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Abstract

We present a method for trajectory planning and control of planar
robots with a passive rotational last joint. These underactuated me-
chanical systems, which are subject to nonholonomic second-order
constraints, are shown to be fully linearized and input-output de-
coupled by means of a nonlinear dynamic feedback. This objective
is achieved in a unified framework, both in the presence or absence
of gravity. The linearizing output is the position of the center of per-
cussion of the last link. Based on this result, one can plan smooth
trajectories joining in finite time any initial and desired final state
of the robot; in particular, transfers between inverted equilibria and
swing-up maneuvers under gravity are easily obtained. We also ad-
dress the problem of avoiding the singularity induced by the dynamic
linearization procedure through a careful choice of output trajec-
tories. A byproduct of the proposed method is the straightforward
design of exponentially stable tracking controllers for the generated
trajectories. Simulation results are reported for a 3R robot moving
in a horizontal and vertical plane. Possible extensions of the ap-
proach and its relationships with the differential flatness technique
are briefly discussed.

KEY WORDS—underactuated robots, dynamic feedback
linearization, nonholonomic trajectory planning, differential
flatness, swing-up maneuvers

1. Introduction

One of the most interesting consequences of nonholonomy
in robotic systems is that it allows one to control the config-
uration of the whole mechanism with a reduced number of
inputs (Bicchi and Goldberg 1996). The price for this bene-
fit is that planning and controlling trajectories become much
harder than in the case of holonomic systems; for example,
stabilization at a point cannot be obtained via smooth time-
invariant feedback (Brockett 1983). Many well-known exam-
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ples of nonholonomy are found in the class of kinematic or
dynamic models of systems with Pfaffian (i.e., first-order and
linear in the generalized velocities) differential constraints,
such as wheeled mobile robots (Laumond 1998), multifin-
gered hands with rolling contacts (Murray, Li, and Sastry
1994; Bicchi 2000), and space manipulators subject to an-
gular momentum conservation (Vafa and Dubowsky 1990).

There is, however, another class of controlled mechanical
systems that exhibit a nonholonomic behavior, namely, robots
with passive degrees of freedom (also called underactuated
in the literature). These mechanisms arise in a number of situ-
ations, ranging from nonprehensile manipulation (Lynch and
Mason 1999) to robot acrobatics (Nakanishi, Fukudu, and
Koditschek 2000), from legged locomotion (Spong 1999) to
surgical robotics (Funda et al. 1996), from free-floating robots
(Faiz and Agrawal 1998) to manipulators with flexibility con-
centrated at the joints (De Luca and Lucibello 1998) or dis-
tributed along the links (De Luca et al. 2001). Another partic-
ularly interesting example is that of manipulators to be oper-
ated in spite of actuator failure (Arai and Tachi 1991). In this
latter case, in order to preserve active operation of the sys-
tem, one needs to take into account the arising nonholonomic
constraints at both the trajectory planning and control level.

In a dynamical setting, all robots with n DoF’s and m < n

actuators are subject to a set of n−m second-order differential
constraints in the form

A(q)q̈ + b(q, q̇) + c(q) = 0, (1)

with q parameterizing the robot configuration space. At a
given robot state (q, q̇), constraints (1) impose restrictions
on the admissible generalized accelerations for any actuation
command. As first shown in Oriolo and Nakamura (1991),
if these constraints are nonintegrable then the whole robot
state space may be still accessible by suitable maneuvering.
Note that eq. (1) is affine in the acceleration, thus generalizing
the most studied case of first-order nonholonomic constraints,
namely those of the Pfaffian type. From the planning and con-
trol point of view, the realization of the nonholonomic nature
of underactuated robots has thus presented to researchers a
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theoretically challenging example of nonholonomic systems
with nontrivial drift. Moreover, it has suggested that trajec-
tory planning and control may be attacked by taking inspi-
ration from techniques developed for driftless nonholonomic
systems.

During the last decade, a remarkable research activity has
focused on planning and control of underactuated robots, e.g.,
see Spong (1998) and references therein. General nonholon-
omy and state controllability conditions for these systems
can be found in Oriolo and Nakamura (1991). Controllability
properties when starting from an equilibrium configuration
have been studied in Lewis and Murray (1997). The related
concept of kinematic controllability (Bullo and Lynch 2001)
allows, under certain conditions, to backstep the planning of
feasible rest-to-rest trajectories from a dynamic to a kinematic
(i.e., first-order) problem. In Rathinam and Murray (1998),
general conditions were given for mechanical systems under-
actuated by one control (i.e., with m = n − 1) to be flat. In
spite of these advances in the analysis, a general theory for
planning and control of underactuated robots is not yet avail-
able and the most successful solutions were obtained tailoring
the approach to the specific case considered. The following
review is limited to ground-based rigid manipulators with pas-
sive joints (and no brakes).

Starting with 2-DoF robots, one should note that the prob-
lem of planning feasible point-to-point trajectories with a sin-
gle actuated joint is still unsolved. To this date, asymptotic
transfer trajectories that comply with the system nonholo-
nomic constraint may only be generated as a byproduct of
feedback stabilization strategies. In the absence of gravity, sta-
bilization of a planar 2R robot with a passive elbow joint has
been obtained in Nakamura, Suzuki, and Koinuma (1997), in
which a time-varying feedback is designed via Poincaré map
analysis, and in De Luca, Mattone, and Oriolo (2000), where
an iterative steering technique is used to design a nonsmooth
feedback that guarantees robust convergence to a desired con-
figuration. The same technique was used in De Luca, Iannitti,
and Oriolo (2001) for achieving configuration control of a
PR robot with a second passive joint. Such non-conventional
approaches are needed because—exactly as in the case of
Pfaffian nonholonomic systems—smooth stabilization at an
equilibrium is not possible.

In the presence of gravity, the case of 2R planar robots
with a single actuator has been considered, among the others,
in Spong (1995) and De Luca and Oriolo (1998) (Acrobot,
passive first joint) and Spong and Block (1995) (Pendubot,
passive second joint). Since the approximate linearization of
these systems is controllable, they are in principle easier to
control, at least locally. However, due to the gravitational drift,
the region of the state space where the robot can be kept in
equilibrium is reduced, and consists of two disjoint manifolds.
Moving between these two requires appropriate swing-up ma-
neuvers, whose synthesis has been so far tackled by energy
and/or passivity-based control techniques.

Another class of underactuated robots that has been stud-
ied in some detail are three-link planar manipulators with
passive rotational third joint in the absence of gravity. Arai
et al. (1998) have shown how to plan rest-to-rest trajectories
through a sequence of elementary maneuvers consisting of
pure translations of the third link or pure rotations around
its center of percussion (CP). Under the assumption that the
first two joints are prismatic, Imura et al. (1996) proved that
the system can be transformed into second-order chained form
(another concept derived from motion planning techniques for
Pfaffian nonholonomic systems) via static state feedback, and
later (Yoshikawa, Kobayashi, and Watanabe 2000) exploited
this result to plan trajectories for the robot. In De Luca and
Oriolo (2000a, b) we have built upon these works, showing
that the position of the third link CP becomes a linearizing
output under the action of a dynamic state feedback, even in
the presence of gravity. On the resulting linear and decoupled
closed-loop system, trajectory planning can be performed us-
ing smooth trajectories that interpolate, in a given finite time,
any initial and desired final state.

We mention that trajectory planning results for systems
that are mechanically equivalent to the latter class have been
obtained based on differential flatness (Martin, Devasia, and
Paden 1996; Faiz and Agrawal 1998; Rathinam and Murray
1998). On the other hand, the approach presented in De Luca
and Oriolo (2000a, b), and further extended here, allows to
proceed in a single framework for the gravity/no gravity case,
provides a simple solution to the associated trajectory track-
ing problem, and explicitly addresses the issue of possible
singularities affecting both planning and control, so far over-
looked in other papers. In particular, this is a basic problem
in swing-up maneuvers for gymnast robots; clearly, such ma-
neuvers may not be relevant for the VTOL aircraft considered
in Martin, Devasia, and Paden 1996) or in the absence of grav-
ity (Rathinam and Murray 1998). In any case, for the sake of
clarity, we shall discuss later in the paper the relationships
between dynamic feedback linearization and differential flat-
ness, providing also a brief historical perspective.

In this paper, we extend the powerful feedback lineariza-
tion approach to a special class of underactuated mechanisms
called (n−1)Xa-Ru planar robots, having n−1 active joints of
any type and a passive rotational last joint, so as to design a tra-
jectory planning method that is valid both in the absence and
presence of gravity. Under an appropriate regularity assump-
tion, the robot can be transformed into a fully linear, input-
output decoupled system by using a second-order dynamic
feedback compensator. As a result of dynamic feedback lin-
earization, each coordinate of the CP is driven independently
by an auxiliary input through a chain of integrators. There-
fore, it is sufficient to solve an interpolation problem for the
CP point to generate a feasible point-to-point trajectory and
the associated nominal inputs. In particular, in the presence of
gravity, robot transfers between inverted equilibria and swing-
up maneuvers between disjoint equilibrium manifolds can be
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generated in a rather straightforward way. As a byproduct of
this approach, global exponential tracking of the generated
trajectory is guaranteed by adding a linear feedback (in the
linearizing coordinates) to the feedforward command.

The paper is organized as follows. In the next section, we
recall some background on feedback linearization and com-
pare the use of linearizing dynamic feedback with the ap-
proach based on differential flatness. In Section 3 we manip-
ulate the general structure of the dynamics of (n − 1)Xa-Ru

planar robots, choosing a specific set of generalized coordi-
nates and performing a partial feedback linearization so as to
obtain a simpler problem setting. The dynamic feedback lin-
earization design is presented in Section 4, while the problem
of planning and tracking state-to-state trajectories is formu-
lated and solved in Section 5. Details and numerical results
are given for a 3R underactuated robot in the absence (Sec-
tion 5.1) and presence (Section 5.2) of gravity; in particular,
we discuss strategies guaranteeing that the regularity assump-
tion is always satisfied. A discussion on possible extensions
completes the paper.

2. Background on Feedback Linearization

In this section, we recall briefly the basics of feedback lin-
earization theory. For a detailed treatment, see Isidori (1995).

Consider a generic nonlinear dynamic system

ẋ = f (x) + g(x)u, (2)

where x is the n-dimensional state and u is the m-dimensional
input. The exact state linearization problem via static feedback
consists in finding a control law of the form

u = α(x) + β(x)v, (3)

with β(x) nonsingular and v an auxiliary input, and a change
of coordinates z = φ(x) such that, in the new coordinates, the
closed-loop system is linear and controllable. Necessary and
sufficient conditions exist for the solvability of this problem
(Isidori 1995, Theorem 5.2.3). For fully actuated robots, i.e.,
with a number of generalized coordinates equal to the number
of input commands, these conditions are trivially satisfied and
the control law (3) leads to the well-known computed torque
method.

If static feedback does not allow one to solve the problem,
one can try to obtain exact state linearization by means of a
dynamic feedback compensator of the form

u = α(x, ξ) + β(x, ξ)v

ξ̇ = γ (x, ξ) + δ(x, ξ)v,
(4)

where ξ is the ν-dimensional compensator state, together with
a change of coordinates z = φ(x, ξ). Only sufficient condi-
tions are available for the solvability of this problem (see,
e.g., Isidori 1995, Proposition 5.4.4). In robotics, dynamic

feedback has been used for the exact linearization of manip-
ulators with elastic joints (De Luca and Lucibello 1998) and
of nonholonomic wheeled mobile robots (d’Andrea-Novel,
Bastin, and Campion 1995).

In both the static and the dynamic feedback case, if the suf-
ficient conditions are satisfied, the actual construction of the
control law requires us to identify an auxiliary m-dimensional
output y = h(x), such that the corresponding vector relative
degree is well defined and the sum of its elements equals n. In
particular, this output vector, together with its derivatives up
to a certain order, defines the linearizing coordinates z. As a
byproduct, the control laws (3) or (4) also yield input-output
decoupling between v and y.

In practice, however, the linearizing output y is not known
in advance. Therefore, one typically defines a candidate class
of output functions to which the linearization algorithm is ap-
plied. The algorithm progresses by differentiating each com-
ponent of the candidate output until some component of the
input explicitly appears; call ni the differentiation order of the
ith component (i = 1, . . . , m). If the Jacobian of the resulting
input-output differential map (referred to as the decoupling
matrix of the system) is nonsingular, then system (2) with
the candidate output has well-defined vector relative degree
{n1, . . . , nm}. If, in addition, it is

∑
i
ni = n, the control input

obtained by inversion of the differential map provides exact
state linearization via static feedback in the form (3).

If the decoupling matrix is singular, one can proceed by
adding integrators on (a subset of) the input channels, possibly
after a state-dependent transformation in the input space. This
operation, called dynamic extension, converts input compo-
nents into states of a dynamic compensator, which are driven
in turn by new inputs. Differentiation of the output may now
continue until either it is possible to solve for the new inputs
or the dynamic extension process has to be repeated. If the
algorithm terminates after a finite number of iterations, the
system is invertible from the chosen output and the number
of added integrators gives the dimension ν of the dynamic
compensator (4). If

∑
i
n′

i
= n + ν, being {n′

1, . . . , n
′
m
} the

vector relative degree of the extended system, the control in-
put obtained by inversion of the final input-output differen-
tial map, together with the dynamic extension, provides exact
state linearization via dynamic feedback in the form (4).

It should be noted that the fulfillment of the condition on
the sum of the relative degrees is strictly related to the absence
of zero dynamics of the original system with respect to the
linearizing output.

2.1. Dynamic Feedback Linearization vs. Differential
Flatness

The use of dynamic feedback for input-output decoupling and
exact state linearization dates back to the mid 1980s, e.g., see
Descusse and Moog (1985) and Charlet, Lévine, and Marino
(1989). A closely related concept arose in the early 1990s
under the name of differential flatness (for an introduction
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and a summary of applications, see Fliess et al. (1995)). Es-
sentially, a system of the form (2) is flat if one may find a
set of outputs y such that the state and the input can be ex-
pressed algebraically in terms of y and a certain number r of
its derivatives, i.e.,

x = x(y, ẏ, ÿ, . . . , y [r])
(5)

u = u(y, ẏ, ÿ, . . . , y[r]).

It is easy to understand that flat outputs play the same role
of linearizing outputs in the dynamic feedback linearization
approach. As a matter of fact, differential flatness is equivalent
to dynamic feedback linearizability on an open and dense
set of the state space. The two properties have already been
critically compared in Martin, Murray, and Rouchon (1997)
and van Nieuwstadt and Murray (1998). Below we debate,
mostly from an operative point of view, some of the arguments
proposed therein.

First of all, establishing the existence and providing the
expression of a flat or linearizing output is by no means trivial
and is the major difficulty of both approaches. In fact, only
necessary or sufficient conditions are available for testing the
two properties. It was argued that physical arguments can be
exploited in the search of flat outputs, but this clearly applies
also to linearizing outputs.

It is a popular opinion that flatness is particularly effec-
tive for solving the problem of generating feasible point-
to-point trajectories for nonholonomic and/or underactuated
systems. In particular, purely algebraic computations are re-
quired, namely planning an arbitrary interpolating trajectory
y = yd(t) for the flat output and transforming it back to a
state trajectory and the associated nominal input command
via eqs. (5). However, the same result is obtained within the
dynamic feedback linearization framework by inverting the
transformation z = φ(x, ξ), with z being composed of y

and its derivatives up to {n′
1 − 1, . . . , n′

m
− 1}, evaluated for

y = yd(t). The nominal input is readily provided by eq. (4)

with v = (y
[n′

1]
1d (t), . . . , y

[n′
m]

md (t)). Note that singularities in the
input and/or state transformations may affect both techniques
and must be safely avoided when planning the output trajec-
tory yd(t). This potential problem, often overlooked in the
flatness literature, is explicitly addressed in this paper within
the feedback linearization approach.

The difference between the two techniques becomes sig-
nificant when designing tracking controllers for the generated
output (and associated state) trajectories, in order to allow
the recovery of initial state errors and the rejection of exoge-
nous disturbances. With dynamic feedback linearization, the
problem essentially reduces to stabilizing chains of integra-
tors in the transformed coordinates z, so that exponentially
stable controllers are easily derived. A purely flatness-based
approach would instead require the solution of a nonlinear
stabilization problem formulated in the original coordinates—
often, one may need to settle for a controller of local validity.

Common arguments in favor of flatness claim that the con-
trol design is more natural in the original coordinates and that
no inversion of the system dynamics is performed. However,
many applications have shown that the latter strategy, implicit
in the exact linearization approach, has also its advantages,
for it realizes an automatic scheduling of control gains. As
an example, the computed torque method for fully actuated
robots results in the convenient modulation of the constant PD
gains through the inertia matrix evaluated at the current con-
figuration. In any case, the feedback linearization approach
exhibits other benefits, namely global validity of the tracking
controller and guaranteed performance in the linearizing co-
ordinates. In particular, linearity of the error transients implies
a degree of predictability even for the motion in the original
coordinates, especially when the linearizing output is a physi-
cally significant quantity, as common in mechanical systems.
In this paper, we will show that planar robots with a single
degree of underactuation are an example of such situation.

3. Dynamic Model of (n−1)Xa-Ru Planar Robots

Consider a planar robot with n joints. The first n − 1 joints
are actuated (active) and of generic nature, i.e., any com-
bination of prismatic (X=P) and/or rotational (X=R) joints.
The last joint is unactuated (passive) and rotational. Let
q = (q1, . . . , qn) be any set of generalized coordinates such
that qn = θ , the orientation of the last link with regard to the
x-axis. The dynamic model of this robot has the form

B(q)q̈ + c(q, q̇) + g(q) =
[
τ

0

]
, (6)

where τ = (τ1, . . . , τn−1) is the vector of generalized forces
performing work on the active degrees of freedom, B(q) is the
symmetric positive definite generalized inertia matrix, c(q, q̇)
is the vector of Coriolis and centrifugal terms, and g(q) is the
vector of gravitational terms. We shall assume that the plane of
motion for the robot is tilted by a generic angle ψ ∈ [0, 90◦]
with regard to the vertical plane through the x-axis. Thus,
g(q) ≡ 0 for ψ = 90◦ (zero gravity).

To simplify model analysis and control design, it is con-
venient to use a specific set of generalized coordinates. In
particular, let q = (q1, . . . , qn−3, x, y, θ) = (qa, θ), where
(x, y) are the cartesian coordinates of the base of the last
link (see Figure 1). Letting sθ = sin θ and cθ = cos θ , the
dynamic model takes the following partitioned form:




Ba(qa)

0n−3

−mndn sθ

mndn cθ

0T
n−3 −mndn sθ mndn cθ In + mnd

2
n







q̈a

θ̈
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passive
R joint

center of
percussion
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y

any (n–1)-dof

active structure

g
0

(q ,...,q )1 n–1

q = θn

K

Fig. 1. Coordinate assignment for a (n − 1)Xa-Ru planar
robot.

+

 ca(q, q̇)

0


 +


 ga(qa)

g0 mndn cθ


 =


 Fa

0


 , (7)

where Fa =(F1, . . . , Fn−3, Fx, Fy) are the generalized forces
performing work on the qa coordinates and g0 = 9.81 · cosψ .
For thenth link, In,mn, and dn are, respectively, the baricentral
inertia, mass, and distance of the center of mass from its base.
Note that Fx and Fy are cartesian forces acting at the base
of the last link; in the following, we assume that they can be
independently assigned. To this end, the planar robot must
have at least two active joints, i.e., n ≥ 3.

The last dynamic equation in (7) is a scalar second-order
differential constraint that should be satisfied during any fea-
sible motion. Whenever dn �= 0, this turns out to be a com-
pletely nonholonomic constraint in the sense of Oriolo and
Nakamura (1991). Note also that the last component of the
vector of Coriolis and centrifugal terms vanishes by virtue of
the particular choice of generalized coordinates.

Through the virtual work principle, the original general-
ized forces τ are recovered from Fa as

τ =
[

τ1...
τn−1

]
=

[
I(n−3)×(n−3)

02×(n−3)

] [
F1...
Fn−3

]

+ J T (q1, . . . , qn−1)

[
Fx

Fy

]
, (8)

beingJ the 2×(n−1) Jacobian matrix of the direct kinematics
function k in [

x

y

]
= k(q1, . . . , qn−1). (9)

3.1. Partial Feedback Linearization

To make the analysis independent from the nature of the first
n−1 joints, we preliminarly perform a partial linearization of
eq. (7) via a globally defined static feedback. As in the com-
puted torque method, the idea is to reduce the dynamics of
the active joints to n − 1 chains of double integrators, so that
they can be controlled via acceleration inputs. To this end, one
isolates θ̈ from the passive joint dynamics, i.e., the last row of
the vector equation (7), and plugs it into the active joint dy-
namics to compute the expression of q̈a . Equating the latter to
a generalized acceleration vector a = (a1, . . . , an−3, ax, ay),
the partially linearizing static feedback is easily obtained in
the form

Fa = B̂a(q)a + ca(q, q̇) + ĝa(q). (10)

In eq. (10), the (n − 1) × (n − 1) matrix

B̂a(q) = Ba(qa) − m2
n
d2
n

In + mnd2
n


0(n−3)×(n−3) 0(n−3)×2

02×(n−3)
s2θ −sθ cθ

−sθ cθ c2θ




is always nonsingular, being the Schur complement of diago-
nal element bnn of the positive definite inertia matrix B, while

ĝa(q) = ga(qa) − g0 mndn cθ

In + mnd2
n


 0n−3

−mndnsθ

mndncθ


 .

Putting together eqs. (7) and (10), the complete closed-loop
system becomes

q̈1 = a1

...

q̈n−3 = an−3

ẍ = ax

ÿ = ay

θ̈ = 1
K

(
sθ ax − cθ (ay + g0)

)
,

(11)

where K = (In + mnd
2
n
)/mndn is precisely the distance of

the center of percussion (CP) of the last link from its base
(see Figure 1). If uniform mass distribution is assumed, it is
K = 2,n/3 (,n is the length of the nth link).

Equations (11) show that the dynamics of the coordinates
qi , i = 1, . . . , n − 3, among the actuated degrees of freedom
is now completely decoupled from the dynamics of the re-
maining coordinates (x, y, θ). In particular, if a reconfigura-
tion task is to be executed, each qi can be driven independently
to its desired value by choosing ai , for i = 1, . . . , n − 3, as
an open-loop command or a linear feedback law. Therefore,
from now on we shall set n = 3 and consider only the core
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of the problem, namely trajectory planning and control for
the variables x, y, and θ . Accordingly, after partial feedback
linearization (PFL) we shall proceed only with the equations

ẍ = ax

ÿ = ay (12)

θ̈ = 1

K

(
sθ ax − cθ (ay + g0)

)
.

We remark that when the robot motion occurs on a horizontal
plane (ψ = 90◦) then g0 = 0.

4. Design of a Linearizing Dynamic Feedback

We show here that the robot dynamic model in the form (12)
can be transformed into a linear controllable system by means
of nonlinear dynamic feedback and change of coordinates.
To this end, we use the linearization algorithm mentioned in
Section 2, starting from the choice of the CP position as sys-
tem output. The algorithm will provide a singular decoupling
matrix in a intermediate step, which would then require the
addition of an integrator on a single input channel. The only
adaptation to the general algorithm consists in adding directly
two integrators at a time in this dynamic extension step, in
view of the second-order nature of the mechanical system.

Define the cartesian position of the CP of the last link as
output: [

y1

y2

]
=

[
x

y

]
+ K

[
cθ

sθ

]
. (13)

Differentiation of eq. (13) yields[
ẏ1

ẏ2

]
=

[
ẋ

ẏ

]
+ Kθ̇

[−sθ

cθ

]
(14)

and [
ÿ1

ÿ2

]
=

[
c2θ sθ cθ

sθ cθ s2θ

] [
ax

ay

]
− R(θ)

[
Kθ̇ 2

g0 cθ

]
,

where eq. (12) has been used andR(θ) is the matrix associated
to a planar rotation of an angle θ . Since the matrix multiply-
ing the acceleration vector (ax, ay) is singular, we define the
invertible feedback transformation1[

ax

ay

]
= R(θ)

[
ξ + Kθ̇ 2

σ2

]
, (15)

where ξ and σ2 are two auxiliary input variables. Note that σ2

is the linear acceleration of the base of the last link along the
normal to its axis (see Figure 2). Moreover, as a result of (15),
we have [

ÿ1

ÿ2

]
= R(θ)

[
ξ

−g0cθ

]
, (16)

1. This step is different from our original approach in De Luca and Oriolo
(2000a, b) and leads to a simpler controller.

and therefore ξ is the linear acceleration of the CP along the
last link axis (see Figure 2).

In order to further differentiate the output, while avoiding
differentiation of the input ξ , we add two integrators on the
first channel

ξ̇ = η (17)

η̇ = σ1, (18)

with σ1 the new auxiliary input in place of ξ . From eq. (16),
the third output derivative is[

y
[3]
1

y
[3]
2

]
= R(θ)

[
η + g0 cθ θ̇

ξ θ̇ + g0 sθ θ̇

]
, (19)

where we have used eq. (17) and the property

Ṙ(θ) = R(θ)S(θ̇) =
[

cθ −sθ

sθ cθ

] [
0 −θ̇

θ̇ 0

]
.

From eq. (19), η can be interpreted as the component not
due to gravity of the linear jerk of the CP along the last link
axis. Finally, being θ̈ = −(σ2 + g0cθ)/K , the fourth output
derivative is computed as

[
y

[4]
1

y
[4]
2

]
= R(θ)





 1 −g0

K
cθ

0 −ξ + g0sθ
K


 [

σ1

σ2

]

+

 −(2g0sθ + ξ)θ̇ 2 − g2

0
K

c2θ

2(g0cθ θ̇ + η)θ̇ − g0

K
(ξ + g0sθ)cθ







1= R(θ)
{
A(θ, ξ)σ + b(θ, θ̇ , ξ, η)

}
.

Under the regularity assumption that matrixA(θ, ξ) is non-
singular or, equivalently, that

ρ
1= ξ + g0sθ �= 0, (20)

the inversion-based control

σ = A−1(θ, ξ)
(
RT (θ)v − b(θ, θ̇ , ξ, η)

)
, (21)

with v = (v1, v2) as new input vector, yields[
y

[4]
1

y
[4]
2

]
=

[
v1

v2

]
, (22)

i.e., two decoupled chains of four input-output integrators.
Since the dimension (i.e., 6) of the robot state (q, q̇) plus

the dimension (i.e., 2) of the compensator state (ξ, η) equals
the sum of the relative degrees (4 + 4 = 8) of the two outputs
in eq. (22), exact state linearization has been achieved. This
implies that the system has trivial zero dynamics with respect
to the chosen output (13). Equivalently, one may say that the
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Fig. 2. Physical interpretation of eqs. (15) (left) and (16) (right).

CP position of the last link is a flat output (Fliess et al. 1995).
As already mentioned, this property has already been used in
various contexts, e.g., the control of a VTOL aircraft (Martin,
Devasia, and Paden 1996), the trajectory planning for a planar
rigid body with a single thruster (Faiz and Agrawal 1998),
and within a general study of flatness in systems with a single
degree of underactuation (Rathinam and Murray 1998).

For the PFL system (12), the linearizing dynamic controller
is obtained combining eqs. (15), (17), (18), and (21). The
block diagram of the controller is shown in Figure 3. The
initialization of the compensator state at time t = 0, i.e.,
(ξ(0), η(0)), is arbitrary (more on this in Section 5).

As a byproduct of the linearizing algorithm, a new set
of state coordinates can be defined consisting of the output
function (13), together with its first-,second-, and third-order
derivatives (respectively, eqs. (14), (16), and (19)). The inverse
transformation from these linearizing coordinates to the robot
and compensator states can be computed in closed form as:

θ = ATAN2 {sign(ρ)(ÿ2 + g0), sign(ρ)ÿ1}
ξ = ÿ1 cθ + ÿ2 sθ

θ̇ = y
[3]
2 cθ − y

[3]
1 sθ

ρ (23)
η = y

[3]
1 cθ + y

[3]
2 sθ − g0 cθ θ̇[

x

y

]
=

[
y1

y2

]
− K

[
cθ

sθ

]
[
ẋ

ẏ

]
=

[
ẏ1

ẏ2

]
− Kθ̇

[−sθ

cθ

]
,

where ATAN2(y, x) is the four-quadrant inverse tangent func-
tion. The coordinate transformation is well defined if and only
if the regularity condition (20) holds.

From eq. (16), it is easy to show that

ρ2 = ÿ2
1 + (ÿ2 + g0)

2, (24)

and thus the regularity condition can be checked based only
on the output trajectory, without actually computing θ and
ξ . Physically, ρ �= 0 means that the linear acceleration ξ of
the center of percussion of the last link along the link axis
should not cancel the projection of the gravitational acceler-
ation along the same axis.

We finally remark that all the previous derivations are valid
for any value of g0 and thus, in particular, also for robot motion
in an horizontal plane (g0 = 0); in this case, we have ρ = ξ

and the regularity condition becomes simply ξ �= 0. This
means that with our scheme pure rotational motion around
the CP is not allowed in the absence of gravity.

5. Trajectory Planning and Control

We now consider the problem of planning a feasible trajectory
joining an arbitrary initial robot state with a desired final state
in a given time. In view of the existence of a non-integrable dif-
ferential constraint on the underactuated robot, this problem
is an instance of nonholonomic trajectory planning. The dy-
namic feedback linearization technique of Section 4 suggests
a simple and systematic approach to its solution. In fact, plan-
ning a feasible motion for the underactuated robot is equiv-
alent to planning a state-to-state transfer for the equivalent
linear representation (22). The latter can be formulated as
an interpolation problem using smooth parametric functions
y1(s) and y2(s), with a timing law s = s(t). For simplicity,
we shall directly generate trajectories y1(t) and y2(t).

In particular, assume that at time t = 0 the robot starts from
a generic state (qs, q̇s) = (xs, ys, θs, ẋs, ẏs, θ̇s) to reach a goal
state (qg, q̇g) = (xg, yg, θg, ẋg, ẏg, θ̇g) at time t = T . In view
of the transposition of the planning problem to the feedback
linearized system (22), one needs to associate to (qs, q̇s) and
(qg, q̇g) the appropriate boundary conditions for the new state
variables, i.e., y1, y2, and their derivatives up to the third order,
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Fig. 3. Scheme of the linearizing dynamic controller.

at time t = 0


y1(0)
ẏ1(0)
ÿ1(0)

y
[3]
1 (0)


 =



y1s

ẏ1s

ÿ1s

y
[3]
1s


 ,




y2(0)
ẏ2(0)
ÿ2(0)

y
[3]
2 (0)


 =



y2s

ẏ2s

ÿ2s

y
[3]
2s


 ,

and at time t = T


y1(T )

ẏ1(T )

ÿ1(T )

y
[3]
1 (T )


 =



y1g

ẏ1g

ÿ1g

y
[3]
1g


 ,




y2(T )

ẏ2(T )

ÿ2(T )

y
[3]
2 (T )


 =



y2g

ẏ2g

ÿ2g

y
[3]
2g


 .

To this end, we use eqs. (13)–(14), (16) and (19), in which
ξ(0) = ξs , ξ(T ) = ξg, η(0) = ηs , and η(T ) = ηg are still free
parameters.

A straightforward solution to the interpolation problem is
to generate trajectories as polynomials of seventh degree:

yi(t) =
7∑

j=0

aijλ
j , i = 1, 2, (25)

with normalized time λ = t/T . Dropping for compactness
the output index i, the expressions of the coefficients aj are:

a0 = ys

a1 = ẏsT

a2 = 1

2
ÿsT

2

a3 = 1

6
y [3]
s
T 3

a4 = 35(yg − ys) − (20ẏs + 15ẏg)T

−(5ÿs − 5

2
ÿg)T

2 − (
2

3
y [3]
s

+ 1

6
y [3]
g
)T 3

a5 = −84(yg − ys) + (45ẏs + 39ẏg)T

+(10ÿs − 7ÿg)T
2 + (y [3]

s
+ 1

2
y [3]
g
)T 3

a6 = 70(yg − ys) − (36ẏs + 34ẏg)T

−(
15

2
ÿs − 13

2
ÿg)T

2 − (
2

3
y [3]
s

+ 1

2
y [3]
g
)T 3

a7 = −20(yg − ys) + 10(ẏs + ẏg)T + 2(ÿs − ÿg)T
2

+1

6
(y [3]

s
+ y [3]

g
)T 3.

The robot+compensator state trajectory associated to the
linearizing output trajectory (25) that solves the planning
problem is obtained by pure algebraic computations using
eqs. (23). Moreover, the open-loop commands that realize
this trajectory are

vi(t) = 1

T 4

(
840ai7λ

3 + 360ai6λ
2 + 120ai5λ + 24ai4

)
,

i = 1, 2,

which represent the nominal inputs to system (22) or, equiv-
alently, to the dynamic feedback compensator (see Figure 3),
which in turn produces the acceleration inputs (ax, ay). Since
n = 3, eq. (7) with a = (ax, ay) can be directly2 used to gen-
erate Fa . Finally, the original generalized forces τ driving the
robot are obtained from eq. (8).

The selection of initial and final compensator states (ξs, ηs)

and (ξg, ηg) affects the boundary conditions, and thus the gen-
erated motion inside the chosen class of interpolating func-
tions. In particular, the compensator states should be chosen
so as to avoid the singularity ρ = 0 during the motion. This
problem will be considered in detail in the next two subsec-
tions, referring separately to the cases of robot motion in the
absence (g0 = 0) and presence (g0 = 9.81 · cosψ �= 0) of
gravity.

First, however, we briefly discuss the problem of tracking
the generated trajectories. The feedforward commands result-
ing from a trajectory planning algorithm yield the desired
robot reconfiguration only in nominal conditions, i.e., initial
state matched with the desired reference trajectory and ab-
sence of disturbances during motion. Feedback control must
be used to alleviate the effects of an initial state error and of
different kinds of perturbations. The presented dynamic feed-
back linearization approach leads to a simple (linear) solution

2. For n > 3, we need to know also the accelerations (a1, . . . , an−3), which
are computed according to eq. (11) from the trajectories independently as-
signed to (q1, . . . , qn−3).
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to the tracking problem, with the appealing feature of global
exponential convergence.

The design of a tracking controller is performed on the
equivalent system (22). Given a desired smooth trajectory
(y1d(t), y2d(t)) for the CP (e.g., generated through eq. (25)),
we let

vi = y [4]
id

+ Fi



y

[3]
id − y

[3]
i

ÿid − ÿi

ẏid − ẏi

yid − yi


 , i = 1, 2, (26)

where the gain matrices Fi = [
fi3 fi2 fi1 fi0

]
can be

chosen so as to assign arbitrary stable eigenvalues to the track-
ing dynamics. A desirable side effect of exponential conver-
gence of the linearizing output errors is the predictability of
the mechanism motion, in view of the fact that the CP point is
fixed on the passive link. In particular, the motion of the latter
is contained in a “tube” of width 2K around the CP.

The actual states (y1, y2, . . . , y
[3]
1 , y

[3]
2 ) in eq. (26) are com-

puted on-line from the measured joint positions and velocities
of the robot and from the available dynamic compensator state
(ξ, η), by using the forward kinematics (9), its Jacobian ma-
trix, and transformations (13)–(14), (16), and (19). Provided
that the regularity condition ρ �= 0 is satisfied during motion
(i.e., along the actual state trajectory of the closed-loop sys-
tem), the tracking error converges to zero with the prescribed
exponential rate, independently from the presence or absence
of gravity.

5.1. The Zero Gravity Case

Consider the case of a rest-to-rest motion (ẋs = ẏs = θ̇s =
ẋg = ẏg = θ̇g = 0). From eqs. (13)–(14), (16), and (19), we
obtain the boundary conditions for the first output


y1s

ẏ1s

ÿ1s

y
[3]
1s


 =



xs + K cθs

0
ξs cθs

ηs cθs


 ,



y1g

ẏ1g

ÿ1g

y
[3]
1g


 =



xg + K cθg

0
ξg cθg

ηg cθg


 ,

and for the second output

y2s

ẏ2s

ÿ2s

y
[3]
2s


 =



ys + K sθs

0
ξs sθs

ηs sθs


 ,



y2g

ẏ2g

ÿ2g

y
[3]
2g


 =



yg + K sθg

0
ξg sθg

ηg sθg


 .

Being in this case ρ = ξ , in order to avoid the singularity
ξs and ξg should be nonzero and of the same sign. This condi-
tion is however only necessary, for ξ may nevertheless cross
zero during the motion. The occurrence of this event may be
predicted in advance on the basis of the following analysis.
Equation (24) becomes in this case

ξ 2 = ÿ2
1 + ÿ2

2 ,

so that the singularity is met if and only if the two output
accelerations (both fifth-order polynomials) vanish at a same
time instant t̄ ∈ [0, T ]. Elementary algebra states that this
happens when the resultant matrix of the two polynomials ÿ1

and ÿ2 is singular. In our case, the regularity condition takes
the following form:

ξg sin(θg − θs)T
2 + 10

[
(y1s − y1g) sin θs

−(y2s − y2g) cos θs
] �= 0, (27)

provided that either

−10(y1g − y1s) + (ξs cos θs − ξg cos θg)T
2 �= 0 (28)

or

−10(y2g − y2s) + (ξs sin θs − ξg sin θg)T
2 �= 0. (29)

It is relatively easy to show that one of the two inequalities (28)
and (29) can be always satisfied by an appropriate choice of
(ξs, ξg). The same is true for inequality (27) with the only
notable exception of straight line transfers, i.e.,

θs = θg (mod 180◦) and
y2s − y2g

y1s − y1g

= tan θs.

In the latter case, the motion task can be split in two phases
by the addition of an intermediate configuration (outside the
straight line).

5.1.1. Numerical Results

To illustrate the performance of the planner, we present a
typical result obtained for the rest-to-rest task

xs

ys

θs


 =


0.5 m

1 m
0◦


 −→


xg

yg

θg


 =


1.5 m

2 m
45◦


 ,

with T = 10 s, K = 2/3 (,3 = 1 m), ξs = ξg = −0.1 m/s2,
and ηs = ηg = 0.

The cartesian motion of the third link corresponding to the
planned trajectory for the CP is given in Figure 4. The motion
of a complete 3R arm (with ,1 = ,2 = 1.5 m), obtained by
kinematic inversion, is given in Figure 5. The nominal torques
in Figure 6 are obtained3 from the inverse dynamics (6) with
the following mass data (links are thin rods of uniform mass):
m1 = 10, m2 = 5, m3 = 1 (kg). Note the high joint velocities
and peak torques around t = 6 s, corresponding to a rapid
rotation of the third link approximately around its CP—and
thus to a decrease of the regularity index ρ.

We have also simulated the tracking controller along the
rest-to-rest trajectory generated above. The robot starts from

3. This is a purely algebraic computation. Alternatively, the torques could
have been computed using eq. (10) and (8) in conjunction with a simulation
of the robot dynamics.
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Fig. 4. Rest-to-rest planning in zero gravity: Third link
motion.
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Fig. 5. Rest-to-rest planning in zero gravity: 3R arm motion.
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Fig. 6. Rest-to-rest planning in zero gravity: τ1 (· · ·), τ2 (−−).

the off-path configuration x(0) = 0.5 m, y(0) = 0.9 m,
θ(0) = 15◦, and with zero initial velocity. The compensator
state is initialized at the same value used for the nominal tra-
jectory generation: ξ(0) = −0.1 m/s2, η(0) = 0. The eigen-
values of the closed-loop tracking error dynamics have been
all placed in −2, for both components of the output trajectory.
The resulting gain matrices are

F1 = F2 = [
8 24 32 16

]
.

The actual motion of the third link is shown in Figure 8 (to
be compared with Figure 4). The evolution of the CP position
errors ei = yid −yi (i = 1, 2) in Figure 7 shows the prescribed
exponential rate of decay.

5.2. The Nonzero Gravity Case

To analyze this case, we consider first a rest-to-rest motion be-
tween inverted equilibria (θs = θg = 90◦, with zero initial and
final velocities) in the vertical plane (ψ = 0). From eqs. (13)–
(14), (16), and (19), we obtain the boundary conditions for the
first output 


y1s

ẏ1s

ÿ1s

y
[3]
1s


 =



xs

0
0
0


 ,



y1g

ẏ1g

ÿ1g

y
[3]
1g


 =



xg

0
0
0


 ,

and for the second output

y2s

ẏ2s

ÿ2s

y
[3]
2s


 =



ys + K

0
ξs
ηs


 ,



y2g

ẏ2g

ÿ2g

y
[3]
2g


 =



yg + K

0
ξg
ηg


 .
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Fig. 7. Trajectory tracking: e1 (—), e2 (−−).
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Fig. 8. Trajectory tracking: Actual cartesian motion of the
third link.

Instead, for a swing-up maneuver between the downward
equilibrium θs = −90◦ and the upward (inverted) equilibrium
θg = 90◦ of the third link, we have the same boundary condi-
tions for the first output, while for the second output they are
replaced by


y2s

ẏ2s

ÿ2s

y
[3]
2s


 =



ys − K

0
−ξs
−ηs


 ,



y2g

ẏ2g

ÿ2g

y
[3]
2g


 =



yg + K

0
ξg
ηg


 .

We note that, since the singularity occurs now for ρ =
ξ + g0sθ = 0, zero values or opposite signs for ξs and ξg are
not a priori forbidden. Similarly to Section 5.1, the analysis
of potential occurrence of singularities can be performed on
the basis of the resultant matrix of the two polynomials ÿ1 and
ÿ2 + g0.

In particular, for the swing-up maneuver, when the x coor-
dinate of the start and goal configurations are the same (xs =
xg) the interpolation scheme (25) will generate y1(t) ≡ 0, not
allowing the third link to undergo the required rotation of 180◦

and leading the system to the singularity ρ = 0. In this case,
an intermediate state (xm �= xs, ym, θm, ẋm, ẏm, θ̇m, ξm, ηm)

should be added, to be reached at some instant Tm ∈ (0, T ).
For example, at the horizontal position θm = 0 for the third
link, we would have as intermediate boundary conditions for
the two outputs


y1m

ẏ1m

ÿ1m

y
[3]
1m


 =




xm + K

ẋm

ξm
ηm + g0 θ̇m


 ,



y2m

ẏ2m

ÿ2m

y
[3]
2m


 =




ym

ẏm + Kθ̇m

−g0

ξmθ̇m


 ,

so that trajectory planning is split in two similar interpolation
problems (called phase I and II).

5.2.1. Numerical Results

The performance of the planner is evaluated on two case stud-
ies: a transfer between two inverted equilibria and a swing-up
maneuver. We model the third link as before.

Figures 9 and 10 refer to a motion task between the inverted
equilibria

xs

ys

θs


 =


0.75 m

1 m
90◦


 −→


xg

yg

θg


 =


1.75 m

1 m
90◦


 ,

with T = 1 s and ξs = ξg = ηs = ηg = 0.
From the third link cartesian motion shown in Figure 9,

we note that the CP is always kept at the same height. The
motion of the same complete 3R arm of Section 5.1, obtained
by kinematic inversion, is given in Figure 9. The nominal
torques in Figure 10 are obtained from inverse dynamics (6).

Results on the same task executed slower (T = 5 s) are
shown in Figures 11 and 12. The third link hardly leaves the
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Fig. 9. Transfer between inverted equilibria: 3R arm motion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-100

0

100

200

300

400

500

600

700
joint torques

s

N
m

Fig. 10. Transfer between inverted equilibria: Torques τ1 (—)
and τ2 (−−).
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Fig. 11. Slower transfer between inverted equilibria: 3R arm
motion.
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Fig. 12. Slower transfer between inverted equilibria: Torques
τ1 (—) and τ2 (−−).
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vertical position, mimicking the natural balancing of a stick
during a slow translation. The necessary torques are also quite
reduced.

In Figures 13–15, we report the results for the two-phase
swing-up maneuver

xs

ys

θs


 =


0.75 m

1 m
−90◦


 −→


xg

yg

θg


 =


0.75 m

1 m
90◦


 ,

with T = 1.6 s, ξs = 0, ξg = −20 m/s2, and ηs = ηg = 0.
As intermediate zero-velocity state we used (xm, ym, θm) =
(0.75, 1, 0◦), with Tm = 1 s, ξm = −10 m/s2, and ηm = 0.

Analyzing Figure 13 in detail, we notice in phase I an ini-
tial small oscillation, in which the third link builds up kinetic
energy, before the counterclockwise rotation to the horizontal
position obtained with a slight upward motion. At the begin-
ning of phase II, the third link inverts its angular velocity and
executes a large clockwise swing of 270◦.

The nominal torques of the 3R robot in Figure 15, obtained
for m1 = m2 = 1, m3 = 0.5 (kg), show a discontinuity at
the phase transition instant. This is because the interpolating
polynomials (25) can guarantee boundary continuity only up
to the third derivative, while the nominal torque depends on
the fourth time derivatives of y1(t) and y2(t)—see eqs. (21)
and (22).

6. Conclusions

The trajectory planning and control problems for the class
of n-link planar robots with passive rotational last joint have
been solved in the unifying framework of dynamic feedback
linearization, both in the absence and presence of gravity.
The use of a preliminary partial linearization of the system
equations via static state feedback enables one to reduce the
problem to its essence, namely planning and controlling the
motion of the last link alone, driven by two independent ac-
celeration inputs at its base. The whole approach relies on the
basic property that the position of the center of percussion of
the last link is a linearizing (or flat) output for the system.

Using the dynamic feedback transformation, the system
dynamics is reduced to decoupled input-output chains of in-
tegrators. Therefore, planning feasible motions boil down to
separate interpolations for the two components of the lineariz-
ing output. In particular, rest-to-rest reconfiguration tasks can
be always executed with a single-phase trajectory when the
robot is moving on a horizontal plane (except for the special
case of straight line transfer). Under gravity, this is possible
only when the transfer takes place between two upward or
downward equilibria. Swing-up maneuvers must be accom-
plished through a two-phase trajectory.

In any case, during planning it is necessary to avoid the
singularity which occurs when the acceleration imposed to
the center of percussion along the last link axis vanishes or
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Fig. 13. Swing-up maneuver: Third link motion in phase I
(above) and in phase II (below).
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Fig. 14. Swing-up maneuver: 3R arm motion in phase I
(above) and in phase II (below).
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Fig. 15. Swing-up maneuver: Torques τ1 (—) and τ2 (−−)

cancels the acceleration in the same direction due to gravity,
when present. This can be avoided by a proper choice of the
boundary conditions for the interpolation (i.e., by selecting
appropriate initial and final values for the compensator state),
or also by switching these conditions at an intermediate point
(i.e., resetting the compensator state).

As for the trajectory tracking problem, an additional out-
come of the dynamic feedback linearization approach is the
possibility of designing exponentially stabilizing controllers
along the planned robot trajectories, based on standard linear
techniques.

6.1. Extensions

The present work can be improved in several directions. A
possible drawback of the chosen interpolation method stands
in the “swinging” last link motion induced by the use of
seventh-order polynomials as trajectories assigned to its cen-
ter of percussion. A remarkable benefit should be obtained
by separating path synthesis from timing law generation. In-
stead of using high-order time polynomials y(t), which are
prone to wandering problems, one can fit suitable low-order
parametrized functions y(s) between the start and goal con-
figurations, satisfying geometric (directional) boundary con-
ditions, and then use a scalar time function s(t) in order to
satisfy the remaining differential conditions at the start and
goal states. Indeed, the idea of time-scaling has already been
successfully applied to motion optimization of underactuated
robots (Arai, Tanie, and Shiroma 1998). On the other hand,
the number of free design choices available in the proposed
approach leaves room for many optimization issues, e.g., in
terms of energy or torque minimization during the maneuver.
Also, the possible addition of intermediate configurations as
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via-points may yield more natural trajectories and/or singu-
larity avoidance, as seen in Section 5.2.

We have analyzed the case in which the passive joint is
the last in the kinematic chain, but it can be easily recognized
that the presented planning method is applicable also when an
intermediate joint is passive, as long as the latter is preceded
by at least two active joints proximal to the base. In fact, the
distal active joints can be frozen so as to recover the situation
considered in this paper. When the second joint in the chain
is passive (and rotational), the situation is similar to the 2R
or PR underactuated robot; thus, no planning method is avail-
able but reconfiguration may be performed by feedback as in
Spong (1998) (with gravity) or as in De Luca, Mattone, and
Oriolo (2000) (without gravity). Finally, when the first joint is
passive, the associated dynamic equation is at least partially
integrable in the absence of gravity (see Oriolo and Nakamura
(1991)).

The case of multiple degree of underactuation is still open
in general, even in the planar case. In the special situation
where the last n− 2 joints are rotational and passive, the cen-
ter of percussion of the last link is still a linearizing output
provided that each of the last n − 3 links is hinged at the
center of percussion of the previous link. For this case, a mo-
tion planner based on a sequence of elementary rotation or
translation maneuvers has been developed in Shiroma, Arai,
and Tanie (1998), while the extension of the present dynamic
feedback linearization technique has been considered in De
Luca and Iannitti (2001).

Acknowledgments

This work was supported by the MURST project MISTRAL.

References

Arai, H., and Tachi, S. 1991. Position control of a manipulator
with passive joints using dynamic coupling. IEEE Trans.
on Robotics and Automation 7(4):528–534.

Arai, H., Tanie, K., and Shiroma, N. 1998a. Time-scaling con-
trol of an underactuated manipulator. IEEE Int. Conf. on
Robotics and Automation, pp. 2619–2626.

Arai, H., Tanie, K., and Shiroma, N. 1998b. Nonholonomic
control of a three-DoF planar underactuated manipulator.
IEEE Trans. on Robotics and Automation 14(5):681–695.

Bicchi, A. 2000. Hands for dexterous manipulation and robust
grasping: A difficult road toward simplicity. IEEE Trans.
on Robotics and Automation 16(6):652–662.

Bicchi, A., and Goldberg, K. (orgs.). 1996. Minimalism in
Robot Manipulation. Workshop at the 1996 IEEE Int. Conf.
on Robotics and Automation.

Brockett, R. W. 1983. Asymptotic stability and feedback sta-
bilization. In Differential Geometric Control Theory, eds.
R. W. Brockett, R. S. Millman, and H. J. Sussmann, 181–
191, Birkhäuser.

Bullo, F., and Lynch, K. M. 2001. Kinematic controllabil-
ity for decoupled trajectory planning in underactuated me-
chanical systems. IEEE Trans. on Robotics and Automa-
tion 17(4):402–412.

Charlet, B., Lévine, J., and Marino, R. 1989. On dynamic
feedback linearization. Systems and Control Lett., vol. 13,
pp. 143–152.

d’Andrea-Novel, B., Bastin, G., and Campion, G. 1995. Con-
trol of nonholonomic wheeled mobile robots by state feed-
back linearization. Int. J. of Robotics Research 14(6):543–
559.

De Luca, A., and Iannitti, S. 2001. Dynamic feedack lineariza-
tion of an XYnR planar underactuated robot with n passive
joints. 2001 Journées Doctorales d’Automatique, pp. 281–
287.

De Luca, A., Iannitti, S., and Oriolo, G. 2001. Stabilization
of a PR planar underactuated robot. 2001 IEEE Int. Conf.
on Robotics and Automation, pp. 2090–2095.

De Luca, A., Iannitti, S., Mattone, R., Oriolo, G. 2001.
Control problems in underactuated manipulators. 2001
IEEE/ASME Int. Conf. on Advanced Mechatronics,
pp. 855–928.

De Luca, A., and Lucibello, P. 1998. A general algorithm
for dynamic feedback linearization of robots with elastic
joints. 1998 IEEE Int. Conf. on Robotics and Automation,
pp. 504–510.

De Luca, A., Mattone, R., and Oriolo, G. 2000. Stabilization
of an underactuated planar 2R manipulator. Int. J. of Robust
and Nonlinear Control, vol. 10, pp. 181–198.

De Luca, A., and Oriolo, G. 2000a. Motion planning and tra-
jectory control of an underactuated three-link robot via
dynamic feedback linearization. 2000 IEEE Int. Conf. on
Robotics and Automation, pp. 2789–2795.

De Luca, A., and Oriolo, G. 2000b. Motion planning under
gravity for underactuated three-link robots. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, pp. 139–144.

De Luca, A., and Oriolo, G. 1998. Stabilization of the Ac-
robot via iterative state steering. 1998 IEEE Int. Conf. on
Robotics and Automation, pp. 3581–3587.

Descusse, J., and Moog, C. H. 1985. Decoupling with dy-
namic compensation for strong invertible affine nonlinear
systems. Int. J. of Control, vol. 43, pp. 1387–1398.

Fliess, M., Lévine, J., Martin, Ph., and Rouchon, P. 1995. Flat-
ness and defect of nonlinear systems: Introductory theory
and examples. Int. J. of Control 61(6):1327–1361.

Faiz, N., and Agrawal, S. K. 1998. Optimal planning of an
under-actuated planar body using higher-order method.
1998 IEEE Int. Conf. on Robotics and Automation,
pp. 736–741.

Funda, J., Taylor, R. H., Eldridge, B., Gomory, S., and Gruben,
K. G. 1996. Constrained cartesian motion control for tele-
operated surgical robots. IEEE Trans. on Robotics and Au-
tomation 12(3):453–465.



590 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May-June 2002

Imura, J., Kobayashi, K., and Yoshikawa, T. 1996. Nonholo-
nomic control of a three-link planar manipulator with a free
joint. 35th IEEE Conf. on Decision and Control, pp. 1435–
1436.

Isidori, A. 1995. Nonlinear Control Systems, 3rd Edition,
Springer-Verlag.

Laumond, J.-P. (ed.) 1998. Robot Motion Planning and Con-
trol, Lecture Notes in Control and Information Sciences,
vol. 229. London: Springer-Verlag.

Lewis, A. D., and Murray, R. M. 1997. Configuration control-
lability of simple mechanical control systems. SIAM J. on
Control and Optimization 35(3):766–790.

Lynch, K. M., and Mason, M. T. 1999. Dynamic nonprehen-
sile manipulation: Controllability, planning, and experi-
ments. Int. J. of Robotics Research 18(1):64–92.

Martin, Ph., Devasia, S., and Paden, B. 1996. A different look
at output tracking: Control of a VTOL aircraft. Automatica
32(1):101–107.

Martin, Ph., Murray, R. M., and Rouchon, P. 1997. Flat sys-
tems. Notes for the Mini-Course held at the 4th European
Control Conf.

Murray, R. M., Li, Z., and Sastry, S. S. 1994. A Mathematical
Introduction to Robotic Manipulation. CRC Press.

Nakamura, Y., Suzuki, T., and Koinuma, M. 1997. Nonlinear
behavior and control of nonholonomic free-joint manipu-
lator. IEEE Trans. on Robotics and Automation 13(6):853–
862.

Nakanishi, J., Fukuda, T., Koditschek, D. 2000. A brachiating
robot controller. IEEE Trans. on Robotics and Automation
16(2):109–123.

Oriolo, G., and Nakamura, Y. 1991. Control of mechanical

systems with second-order nonholonomic constraints: Un-
deractuated manipulators. 30th IEEE Conf. on Decision
and Control, pp. 2398–2403.

Rathinam, M., and Murray, R. M. 1998. Configuration flat-
ness of Lagrangian systems underactuated by one control.
SIAM J. on Control and Optimization 36(1):164–179.

Shiroma, N., Arai, H., and Tanie, K. 1998. Nonholonomic
motion planning for coupled planar rigid bodies. 3rd Int.
Conf. on Advanced Mechatronics, pp. 173–178.

Spong, M. W. 1999. Bipedal locomotion, robot gymnastics,
and robot air hockey: A rapprochement. Super-Mechano
Systems Workshop (SMS’99), Tokyo.

Spong, M. W. 1998. Underactuated mechanical systems. In
Control Problems in Robotics and Automation, eds. B. Si-
ciliano and K. P. Valavanis, LNCIS, vol. 230, pp. 135–150.
London: Springer Verlag.

Spong, M. W. 1995. The swing up control problem for the
Acrobot. IEEE Control Systems 15(1):49–55.

Spong, M. W., and Block, D. 1995. The Pendubot: A mecha-
tronic system for control research and education. 34th
IEEE Conf. on Decision and Control, pp. 555–557.

Vafa, Z., and Dubowsky, S. 1990. The kinematics and dy-
namics of space manipulators: The virtual manipulator ap-
proach. Int. J. of Robotics Research 9(4):3–21.

van Nieuwstadt, M. J., and Murray, R. M. 1998. Real-time
trajectory generation for differentially flat systems. Int. J.
of Robust and Nonlinear Control 8(11):995–1020.

Yoshikawa, T., Kobayashi, K., and Watanabe, T. 2000. Design
of a desirable trajectory and convergent control for 3-DoF
manipulator with a nonholonomic constraint. 2000 IEEE
Int. Conf. on Robotics and Automation, pp. 1805–1810.


