocity inputs is crucial, as it is responsible for the

platform motion and, ultimately, for the effectiveness of the

solution space exploration. In the remainder of this section,

we discuss the different strategies developed to such end.

1) Completely random pseudovelocities: v, ω are gener-
ated according to a uniform probability distribution in U .
2) Constant-energy pseudovelocities: v is generated ac-

cording to a uniform probability distribution in V , while ω
is computed from the following equation:

v2 + cω2 = γ2,

where c > 0 is a weighting factor and γ2 is the desired

input energy level.

3) Optimal pseudovelocities: v and ω are chosen among
a set C of candidate pseudovelocities so as to optimize a
certain criterion. In particular, C consists of four pseudove-
locity vectors, randomly chosen within the subregions

U1 = [0, vmax] × [0,ωmax] (a forward-right motion)

U2 = [0, vmax] × [ωmin, 0] (a forward-left motion)

U3 = [vmin, 0] × [ωmin, 0] (a backward-right motion)

U4 = [vmin, 0] × [0,ωmax] (a backward-left motion)

These four vectors may be generated as either completely

random or constant-energy within their domain. We pro-

pose two different choices for the optimality criterion:

the first (to be minimized) is Idist = ‖qdes − qnew‖,
i.e., the (weighted) euclidean distance between the new

configuration qnew (obtained by moving the platform from

qp
bias with the candidate pseudovelocity and then computing

the manipulator posture through inverse kinematics) and

a desired configuration qdes (whose role will be clarified

later, see Sect. IV-B). The second criterion Icomp (to be

maximized) is the task compatibility [10] of qnew, which

quantifies the motion capability of the mobile manipulator

along the end-effector path starting from the posture qnew.

The different effects of the above strategies will be

illustrated in the planning experiments of Sect. V.

IV. PLANNING ALGORITHMS

Having discussed the procedure for generating random

samples of a desired self-motion manifold, we now present

the algorithms developed for the solution of the MPEP

2168

problem for mobile manipulators. All of them make use of

the collision checking procedure NO COLL. When invoked

with a single argument qi, it performs a collision check

(including self-collisions) and returns true if qi is safe.

When invoked with two arguments (qi, qj), it performs a
collision check on both configurations as well as on the

path joining them (by sampling it at a sufficiently high

rate). In particular, a feasible path (produced under the

action of the constant pseudovelocity inputs selected by

RAND INP) is used for for the mobile platform, while the

manipulator path is obtained by linear interpolation.

A. Greedy Planner

The core of the first algorithm is the STEP function

which, given two generic poses pi, pk (0 ≤ i < k ≤ s)
belonging to the end-effector sequence and a configuration

qi on the self-motion manifold of pi, builds a (sub)sequence

of configurations {qi, . . . , qk} connecting pi to pk and such

that collisions are avoided along the path. If successful,

STEP returns the sequence in the variable PATH.

STEP(i, pi, qi, k)
for j = i to k − 1 do
l ← 0; Succ ← 0;
while l < MAX SHOTS and !Succ do

qj+1 ← RAND CONF(pj+1, qj);
if !RAND CONF FAIL and NO COLL(qj , qj+1)

Succ ← 1; ADD TO PATH(qj+1);
l ← l + 1;

if l = MAX SHOTS
Return STEP FAIL

else
j ← j + 1;

Return PATH

The parameter MAX SHOTS represents the upper bound

to the number of calls to RAND CONF(pj+1,qj) for each

end-effector pose pj . If RAND CONF succeeds in finding

a configuration qj+1 realizing pj+1, sufficiently close to the

bias configuration qj , and such that the path between qp
j

and qp
j+1 is feasible, the whole path between qj and qj+1 is

verified to be collision-free; in this case, qj+1 is added to

the current sequence through the ADD TO PATH function.

If the maximum number of trials of RAND CONF is

exceeded, the procedure returns STEP FAIL.

A direct approach to the solution is to devise a greedy

algorithm based on iterated calls to the STEP function with

p0, ps as subsequence extrema and random q0.

GREEDY algorithm
j ← 0;
while j < MAX ITER and STEP FAIL do
q0 ← RAND CONF(p0);
STEP(0, p0, q0, s);
j ← j + 1;

if !STEP FAIL
Return PATH

else
Return FAILURE

Given the initial pose p0, RAND CONF(p0) generates

an initial configuration q0 as described in the previous

section. STEP is then invoked to search for a sequence of

configurations guaranteeing feasible collision-free motion

while the end-effector moves from p0 to ps. In case of

success, the path found by STEP is returned. If STEP

fails and MAX ITER has not been exceeded, a new q0

is generated and STEP starts a new search from q0.

GREEDY implements a depth-first search, as for any ini-

tial configuration q0 a sequence of random configurations

(one for each self-motion manifold, and each biased by

the previous one) is generated, and discarded if STEP does

not reach the last self-motion manifold. Experiments have

shown that this planner is effective in easy problems (see

Sect. V), essentially due to the end-effector path constraint,

which greatly reduces the admissible internal motions of

the robot once a q0 has been chosen. Still, the only possible

way to backtrack for this planner is to generate a new q0,

and this may prove inefficient in complex problems.

B. RRT-Like Planner

To overcome the limitations of the depth-first algorithm

GREEDY, one may try to generate multiple random sam-

ples for each self-motion manifold and to connect config-

urations on successive manifolds by local paths. As in [7],

this exploratory behavior is achieved by the RRT LIKE

algorithm, which adapts the notion of RRT (Rapidly-

exploring Random Tree, [11]) to mobile manipulators.

Our algorithm tries to expand a tree τ rooted at q0, a

random sample of the p0 self-motion manifold, until the

self-motion manifold of ps is reached. If the expansion

fails a certain number of times, a different q0 is generated

and another tree is built, until the maximum number of

iterations is exceeded. If a tree connecting p0 to ps is found,

a path is extracted by graph search techniques.

RRT LIKE algorithm
j ← 0;
while pnew! = ps and j < MAX ITER do

q0 ← RAND CONF(p0);
CREATE(τ, q0);
i ← 0;
repeat

pnew ← EXTEND LIKE(τ);
i ← i + 1;

until pnew = ps or i = MAX EXT
j ← j + 1;

if pnew = ps

Return τ
else
Return FAILURE

EXTEND LIKE(τ)
qrand ← RAND CONF;
(qnear, k) ← NEAR NODE(qrand, τ);
qnew ← RAND CONF(pk+1, qnear);
if !INV KIN FAIL and NO COLL(qnear, qnew)
ADD NODE(τ, qnew);
ADD EDGE(τ, qnear, qnew);
Return pk+1

else
Return NULL

First, RAND CONF is called with no arguments to

find a random qrand = (qp
rand, qm

rand), and NEAR NODE

2169

q0

qnear

qnew

1

1

1

2

3 3
2

2τ

p

p

p

qrand
p

p

Fig. 3. The tree expansion in the subspace of platform configurations.
The integer k associated to each node identifies the end-effector pose
pk of which the node is a preimage. Note that the path between
adjacent configurations, represented here as a segment for simplicity, is
by construction feasible w.r.t. the nonholonomic constraints.

identifies qnear, the node of τ closest7 to qrand with respect

to the platform variables, and returns the index k of the

end-effector pose pk to which qnear is associated. Then,

RAND CONF computes qnew by generating first a random

input (using one of the strategies described in Sect. III-B),

then the corresponding qp
new starting from qp

near, and finally

(if successful) qm
new by inverse kinematics on the manifold

associated to pk+1. The path joining qnear to qnew is now

checked for collision; if the result is negative, τ is expanded
and pi+1 is returned. Figure 3 shows the expansion of the

tree τ in the subspace of platform configurations.

The role of qrand in guiding the expansion of RRT LIKE

is only to identify qnear, the closest node to qrand w.r.t. the

platform variables; the direction of expansion from qnear is

then determined by the choice of the pseudovelocity input,

and in general does not depend on qrand. This is quite

different from what happens in the classical RRT algorithm,

where the direction of expansion is chosen to be the line

joining qrand with qnear. To retain this strategy, which is

indeed essential for the effectiveness of RRT (namely, for

driving the expansion toward wide Voronoi regions), one

can adopt the optimal pseudovelocity generation outlined

in Sect.III-B, using the Idist criterion with qdes = qrand.

C. Variations on RRT LIKE

The expansion of τ toward randomly selected directions
gives to RRT LIKE an exploratory attitude which, for the

MPEP problem, could prove inefficient due to the strong

constraint represented by the end-effector path. However, it

is possible to modify the RRT LIKE planner by alternating

depth-first searches with expansion steps. This can be

done by invoking the STEP function right after the EX-

TEND LIKE operation has been executed; the arguments

passed to STEP are pl, ps, where pl is the closest pose to ps

reached so far by the algorithm. This modified RRT-based

planner, which tries at the same time to explore the portion

of configuration space consistent with the end-effector path

constraint and to approach the goal self-motion manifold

through a greedy search, is called RRT GREEDY.

The exploratory attitude of RRT LIKE may also be a

drawback when the start and goal self-motion manifolds

are very distant. Inspired by [12], one possible solution is

7Here, we use a weighted euclidean metric for simplicity, but a more
appropriate nonholonomic metric can be adopted.

to expand two trees, respectively rooted at the start and

at the goal self-motion manifolds. The trees will ‘meet’

on some intermediate manifold, but different nodes will be

generated; it is then necessary to compute a self-motion

connecting the two nodes by an RRT-based search re-

stricted to the manifold. This planner is called RRT BIDIR.

V. PLANNING EXPERIMENTS

We now present some MPEP experiments for the mobile

manipulator of Fig. 1. The algorithms were implemented

in C on a 1 Ghz PC and integrated in the software platform

Move3D, dedicated to motion planning and developed at

LAAS-CNRS, France8.

The first two experiments aim at highlighting the effects

of the different pseudovelocity generation procedures of

Sect.III-B: to this end, the mobile manipulator must move

its end-effector along a given rectilinear path in the absence

of obstacles, and only the RRT LIKE planner is used.

For the first experiment, Fig. 4 compares the solution tree

(more precisely, its projection on the x, y plane) obtained
by completely random pseudovelocity inputs (left) and

constant-energy optimal inputs with criterion Idist (right).

The left tree is uselessly erratic (given that no obstacles

are present) if compared with the right one, which extends

mostly along the direction of the task trajectory. The table

reports a performance comparison (averaged over 20 trials)

between these two and other methods, in terms of time

needed to find a solution, failures of INV KIN, and nodes

in the tree. The superiority of constant-energy methods is

confirmed by the smaller number of kinematic inversion

failures and by the reduced tree size. As for the choice of

the performance criteria, the minimization of Idist appears

to be more effective than the maximization of Icomp. Imix

denotes a weighted criterion that combines the two.

The second experiment is similar to the first, but a dif-

ferent initial configuration has been assigned. In particular,

the arm is completely stretched and the mobile platform

orientation is orthogonal to the end-effector path; hence,

q0 has a low task compatibility with respect to the given

end-effector trajectory. Figure 5 shows the results obtained

by RRT LIKE using constant-energy optimal inputs with

the performance criteria Idist (left) and Icomp (right). In

this case, the use of Icomp allows the robot to recover and

maintain a higher compatibility value (note the absence

of kinematic inversion failures), ultimately resulting in a

smoother motion and in a smaller computation time.

Experiments of the second group take place in environ-

ments with obstacles, and aim at comparing the perfor-

mance of the various planners. In these trials, pseudove-

locity inputs are generated by optimizing the mixed per-

formance criterion Imix over a set of four constant-energy

candidates in U1, . . . ,U4 (see Sect. III-B). As before, the

planners’ performances are averaged over 20 trials.

The third experiment scene is quite simple. The robot

must move its end-effector along a polynomial path through

8Move3D is at the origin of the product KineoWorks currently marketed
by the company Kineo CAM (www.kineocam.com).

2170

Pseudovelocity generation time (s) # kin fail # nodes

completely random 2.16 41 165
constant energy 0.50 17 127

optimal (comp. rand., Idist) 2.00 59 158
optimal (const. ene., Idist) 0.33 4 96
optimal (const. ene., Icomp) 1.00 10 189
optimal (const. ene., Imix) 0.60 21 115

Fig. 4. First experiment: The tree built on the x, y plane by RRT LIKE
using completely random inputs (left) and constant-energy optimal inputs
with criterion Idist (right). Also reported is a comparison extended to
other input generation methods.

Criterion time (s) # kin fail # nodes

Idist 0.90 145 78
Icomp 0.64 0 55

Fig. 5. Second experiment: The tree built on the x, y plane by RRT LIKE
using constant-energy optimal inputs with criteria Idist (left) and Icomp

(right), with a comparison between the two methods

two columns. Figure 6 contains some frames from the solu-

tion path computed by GREEDY and a table summarizing

the performance of the planners. In this case, the GREEDY

planner performs best under all aspects due to its depth-first

strategy, which is invariably more effective in easy planning

problems. Also RRT BIDIR achieves a good result thanks

to the large space available for reconfiguration.

Figure 7 shows the scene of the fourth experiment; the

end-effector must follow a rectilinear path which is danger-

ously close to an obstacle. The solution shown was planned

by RRT GREEDY; note how the robot stretches the arm to

move under the obstacle. RRT-based algorithms perform

best in this case thanks to their exploratory attitude, with

the exception of RRT BIDIR, which is penalized by the

reduced space for reconfiguration in the contact manifold.

The fifth planning problem is very difficult: to complete

its task, the mobile manipulator must first cross a narrow

passage and then carefully move its arm so as to drive the

end-effector between the sandwich-shaped obstacle. While

GREEDY failed to produce a solution within the allotted

time, RRT-based planners performed quite well.

A number of experiments have confirmed the above

Planner time (s) # cc # nodes

GREEDY 1.60 163 61
RRT LIKE 3.48 187 141

RRT GREEDY 2.08 208 119
RRT BIDIR 2.26 152 172

Fig. 6. Third experiment: Solution obtained with GREEDY (left to right,
and top to bottom) and comparison of planners’ performance

indications. Essentially, GREEDY is very effective when

dealing with simple queries, while RRT LIKE and

RRT GREEDY perform much better when the difficulty

of the problem increases. The bidirectional strategy of

RRT BIDIR is convenient when there is a large space

available for reconfiguration, as in the case of Fig. 9.

VI. CONCLUSIONS

Single-query probabilistic planners have been presented

for the problem of generating collision-free motions for a

nonholonomic mobile manipulator moving along a given

end-effector path. Experiments show that simple instances

of the problem can be solved more efficiently by a greedy

approach, whereas the breadth-first search of RRT-based

planners is needed to deal with more complex cases.

Among the issues deserving further attention, we men-

tion (i) proving probabilistic completeness along the lines

of [8,11], (ii) complexity analysis, and (iii) the choice of

performance criteria for pseudovelocity generation, with

the ideas in [13] as possible inspiration. An extension of

the proposed methods to sensor-based exploration can also

be envisaged following the approach in [14].

2171

Planner time (s) # CC # nodes

GREEDY 12.6 478 40
RRT LIKE 6.3 218 115

RRT GREEDY 6 278 76
RRT BIDIR 33 1230 511

Fig. 7. Fourth experiment: Solution obtained with RRT GREEDY and
comparison of planners’ performance

REFERENCES

[1] D. Apostolopoulus, M. Wagner, and W. Whittaker, “Technology
and field demonstration results in the robotic search for antarctic
meteorites,” Field and Service Robotics Conf., 1999.

[2] M. Nechyba and Y. Xu, “Human robot coordination in space: (sm)ˆ 2
for new space station structure,” IEEE Robotics and Automation

Mag., vol. 2, no. 4, pp. 4–14, 1995.
[3] Y. Yamamoto and X. Yun, “Coordinating locomotion and manipu-

lation of a mobile manipulator,” IEEE Trans. on Automatic Control,
vol. 39, pp. 1326–1332, 1994.

[4] B. Siciliano, “Kinematic control of redundant robot manipulators: A
tutorial,” J. of Intelligent and Robotic Systems, vol. 3, pp. 201–212,
1990.

[5] D. P. Martin, J. Baillieul, and J.M. Hollerbach, “Resolution of
kinematic redundancy using optimization techniques,” IEEE Trans.

on Robotics and Automation, vol. 5, pp. 529–533, 1989.
[6] A. Mohri, S. Furuno, and M. Yamamoto, “Trajectory planning of

mobile manipulator with end-effector’s specified path,” 2001 IEEE
Int. Conf. on Intelligent Robots and Systems, vol. 4, pp. 2264–2269,
2001.

[7] G. Oriolo, M. Ottavi, and M. Vendittelli, “Probabilistic motion
planning for redundant robots along given end-effector paths,” 2002
IEEE Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 1657–
1662, 2002.

[8] L. Han and N. Amato, “A kinematic-based probabilistic roadmap
method for closed chain systems,” 4th Int. Work. on Algorithmic

Foundations of Robotics, pp. 233–246, 2000.
[9] J. Cortes, T. Simèon, and J. P. Laumond, “A random loop generator

for planning the motions of closed kinematic chains using prm
methods,” 2002 IEEE Int. Conf. on Robotics and Automation, pp.
2141–2146, 2002.

[10] S. L Chiu, “Task compatibility of manipulator postures,” The Int.

J. of Robotics Research, vol. 7, pp. 13–21, 1988.

Planner time (s) # cc # nodes

GREEDY - - -
RRT LIKE 33 1768 560

RRT GREEDY 47 5439 229
RRT BIDIR 230 15769 1322

Fig. 8. Fifth experiment: Solution obtained with RRT LIKE and
comparison of planners’ performance

Fig. 9. A problem for which RRT BIDIR is more efficient than other
planners

[11] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Technical Report No. 98-11, Computer Science Dept.,

Iowa State University., 1998.
[12] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach

to single-query path planning,” 2000 IEEE Int. Conf. on Robotics

and Automation, vol. 2, pp. 995–1001, 2000.
[13] P. Leven and S. Hutchinson, “Using manipulability to bias sampling

during the construction of probabilistic roadmaps,” IEEE Trans. on

Robotics and Automation, vol. 19, pp. 1020–1026, 2003.
[14] G. Oriolo, M. Vendittelli, L. Freda, and G. Troso, “The srt method:

Randomized strategies for exploration,” 2004 IEEE Int. Conf. on

Robotics and Automation, pp. 4688–4694, 2004.

2172

	MAIN MENU

