
A control-based approach to task-constrained motion planning

Giuseppe Oriolo Marilena Vendittelli

Abstract— We consider the problem of planning collision-
free motions for general (i.e., possibly nonholonomic) redundant
robots subject to task space constraints. Previous approaches
to the solution are based on the idea of sampling and inverting
the task constraint to build a roadmap of task-constrained
configurations which are then connected by simple local paths;
hence, task tracking is not enforced during the motion between
samples. Here, we present a control-based randomized ap-
proach relying on a motion generation scheme that guarantees
continued satisfaction of such constraint. The resulting planner
allows to achieve accurate execution of the desired task without
increasing the size of the roadmap. Numerical results on a
fixed-base manipulator and a free-fying mobile manipulator are
presented to illustrate the performance improvement obtained
with the proposed technique.

I. INTRODUCTION

Task space constraints invariably arise in the practical op-
eration of robotic systems, both in service and industrial
applications; examples include opening a door, transporting
an object, cooperating with other robots, executing a given
end-effector trajectory for drawing, cutting or welding, track-
ing a visual target. Kinematically redundant robotic systems,
such as humanoids and mobile manipulators, possess the
dexterity for accomplishing these tasks while pursuing addi-
tional objectives, among which the most important is obstacle
avoidance. A motion planner should be able to generate
robot motions that satisfy the task space constraints while
guaranteeing that the robot body does not collide with parts
of itself (self-collision) or with workspace obstacles. In the
following, this problem is referred to as Task-Constrained
Motion Planning (TCMP).

Researchers initially attacked the TCMP problem as a
special case of redundancy resolution using either local or
global optimization techniques; see [1], [2], [3] for general
reviews of optimization-based redundancy resolution. Both
these approaches to TCMP proved to be unpractical for
realistic motion planning, the first due to the presence of
local minima and the second because it leads to a nonlinear
TPBVP whose solution can only be seeked (without guaran-
tee of success) via numerical techniques.

To overcome these limitations, in [4] we applied the prin-
ciples of randomized planning to develop a solution for the
TCMP problem in the special case of fixed-base redundant
manipulators subject to end-effector path constraints. In [5],
this approach was extended to the case of nonholonomic
mobile manipulators. Along the same lines are the techniques

G. Oriolo and M. Vendittelli are with the Dipartimento di Informatica
e Sistemistica, Università di Roma “La Sapienza”, Via Ariosto 25, 00185
Roma, Italy. E-mail: {oriolo,venditt}@dis.uniroma1.it

presented in [6], where a unified representation of end-
effector constraints is also proposed. A related problem
is motion planning for closed kinematic chains, in which
the closure condition may be considered as a constraint;
randomized techniques for this problem have been presented
in [7], [8], [9].

All the above planning techniques are based on the idea
of randomly sampling and inverting the constraint to build
a roadmap consisting of admissible configurations; these are
then connected by simple local paths (typically, a linear local
planner is used). Hence, task tracking is not enforced during
the motion between samples. A higher sampling rate in the
task space can reduce the tracking error at the price of an
increased size of the roadmap and, as a consequence, of the
time needed to solve the planning problem.

Our solution to the TCMP problem relies on the principle
of control-based motion planning [10], a paradigm where
configuration samples are generated using a differential
model of the robot (called motion generation scheme in
the following). In addition to the system dynamics, often
represented as simple chains of integrators, this model can
incorporate velocity/acceleration bounds (kinodynamic mo-
tion planning [11], [12]) as well as non-integrable kinematic
constraints (nonholonomic motion planning [13], [14]). In
this paper, we extend the motion generation scheme so as to
guarantee continued satisfaction of the constraint; this leads
to an RRT-based planner that achieves accurate execution of
the task without increasing the size of the roadmap.

The paper is organized as follows. Sect. II presents some
background material on task kinematics and redundancy
concepts. The TCMP problem is formulated in Sect. III,
and our motion generation scheme is introduced in Sect. IV.
The control-based planner for solving the TCMP problem
is described in Sect. V. Numerical results are presented
in Sect. VI, while extensions and future work are briefly
discussed in the conclusions.

II. TASK KINEMATICS AND REDUNDANCY

Consider a robotic system whose configuration q takes value
in an nq-dimensional configuration space Q. For the sake
of generality, partition q as (qT

a qT
b)T , where qa is na-

dimensional and qb is nb-dimensional, and assume that qa is
subject to nc nonholonomic constraints of the Pfaffian form

A(qa)q̇a = 0. (1)

According to the partition, it is Q = Qa × Qb. The above
description encompasses most robotic systems, including

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 297

fixed-base manipulators, wheeled or legged mobile robots,
and mobile manipulators.

The velocity constraint (1) has a geometric counter-
part [15], in that any admissible configuration space path
q(s), where s is a path parameter, must be such that

A(qa)q′a = 0, (2)

with the notation ()′ = d()/ds. For motion planning1

purposes, it is therefore appropriate to use the geometric
form of the system kinematic model, which specifies the
admissible tangent vectors to the path as

q′ =
(

q′a
q′b

)
=
(

G(qa)ṽa

ṽb

)
=
(

G(qa) 0
0 I

)
ṽ (3)

where G(qa) is an na × (na − nc) matrix whose columns
are a basis for the null space of A(qa), ṽa is (na − nc)-
dimensional, and ṽb is nb-dimensional. This model entails
the simple fact that the geometric motion of the qa coor-
dinates in Qa is locally constrained by (2), whereas the qb

coordinates can move in arbitrary directions of Qb. The tilde
over the v’s is a reminder that these are geometric inputs,
rather than velocity inputs. The driftless system (3) is con-
trollable in view of the nonholonomy of the constraints (2).

Consider now a set of task coordinates t taking values in
an nt-dimensional space T . Typical robotic tasks concern
manipulation (end-effector position and/or orientation) or
perception (sensor pose or even features in the sensing space,
as in visual servoing). The task coordinates are related to the
configuration coordinates by the kinematic map

t = f(q). (4)

At the differential level, we have

t′ = Jf (q)q′ =
(
Jf ,a(q) Jf ,b(q)

)(q′a
q′b

)
where Jf (q) = df/dq, and using (3)

t′ =
(
Jf ,a(q)G(qa) Jf ,b(q)

)(ṽa

ṽb

)
= J(q)ṽ. (5)

Let n = nq−nc be the number of degrees of freedom of the
robot. The nt×n matrix J(q), simply called task Jacobian2

in the following, maps the available geometric inputs to the
admissible task-space tangent vectors [16].

In the presence of nonholonomic constraints, two kinds of
redundancy can be defined:
• static redundancy occurs when nq > nt (the number of

configuration coordinates exceeds the task dimension);
• kinematic redundancy occurs when n > nt (the number

of degrees of freedom exceeds the task dimension).
These two concepts collapse in the absence of nonholo-

nomic constraints (e.g., for fixed-base manipulators), that
implies n = nq . In general, kinematic redundancy implies
static redundancy, whereas the converse is not true; for

1If s = t, a trajectory is directly planned rather than a path.
2Some elements of J , however, are not partial derivatives, due to the

embedded nonholonomic constraint.

example, a mobile manipulator consisting of a unicycle with
a rigidly attached gripper is statically but not kinematically
redundant for planar positioning tasks.

If the robot is statically redundant with respect to the task,
the inverse image q̄ = f−1(t̄) of a point t̄ in the task space
may be either (a) an (nq − nt)-dimensional subset of C,
consisting of one or more disjoint manifolds, or (b) a finite
number of configurations [17]. Task points of the first group
include regular points and coregular points (also called
avoidable singularities), whereas the second group consists
of singular points (also called unavoidable singularities).

III. THE TCMP PROBLEM

Consider a robotic system in the form (3), and suppose that it
is kinematically redundant for the task of interest, related to
the configuration variables by eq. (4). Assume that a desired
path is assigned for the task variables t in the form td(σ),
with σ ∈ [0, 1] w.l.o.g., and that td(σ) is differentiable. For
the problem to be well-posed, we assume that:

td(σ) ∈ T ∗, ∀σ ∈ [0, 1],

where T ∗ ⊂ T is the non-singular task space, defined as
the set of regular and co-regular task space points. The
workspace W (a subset of IR2 or IR3 depending on whether
we are considering planar or spatial motions) is populated
by obstacles.

In the above hypotheses, the Task-Constrained Motion
Planning (TCMP) problem consists in finding a configuration
space path q(s), s ∈ [s0, s1], and a surjective, non-decreasing
mapping3 σ(s) : [s0, s1] 7→ [0, 1] such that:

1) t(s) = f(q(s)) = td(σ(s)), ∀s ∈ [s0, s1];
2) the robot does not collide with obstacles or with itself.

The planning space for the TCMP problem is

Ctask = {q ∈ C : f(q) = td(σ), for some σ ∈ [0, 1]}.
The manifold Ctask, that we call task-constrained configu-
ration space, has naturally the structure of a foliation (see
Fig. 1), whose generic leaf is defined as

L(σ) = {q ∈ C : f(q) = td(σ)}.
Clearly, the existence of a solution to the TCMP problem

is determined by the obstacle placement, and in particular
by the connectivity of Ctask ∩ Cfree, the portion of the free
configuration space that is compatible with the task path
constraint. Depending on the application, an initial joint
configuration q(0) such that t(0) = td(0) may or may not be
assigned. For example, the first is the case when the task is
assigned on the basis of sensory information gathered at the
current robot posture. In other situations, the determination
of q(0) is left to the planning algorithm. The first version
of the problem is clearly more constrained (and thus easier
to solve, provided that a solution exists) than the second. In
the rest of the paper, we assume that q(0) is not assigned.

See the concluding section for additional comments on the
nature of task constraints included in our formulation.

3We use different parametrizations for td and q to take advantage of the
possibility of performing self-motions or backward motions; see the next
section.

298

task constraint

leaves of C
task

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

Fig. 1. The task-constrained configuration space Ctask is a foliation.

IV. MOTION GENERATION

Our control-based planner relies on the following motion
generation scheme:

q′ =
(

G(qa) 0
0 I

)
ṽ (6)

ṽ = J†(q)(t′d + k et) + (I − J†(q)J(q))w̃, (7)

where J† is the pseudoinverse of the task Jacobian J , k is
a positive gain, et = td− t is the task error, I −J†J is the
orthogonal projection matrix in the null space of J , and w̃ is
an arbitrary n-vector that acts as a residual input. Note that
J† = JT (JJT)−1 when J is full row rank; this assumption
is always satisfied because our planner discards singular
configurations (see the EXTEND function in Sect. V).

Substituting the above expression of ṽ in (5) one obtains
e′t = −k et, i.e., asymptotically stable4 tracking of the
desired task path. In principle, by solving the differential
system (6–7) starting from L(0) with different choices of
the residual input w̃(s), s ∈ [s0, s1], one may generate all
configuration paths satisfying the task constraint. A numeric
solver can be used to actually perform the integration.

Starting from a generic leaf of Ctask, forward integration
of (6–7) allows to obtain a configuration path that starts from
the current leaf and traverses subsequent leaves. However,
taking advantage of the different parameterizations of the
task space and the configuration space paths, one may also
perform a motion on the same leaf (self-motion) or even
move backwards from the current leaf towards previous
leaves. In formulas:

t′d =
dtd

ds
=
dtd

dσ
· dσ
ds

where
dσ

ds
=

 1 forward motion
0 self-motion
−1 backward motion

4Asymptotic stability is essential in reducing the drift that is invariably
associated to a numerical integration of (6–7).

Since system (6–7) is symmetric, any backward motion
can be reversed to enforce the condition that the task path
parameter σ does not decrease as the configuration path
parameter s increases. In practice, this is simply realized
by redefining s along the subpath so as to increase from the
previous leaf to the current leaf.

V. CONTROL-BASED TCMP

Our control-based randomized planner builds a Rapidly-
exploring Random Tree (RRT, see [12], [18]) in the
task-constrained configuration space Ctask to search for a
collision-free path. For the construction of the tree, we make
use of samples of the desired task path td(σ); in particular,
denoting by {σ1 = 0, σ2, . . . , σN−1, σN = 1} an equispaced
sequence of N path parameter values, let tk = td(σk)
(we drop the d subscript for compactness). The tree edges
are collision-free subpaths obtained by applying the motion
generation scheme (6–7) starting from the tree nodes, that
are configurations in Ctask; in particular, each node has an
associated leaf index k (k = 1, . . . , N) that identifies the
particular leaf Lk = L(σk) on which it lies.

The core of the planner is the EXTEND procedure de-
scribed in pseudocode in Fig. 2. Given a tree T and a con-
figuration qrand, EXTEND first finds the node qnear in T that
is closest to qrand (line 1); call k the associated leaf index.
T is then extended from qnear using the motion generation
scheme (6–7) to perform (respectively lines 2, 6, 10):
• a forward motion, that produces a subpath leading to a

configuration qfw on Lk+1;
• a self-motion, that produces a subpath leading to a

configuration qself on Lk;
• a backward motion, that produces a subpath leading to

a configuration qbw on Lk−1.
The task constraint is exactly satisfied along these subpaths in
view of the use of (6–7). Whenever a singular configuration
is generated during FM, BM or SM, the integration stops
and qfw, qself or qbw are set to a predefined singular value.

Different choices of the residual input w̃ are possible for
generating motions with (6–7). Among the various possi-
bilities we mention: (1) a random choice with a bounded
or constant norm; (2) a random choice within a finite set of
motion primitives; (3) an optimal choice within a finite set of
motion primitives with respect to a predefined criterion, such
as the distance to qrand (other options are the manipulability
index [19] and the task compatibility index [20]).

For each generated subpath, the VALID procedure is called
to verify that the terminal configuration (qfw, qself or qbw)
is neither singular5 nor in collision with the obstacles (lines
3, 7 and 11). If this test is passed, the subpath itself is
checked for collision. In the negative case, the terminal
configuration and the subpath are inserted in T as a node
and an edge, respectively. In particular, a backward motion

5Discarding singular configurations does not hinder the possibility of
finding solutions. In fact, in the hypotheses of the TCMP problem, whenever
a singular configuration is generated there always exist (arbitrarily close)
regular configurations realizing the same task value, that the planner can
find and use to build a solution.

299

EXTEND(T, qrand)
1 qnear ← NEAREST NODE(T, qrand);
2 qfw ← FM(qnear);
3 if VALID(qfw) and FREE PATH(qnear,qfw)
4 T.add node(qfw);
5 T.add edge(qnear, qfw);
6 qself ← SM(qnear);
7 if VALID(qself) and FREE PATH(qnear,qself)
8 T.add node(qself);
9 T.add edge(qnear, qself);
10 qbw ← BM(qnear);
11 if VALID(qbw) and FREE PATH(qnear,qbw)
12 T.add node(qbw);
13 T.add edge(qbw, qnear);
14 return (qfw, qself , qbw);

Fig. 2. The EXTEND procedure for growing the exploration tree.

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

f−1

L(0)
L(1)
td(0)
td(1)
Ctask

tk−1

tk

tk+1

qbw

qfw

qself

qnear

Lk−1

Lk

Lk+1

Fig. 3. An extension step from qnear. Note that the direction of the subpath
from qnear to qbw is actually reversed before storing it as an edge in T .

is reversed and stored as an edge directed from qbw to qnear

(see the previous section), while a self-motion generates a
bidirectional edge between qnear and qself (i.e., an edge
which can be traversed in both directions).

The CONTROL BASED planner that uses the EXTEND
procedure is described in Fig. 4. A random collision-free
configuration qinit lying on L1 is first generated (line 2)
by calling RAND CONF with argument t1; essentially, this
function selects nq−nt configuration coordinates at random
and then solves for the remaining nt coordinates so as to
realize the assigned task value. The configuration qinit is
used to initialize the tree T (line 3). The algorithm then
enters the main cycle (lines 4–11) in which it tries to extend
T in order to connect L1 to LN with a collision-free path in
Ctask. Each iteration proceeds by calling first RAND CONF
to generate a random configuration qrand in C (line 6), and
then EXTEND (line 7) to grow the tree towards qrand.

If EXTEND places a node on either L1 or LN , T is
searched for an optimal path6 from L1 to LN (line 9). In
view of the structure of the algorithm, it is easy to show

6Particularly in the early stages of planning, EXTEND may place a node
on L1 before a connection to LN has been created; in this case, a path from
L1 to LN does not exist yet. On the other hand, when EXTEND places
a node on LN , a connection exists between L1 and LN , but it is not
guaranteed that the path parameter s is monotonically increasing along this
path. In both these cases, the path search will simply fail and the planning
phase will resume.

CONTROL BASED
1 i← 0;
2 qinit ← RAND CONF(t1);
3 T.init(qinit);
4 repeat
5 i← i + 1;
6 qrand ← RAND CONF;
7 (qfw, qself , qbw)← EXTEND(T, qrand);
8 if qfw ∈ LN OR if qbw ∈ L1

9 P=SHORTEST PATH(L1,LN , T);
10 else P=NULL;
11 until P!=NULL or i = MAX IT
12 return P;

Fig. 4. The CONTROL BASED algorithm for solving the TCMP problem.

that path search can be performed by considering a single
start (the last generated node, lying on either LN or L1)
and multiple goals (all the nodes on the other extremal leaf
L1 or LN). The loop is repeated until a solution path can
be extracted from T or the maximum number of attempts
MAX IT has been reached.

VI. RESULTS

The CONTROL BASED algorithm for solving the TCMP
problem has been implemented in Move3D [21], a motion
planning software platform developed at LAAS-CNRS. In
this section, we present some preliminary results obtained by
applying the proposed planning method to (1) a fixed-base
manipulator and (2) a robot with a free-flying base. Since
these systems are not subject to nonholonomic constraints,
the motion generation scheme actually reduces in both cases
to (7), with ṽ = q′. All the reported experiments have
been performed on a Dual Core Pentium 4 running at
3GHz under Linux Red Hat 8. Videos clips are available
at http://www.dis.uniroma1.it/labrob/research/TCMP.html.

The first two experiments have been performed on the
DLR Light Weight Robot, a dextrous manipulator with 7
revolute joints. The task is to follow an assigned path for the
position of the end-effector. In both cases, the last three de-
grees of freedom (the wrist) are blocked; the degree of redun-
dancy is therefore equal to 1. To better evaluate the practical
improvement introduced by the proposed strategy, we have
solved two planning problems of increasing difficulty and
compared the results obtained by the CONTROL BASED
planner and the RRT LIKE planner of [4], an RRT-based
strategy that uses a linear local planner. The reported results
(averaged on ten realizations of the planning process) were
produced with a random generation of w̃ and by using a
simple Eulero algorithm, with integration step ∆s = 0.0025,
to generate motion with (7). Euclidean distance in C is used
to identify the configuration qnear in T closest to qrand.

The first planning experiment is illustrated in Fig. 5. The
assigned end-effector path is a line segment, of length equal
to 120 cm, passing through the window placed in front of the
manipulator. The first two rows of the table in Fig. 5 show the
results obtained with CONTROL BASED and RRT LIKE
with N = 10 task path samples (with this choice, the distance
between the samples along the path is about 13 cm). The
values of both the mean and the maximum tracking error

300

Planner Mean Error Max Error # nodes
CONTROL BASED 0.0168 cm 0.0754 cm 91.7
RRT LIKE 0.6649 cm 2.9790 cm 68.2
RRT LIKE (N = 100) 0.1149 cm 1.5371 cm 1179.2

Fig. 5. First planning experiment on the DLR Light Weight Robot:
comparison between CONTROL BASED with N = 10 path samples and
RRT LIKE [4] with N = 10 and N = 100.

obtained with CONTROL BASED are smaller by almost two
orders of magnitude than those with RRT LIKE. This higher
accuracy is achieved without a significant increase in the size
(number of nodes) of the tree. In fact, the average running
time was less than 1 s for both planners.

In principle, the tracking performance of the RRT LIKE
planner can be improved by increasing the number of path
samples. The third row of the table in Fig. 5 reports the
results obtained with N = 100. These data show a limited
improvement in the tracking error (still larger than the error
achieved by CONTROL BASED with N = 10) at the price
of a severe performance degradation in terms of tree size and
running time (now about 17 s).

In the second planning problem (see Fig. 6) the path and
the window were moved further right w.r.t. the base of the
manipulator. This reduces the size of Ctask, generating a nar-
row passage in Ctask ∩Cfree that complicates the search of a
collision-free path satisfying the task constraint. The reported
results have been obtained using N = 10 path samples for
CONTROL BASED and N = 100 for RRT LIKE. The path
is about 85 cm long, so that the distance between the path
samples is about 9 cm for CONTROL BASED and 0.9 cm
for RRT LIKE. As in the first experiment, the control-based
strategy gives better results in terms of tracking accuracy,
which is comparable to that of the first experiment. The final
size of the trees is similar, and in fact the running time was

Planner Mean Error Max Error # nodes
CONTROL BASED 0.0098 cm 0.0436 cm 834.6
RRT LIKE (N = 100) 0.1479 cm 0.8608 cm 1058.9

Fig. 6. Second planning experiment on the DLR Light Weight Robot:
comparison between CONTROL BASED with N = 10 path samples and
RRT LIKE [4] with N = 100.

about 15 s for both planners.
The last planning scene is shown in Fig. 7. A 7-dof robot

consisting of a 4-dof linkage mounted on a 3-dof free-flying
base has to move its end-point along a 33 m path inside
a pipe of variable radius. The averaged results have been
obtained with a random choice of the vector w̃ and N = 10
path samples. The Eulero integration step used to generate
motion with (7) has been set to ∆s = 0.01. The mean and
maximum errors were respectively 0.0386 cm and 0.3223
cm, while the number of nodes in the tree was 99.6. The
average running time was about 2 s.

Overall, our numerical results indicate that the CON-
TROL BASED planner outperforms the RRT LIKE planner
of [4] both in terms of tracking error and complexity. Even
better (in principle, arbitrary) accuracy can be obtained by
using a higher-order integration algorithm, without increas-
ing the size of the tree. Therefore, the running time of
CONTROL BASED nicely scales with the complexity of the
planning problem, independently of the accuracy required
by the task tracking. Moreover, it may be expected that
appropriate heuristics for choosing w̃ will further improve
the efficiency of CONTROL BASED.

VII. CONCLUSION

We have presented a control-based randomized technique for
solving the Task-Constrained Motion Planning problem in
redundant robotic systems, possibly subject to nonholonomic

301

Fig. 7. Third planning experiment: a 7-dof robot with free-flying base
moving its end-point along an inspection path inside a variable radius pipe.

constraints. At the core of our method is a motion generation
scheme that guarantees continued satisfaction of the task con-
straint, allowing to achieve accurate execution of the desired
task without increasing the size of the roadmap. Preliminary
results are very encouraging and confirm the performance
improvement obtained with the proposed technique.

Note that we have only considered the case of a param-
eterized (e.g., timed) task constraint td(s), and in fact the
presented planner takes advantage of the foliation induced by
the parameterization. Non-parameterized constraints, such as
keeping a grasped object at a fixed orientation or maintaining
loop closure in a closed-chain manipulator, are not consid-
ered in this paper because they encode restrictions rather
than tasks: to create an actual motion requirement, a start
and a goal configuration must be assigned separately. There-
fore, planning under non-parameterized constraints should
be simply indicated as Constrained Motion Planning (CMP).
However, the motion generation scheme (6–7) is also bene-
ficial in CMP problems, because it can be effectively used
in conjunction with any control-based randomized planner.

Future work will address several points, among which:
• the choice of metrics for Ctask and its impact on

performance;
• the design of effective heuristics for choosing w̃ in the

motion generation scheme;
• the application of the planner to more complex robotic

structures, such as humanoids;
• the extension of the proposed method to the case of

inequality task constraints.
Finally, on the basis of some preliminary analysis as well

as of the obtained results, we conjecture that the probabilistic
completeness of the RRT algorithm is preserved with our

planning scheme, at least for the case of random choice of
the residual inputs w̃, despite the fact that the construction
of the tree takes place in the task constrained space Ctask.
Future work will also be aimed at devising a formal proof
of this conjecture.

REFERENCES

[1] B. Siciliano, “Kinematic control of redundant robot manipulators: A
tutorial”, J. of Intelligent and Robotic Systems, vol. 3, pp. 201–212,
1990.

[2] D. P. Martin, J. Baillieul, and J.M. Hollerbach (1989), “Resolution of
kinematic redundancy using optimization techniques,” IEEE Trans. on
Robotics and Automation, vol. 5, pp. 529–533, 1989.

[3] S. Chiaverini, G. Oriolo and I. Walker, “Chapter 11: Kinematically
redundant manipulators,” in Handbook of Robotics, O. Khatib and
B. Siciliano (Eds), Springer, 2009.

[4] G. Oriolo, M. Ottavi, and M. Vendittelli, “Probabilistic motion plan-
ning for redundant robots along given end-effector paths,” 2002 IEEE
Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 1657–1662,
2002.

[5] G. Oriolo, C. Mongillo, “Motion planning for mobile manipulators
along given end-effector paths,” 2005 IEEE Int. Conf. on Robotics
and Automation, pp. 2166–2172, 2005.

[6] M. Stilman, “Task constrained motion planning in robot joint space,”
2007 IEEE Int. Conf. on Intelligent Robots and Systems, pp. 3074–
3081, 2007.

[7] L. Han and N. Amato, “A kinematic-based probabilistic roadmap
method for closed chain systems,” 4th Int. Work. on Algorithmic
Foundations of Robotics, pp. 233–246, 2000.

[8] J. Yakey, S. M. LaValle and L. E. Kavraki, “Randomized path
planning for linkages with closed kinematic chains,” IEEE Trans. on
Robotics and Automation, vol. 17, no. 6, pp. 951–958, 2001.

[9] J. Cortes, T. Simèon, and J.P. Laumond, “A random loop generator for
planning the motions of closed kinematic chains using PRM methods,”
2002 IEEE Int. Conf. on Robotics and Automation, pp. 2141–2146,
2002.

[10] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms and Implementations, MIT Press, Cambridge, MA, 2005.

[11] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM, vol. 40, no. 5, pp. 1048–1066, 1993.

[12] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5,
pp. 378–400, 2001.

[13] J. Barraquand, J.C. Latombe, “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of ob-
stacles,” Algorithmica, vol. 10, pp. 121–155, 1993.

[14] S. M. LaValle, Planning Algorithms, Cambridge University Press,
2006.

[15] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
eling, Planning and Control, Springer, London, 2009.

[16] A. De Luca, G. Oriolo, P. Robuffo Giordano, “Image-based visual
servoing schemes for nonholonomic mobile manipulators,” Robotica,
vol. 25, no. 2, pp. 129–145, 2007.

[17] J. Burdick, “On the inverse kinematics of redundant manipulators:
Characterization of the self motion manifolds,” 1989 IEEE Int. Conf.
on Robotics and Automation, pp. 264–270, 1989.

[18] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., Computer Science Dept., Iowa State University,
1998.

[19] Y. Nakamura, Advanced Robotics: Redundancy and Optimization,
Addison-Wesley, 1991.

[20] S. Chiu, “Task compatibility of manipulator postures,” The Interna-
tional Journal of Robotics Research, vol. 7, no. 5, pp. 13-21, 1988.

[21] T. Simeon, J.-P. Laumond, and F. Lamiraux, “Move3d: A generic
platform for path planning,” 4th Int. Symp. on Assembly and Task
Planning, pp. 25–30, 2001.

302

